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Abstract

Decentralized optimization is increasingly popular in machine learning for its
scalability and efficiency. Intuitively, it should also provide better privacy guaran-
tees, as nodes only observe the messages sent by their neighbors in the network
graph. But formalizing and quantifying this gain is challenging: existing results are
typically limited to Local Differential Privacy (LDP) guarantees that overlook the
advantages of decentralization. In this work, we introduce pairwise network differ-
ential privacy, a relaxation of LDP that captures the fact that the privacy leakage
from a node u to a node v may depend on their relative position in the graph. We
then analyze the combination of local noise injection with (simple or randomized)
gossip averaging protocols on fixed and random communication graphs. We also
derive a differentially private decentralized optimization algorithm that alternates
between local gradient descent steps and gossip averaging. Our results show that
our algorithms amplify privacy guarantees as a function of the distance between
nodes in the graph, matching the privacy-utility trade-off of the trusted curator, up
to factors that explicitly depend on the graph topology. Remarkably, these factors
become constant for expander graphs. Finally, we illustrate our privacy gains with
experiments on synthetic and real-world datasets.

1 Introduction

Training machine learning models traditionally requires centralizing data in a single server, raising
issues of scalability and privacy. An alternative is to use Federated Learning (FL), where each
user keeps her data on device [44, 36]. In fully decentralized FL, the common hypothesis of a
central server is also removed, letting users, represented as nodes in a graph, train the model via
peer-to-peer communications along edges. This approach improves scalability and robustness to
central server failures, enabling lower latency, less power consumption and quicker deployment
[43, 11, 54, 50, 1, 42, 39].

Another important dimension is privacy, as a wide range of applications deal with sensitive and
personal data. The gold standard to quantify the privacy leakage of algorithms is Differential Privacy
(DP) [20]. DP typically requires to randomly perturb data-dependent computations to prevent
the final model from leaking too much information about any individual data point (e.g., through
data memorization). However, decentralized algorithms do not only reveal the final model to the
participating nodes, but also the results of some intermediate computations. A standard solution is to
use Local Differential Privacy (LDP) [37, 19], where random perturbations are performed locally by
each user, thus protecting against an attacker that would observe everything that users share. From the
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algorithmic standpoint, local noise addition can be easily performed within decentralized algorithms,
as done for instance in [34, 6, 15, 60, 58]. Unfortunately, LDP requires large amounts of noise, and
thus provides poor utility.

In this work, we show that LDP guarantees give a very pessimistic view of the privacy offered
by decentralized algorithms. Indeed, there is no central server receiving all messages, and the
participating nodes can only observe the messages sent by their neighbors in the graph. So, a given
node should intuitively leak less information about its private data to nodes that are far away. We
formally quantify this privacy amplification for the fundamental brick of communication at the core
of decentralized optimization: gossip algorithms. Calling Muffliato the combination of local noise
injection with a gossip averaging protocol, we precisely track the resulting privacy leakage between
each pair of nodes. Through gossiping, the private values and noise terms of various users add up,
obfuscating their contribution well beyond baseline LDP guarantees: as their distance in the graph
increases, the privacy loss decreases. We then show that the choice of graph is crucial to enforce a
good privacy-utility trade-off while preserving the scalability of gossip algorithms.

Our results are particularly attractive in situations where nodes want stronger guarantees with respect
to some (distant) peers. For instance, in social network graphs, users may have lower privacy
expectations with respect to close relatives than regarding strangers. In healthcare, a patient might
trust her family doctor more than she trusts other doctors, and in turn more than employees of a
regional agency and so on, creating a hierarchical level of trust that our algorithms naturally match.

1.1 Contributions and outline of the paper

(i) Inspired by the recent definitions of Cyffers and Bellet [17], we introduce pairwise network DP, a
relaxation of Local Differential Privacy which is able to quantify the privacy loss of a decentralized
algorithm for each pair of distinct users in a graph.

(ii) We propose Muffliato1, a privacy amplification mechanism composed of local Gaussian noise
injection at the node level followed by gossiping for averaging the private values. It offers privacy
amplification that increases as the distance between two nodes increases. Informally, the locally
differentially private value shared by a node u is mixed with other contributions, to the point that
the information that leaks to another node v can have a very small sensitivity to the initial value in
comparison to the accumulated noise.

(iii) We analyze both synchronous gossip [18] and randomized gossip [11] under a unified privacy
analysis with arbitrary time-varying gossip matrices. We show that the magnitude of the privacy
amplification is significant: the average privacy loss over all the pairs in this setting reaches the
optimal privacy-utility trade-off of a trusted aggregator, up to a factor d√

λW
, where λW is the weighted

graph eigengap and d the maximum degree of the graph. Remarkably, this factor can be of order 1 for
expanders, yielding a sweet spot in the privacy-utility-scalability trade-off of gossip algorithms. Then,
we study the case where the graph is itself random and private, and derive stronger privacy guarantees.

(iv) Finally, we develop and analyze differentially private decentralized Gradient Descent (GD)
and Stochastic Gradient Descent (SGD) algorithms to minimize a sum of local objective functions.
Building on Muffliato, our algorithms alternate between rounds of differentially private gossip
communications and local gradient steps. We prove that they enjoy the same privacy amplification
described above for averaging, up to factors that depend on the regularity of the global objective.

(v) We demonstrate the usefulness of our approach and analysis through experiments on synthetic
and real-world datasets and network graphs. We illustrate how privacy is amplified between nodes in
the graph as a function of their distance, and show how time-varying random graphs can be used to
split the privacy loss more uniformly across nodes in decentralized optimization.

1.2 Related work

Gossip algorithms and decentralized optimization. Gossip algorithms [10, 18] were introduced to
compute the global average of local vectors through peer-to-peer communication, and are at the core of
many decentralized optimization algorithms. Classical decentralized optimization algorithms alternate

1The name is borrowed from the Harry Potter series: it designates a “spell that filled the ears of anyone nearby
with an unidentifiable buzzing”, thereby concealing messages from unintended listeners through noise injection.
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between gossip communications and local gradient steps [48, 38, 39], or use dual formulations and
formulate the consensus constraint using gossip matrices to obtain decentralized dual or primal-dual
algorithms [54, 32, 24, 25, 40, 1]. We refer the reader to [49] for a broader survey on decentralized
optimization. Our algorithms are based on the general analysis of decentralized SGD in [39].

LDP and privacy amplification mechanisms. Limitations of LDP for computing the average of the
private values of n users have been studied, showing that for a fixed privacy budget, the expected
squared error in LDP is n times larger than in central DP [12]. More generally, LDP is also known to
significantly reduce utility for many learning problems [61, 57], which motivates the study of interme-
diate trust models. Cryptographic primitives, such as secure aggregation [21, 55, 9, 13, 35, 5, 53] and
secure shuffling [16, 23, 3, 31, 30], as well as additional mechanisms such as amplification by subsam-
pling [2] or amplification by iteration [28], can offer better utility for some applications, but cannot
be easily applied in a fully decentralized setting, as they require coordination by a central server.

Privacy amplification through decentralization. The idea that decentralized communications can
provide differential privacy guarantees was initiated by [7] in the context of rumor spreading. Closer
to our work, [17] showed privacy amplification for random walk algorithms on complete graphs,
where the model is transmitted from one node to another sequentially. While we build on their notion
of Network DP, our work differs from [17] in several aspects: (i) our analysis holds for any graph and
explicitly quantifies its effect, (ii) instead of worst-case privacy across all pairs of nodes, we prove
pairwise guarantees that are stronger for nodes that are far away from each other, and (iii) unlike
random walk approaches, gossip algorithms allow parallel computation and thus better scalability.

2 Setting and Pairwise Network Differential Privacy

We study a decentralized model where n nodes (users) hold private datasets and communicate through
gossip protocols, that we describe in Section 2.1. In Section 2.2, we recall differential privacy notions
and the two natural baselines for our work, central and local DP. Finally, we introduce in Section 2.3
the relaxation of local DP used throughout the paper: the pairwise network DP.

2.1 Gossip Algorithms

We consider a connected graph G = (V, E) on a set V of n users. An edge {u, v} ∈ E indicates that
u and v can communicate (we say they are neighbors). Each user v ∈ V holds a local dataset Dv

and we aim at computing averages of private values. This averaging step is a key building block
for solving machine learning problems in a decentralized manner, as will be discussed in Section 4.
From any graph, we can derive a gossip matrix.
Definition 1 (Gossip matrix). A gossip matrix over a graph G is a symmetric matrix W ∈ Rn×n

with non-negative entries, that satisfies W1 = 1 i.e. W is stochastic (1 ∈ Rn is the vector with all
entries equal to 1), and such that for any u, v ∈ V , Wu,v > 0 implies that {u, v} ∈ E or u = v.

The iterates of synchronous gossip [18] are generated through a recursion of the form xt+1 = Wxt,
and converge to the mean of initial values x0 ∈ Rn at a linear rate e−tλW , with λW defined below.
Definition 2 (Spectral gap). The spectral gap λW associated with a gossip matrix W is
minλ∈Sp(W )\{1}(1− |λ|), where Sp(W ) is the spectrum of W .

The inverse of λW is the relaxation time of the random walk on G with transition probabilities W ,
and is closely related to the connectivity of the graph: adding edges improve mixing properties
(λW increases), but can reduce scalability by increasing node degrees (and thus the per-iteration
communication complexity). The rate of convergence can be accelerated to e−t

√
λW using re-scaled

Chebyshev polynomials, leading to iterates of the form xt = Pt(W )x0 [8].
Definition 3 (Re-scaled Chebyshev polynomials). The re-scaled Chebyshev polynomials (Pt)t⩾0

with scale parameter γ ∈ [1, 2] are defined by second-order linear recursion:
P0(X) = 1 , P1(X) = X , Pt+1(X) = γXPt(X) + (1− γ)Pt−1(X) , t ⩾ 2 . (1)

2.2 Rényi Differential Privacy

Differential Privacy (DP) quantifies how much information the output of an algorithm A leaks about
the dataset taken as input [20]. DP requires to define an adjacency relation between datasets. In this
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work, we adopt a user-level relation [45] which aims to protect the whole dataset Dv of a given user
represented by a node v ∈ V . Formally, D = ∪v∈VDv and D′ = ∪v∈VD′

v are adjacent datasets,
denoted by D ∼ D′, if there exists v ∈ V such that only Dv and D′

v differ. We use D ∼v D′ to
denote that D and D′ differ only in the data of user v.

We use Rényi Differential Privacy (RDP) [46] to measure the privacy loss, which allows better
and simpler composition than the classical (ϵ, δ)-DP. Note that any (α, ε)-RDP algorithm is also
(ε+ ln(1/δ)/(α− 1), δ)-DP for any 0 < δ < 1 [46].
Definition 4 (Rényi Differential Privacy). An algorithm A satisfies (α, ε)-Rényi Differential Privacy
(RDP) for α > 1 and ε > 0 if for all pairs of neighboring datasets D ∼ D′:

Dα (A(D)||A(D′)) ⩽ ε , (2)

where for two random variables X and Y , Dα

(
X ||Y

)
is the Rényi divergence between X and Y :

Dα

(
X ||Y

)
= 1

α−1 ln
∫ (µX(z)

µY (z)

)α
µY (z)dz .

with µX and µY the respective densities of X and Y .

Without loss of generality, we consider gossip algorithms with a single real value per node (in
that case, Dv = {xv} for some xv ∈ R), and we aim at computing a private estimation of the
mean x̄ = (1/n)

∑
v xv. The generalization to vectors is straightforward, as done subsequently for

optimization in Section 4. In general, the value of a (scalar) function g of the data can be privately
released using the Gaussian mechanism [20, 46], which adds η ∼ N (0, σ2) to g(D). It satisfies
(α, α∆2

g/2σ
2)-RDP for any α > 1, where ∆g = supD∼D′ ∥g(D) − g(D′)∥ is the sensitivity of g.

We focus on the Gaussian mechanism for its simplicity (similar results could be derived for other DP
mechanisms), and thus assume an upper bound on the L2 inputs sensitivity.
Assumption 1. There exists some constant ∆ > 0 such that for all u ∈ V and for any adjacent
datasets D ∼u D′, we have ∥xu − x′

u∥ ⩽ ∆.

In central DP, a trusted aggregator can first compute the mean x̄ (which has sensitivity ∆/n) and then
reveal a noisy version with the Gaussian mechanism. On the contrary, in local DP where there is no
trusted aggregator and everything that a given node reveals can be observed, each node must locally
perturb its input (which has sensitivity ∆), deteriorating the privacy-utility trade-off. Formally, to
achieve (α, ε)-DP, one cannot have better utility than:

E
[∥∥xout − x̄

∥∥2] ⩽ α∆2

2nε
for local DP , and E

[∥∥xout − x̄
∥∥2] ⩽ α∆2

2n2ε
for central DP ,

where xout is the output of the algorithm. This 1/n gap motivates the study of relaxations of local DP.

2.3 Pairwise Network Differential Privacy

We relax local DP to take into account privacy amplification between nodes that are distant from each
other in the graph. We define a decentralized algorithm A as a randomized mapping that takes as
input a dataset D = ∪v∈V(Dv) and outputs the transcript of all messages exchanged between users
in the network. A message between neighboring users {u, v} ∈ E at time t is characterized by the
tuple (u,m(t), v): user u sent a message with content m(t) to user v, and A(D) is the set of all these
messages. Each node v only has a partial knowledge of A(D), captured by its view:

Ov

(
A(D)

)
= {(u,m(t), v) ∈ A(D) such that {u, v} ∈ E} .

This subset corresponds to direct interactions of v with its neighbors, which provide only an indirect
information on computations in others parts of the graph. Thus, we seek to express privacy constraints
that are personalized for each pair of nodes. This is captured by our notion of Pairwise Network DP.
Definition 5 (Pairwise Network DP). For f : V ×V → R+, an algorithmA satisfies (α, f)-Pairwise
Network DP (PNDP) if for all pairs of distinct users u, v ∈ V and neighboring datasets D ∼u D′:

Dα

(
Ov(A(D)) || Ov(A(D′))

)
⩽ f(u, v) . (3)

We note εu→v = f(u, v) the privacy leaked to v from u and say that u is (α, εu→v)-PNDP with
respect to v if only inequality (3) holds for f(u, v) = εu→v .
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By taking f constant in Definition 5, we recover the definition of Network DP [17]. Our pairwise
variant refines Network DP by allowing the privacy guarantee to depend on u and v (typically, on
their relative position in the graph). We assume that users are honest but curious: they truthfully
follow the protocol, but may try to derive as much information as possible from what they observe.
We refer to Appendix G for a natural adaptation of our definition and results to the presence of
colluding nodes and to the protection of groups of users.

In addition to pairwise guarantees, we will use the mean privacy loss εv = 1
n

∑
u∈V\{v} f(u, v) to

compare with baselines LDP and trusted aggregator by enforcing ε = maxv∈V εv ⩽ ε. The value εv
is the average of the privacy loss from all the nodes to v and thus does not correspond to a proper
privacy guarantee, but it provides a convenient way to summarize our gains, noting that distant nodes
— in ways that will be specified — will have better privacy guarantee than this average, while worst
cases will remain bounded by the baseline LDP guarantee provided by local noise injection.

3 Private Gossip Averaging

In this section, we analyze a generic algorithm with arbitrary time-varying communication matrices
for averaging. Then, we instantiate and discuss these results for synchronous communications with a
fixed gossip matrix, communications using randomized gossip [11], and with Erdös-Rényi graphs.

3.1 General Privacy Analysis of Gossip Averaging

We consider gossip over time-varying graphs (Gt)0⩽t⩽T , defined as Gt = (V, Et), with correspond-
ing gossip matrices (Wt)0⩽t⩽T . The generic Muffliato algorithm AT for averaging x = (xv)v∈V
corresponds to an initial noise addition followed by T gossip steps. Writing W0:t = Wt−1 . . .W0,
the iterates of AT are thus defined by:

∀v ∈ V, x0
v = xv + ηv with ηv ∼ N (0, σ2), and xt+1 = Wtx

t = W0:t+1(x+ η) . (4)

Note that the update rule at node v ∈ V writes as xt+1
v =

∑
w∈Nt(v)

(Wt)v,wx
t
w whereNt(v) are the

neighbors of v in Gt, so for the privacy analysis, the view of a node is:

Ov

(
AT (D)

)
=
{(

W0:t(x+ η)
)
w
| {v, w} ∈ Et , 0 ⩽ t ⩽ T − 1

}
∪ {xv} . (5)

Theorem 1. Let T ⩾ 1 and denote by PT
{v,w} = {s < T : {v, w} ∈ Es} the set of time-steps with

communication along edge {v, w}. Under Assumption 1, AT is (α, f)-PNDP with:

f(u, v) =
α∆2

2σ2

∑
w∈V

∑
t∈PT

{v,w}

(W0:t)
2
u,w

∥(W0:t)w∥2
. (6)

This theorem, proved in Appendix B, gives a tight computation of the privacy loss between every pair
of nodes and can easily be computed numerically (see Section 5). Since distant nodes correspond to
small entries in W0:t, Equation 6 suggests that they reveal less to each other. We will characterize
this precisely for the case of fixed communication graph in the next subsection.

Another way to interpret the result of Theorem 1 is to derive the corresponding mean privacy loss:

εv =
α∆2Tv

2nσ2
, (7)

where Tv is the total number of communications node v was involved with up to time T . Thus, in
comparison with LDP, the mean privacy towards v is n/Tv times smaller. In other words, a node
learns much less than in LDP as long as it communicates o(n) times.

3.2 Private Synchronous Muffliato

We now consider Muffliato over a fixed graph (Algorithm 1). Note that we use gossip acceleration
(see Definition 3). We start by analyzing the utility of Muffliato, which decomposes as an averaging
error term vanishing exponentially fast, and a bias term due to the noise. General convergence rates
are given in Appendix C, from which we extract the following result.
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Algorithm 1: MUFFLIATO

Input: local values (xv)v∈V to average,
gossip matrix W on a graph G, in T
iterations, noise variance σ2

γ ← 2
1−

√
λW (1−λW

4 )

(1−λW /2)2

for all nodes v in parallel do
x0
v ← xv + ηv where ηv ∼ N (0, σ2)

for t = 0 to T − 1 do
for all nodes v in parallel do

for all neighbors w defined by W do
Send xt

v , receive xt
w

xt+1
v ←
(1− γ)xt−1

v + γ
∑

w∈Nv
Wv,wx

t
w

Algorithm 2: RANDOMIZED MUFFLIATO

Input: local values (xv)v∈V to average,
activation intensities
(p{v,w}){v,w}∈E , in T iterations,
noise variance σ2

for all nodes v in parallel do
x0
v ← xv + ηv where ηv ∼ N (0, σ2)

for t = 0 to T − 1 do
Sample {vt, wt} ∈ E with probability
p{vt,wt}
vt and wt exchange xt

vt and xt
wt

Local averaging:

xt+1
vt = xt+1

wt
=

xt+1
vt

+xt+1
wt

2

For v ∈ V \ {vt, wt}, xt+1
v = xt

v

Table 1: Utility of Muffliato for several topologies under the constraint ε ⩽ ε for the classic gossip
matrix where Wv,w = min(1/dv, 1/dw) and dv is the degree of node v. Õ(·) hides constant and
logarithmic factors. Recall that utility is Õ(α∆2/nε) for LDP and Õ(α∆2/n2ε) for central DP.

Graph Arbitrary Expander C-Torus Complete Ring

Algorithm 1 Õ
(

α∆2d
n2ε

√
λW

)
Õ
(
α∆2

n2ε

)
Õ
(

α∆2C
n2−1/Cε

)
Õ
(
α∆2

nε

)
Õ
(
α∆2

nε

)
Algorithm 2 Õ

(
α∆2

n2ελW

)
Õ
(
α∆2

n2ε

)
Õ
(

α∆2

n2−2/Cε

)
Õ
(
α∆2

n2ε

)
Õ
(
α∆2

nε

)
Theorem 2 (Utility analysis). Let λW be the spectral gap of W . Muffliato (Algorithm 1) verifies, for
any t ⩾ T stop:

1

2n

∑
v∈V

E
[∥∥xt

v − x̄
∥∥2] ⩽ 3σ2

n
, where T stop =

1√
λW

ln

(
n

σ2
max

(
σ2,

1

n

∑
v∈V
∥xv − x̄∥2

))
.

For the privacy guarantees, Theorem 1 still holds as accelerated gossip can be seen as a post-processing
of the non-accelerated version. Thanks to the fixed graph, we can derive a more explicit formula.
Corollary 1. Algorithm 1 satisfies (α, εTu→v(α))-PNDP for node u with respect to v, with:

εTu→v(α) ⩽
α∆2n

2σ2
max

{v,w}∈E
W−2

v,w

T∑
t=1

P
(
Xt = v|X0 = u

)2
,

where (Xt)t is the random walk on graph G, with transitions W .

This result allows us to directly relate the privacy loss from u to v to the probability that the random
walk on G with transition probabilities given by the gossip matrix W goes from u to v in a certain num-
ber of steps. It thus captures a notion of distance between nodes in the graph. We also report the utility
under fixed mean privacy loss ε = maxv∈V εv ⩽ ε in Table 1 for various graphs, where one can see a
utility-privacy trade-off improvement of n

√
λW /d, where d is the maximum degree, compared to LDP.

Using expanders closes the gap with a trusted aggregator (i.e., central DP) up to constant and logarith-
mic terms. Remarkably, graph topologies that make gossip averaging efficient (i.e. with big

√
λW /d),

such as exponential graphs or hypercubes [59], are also the ones that achieve optimal privacy am-
plification (up to logarithmic factors). In other words, privacy, utility and scalability are compatible.

3.3 Private Randomized Muffliato

Synchronous protocols require global coordination between nodes, which can be costly or even impos-
sible in some settings. On the contrary, asynchronous protocols only require separated activation of
edges: they are thus are more resilient to stragglers nodes and faster in practice. In asynchronous gos-
sip, at a given time-step a single edge {u, v} is activated independently from the past with probability
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p{u,v}, as described by Boyd et al. [11]. In our setting, randomized Muffliato (Algorithm 2) corre-
sponds to instantiating our general analysis with W t = W{vt,wt} = In− (evt − ewt

)(evt − ewt
)⊤/2

if {vt, wt} is sampled at time t. The utility analysis is similar to the synchronous case.
Theorem 3 (Utility analysis). Let λ(p) be the spectral gap of graph G with weights (p{v,w}){v,w}∈E .
Randomized Muffliato (Algorithm 2) verifies, for all t ⩾ T stop:
1

2n

∑
v∈V

E
[∥∥xt

v − x̄
∥∥2] ⩽ 2σ2

n
, where T stop =

1

λ(p)
ln

(
n

σ2
max

(
σ2,

1

n

∑
v∈V

∥∥x0
v − x̄

∥∥2)) .

To compare with synchronous gossip (Algorithm 1), we note that activation probabilities can be
derived from a gossip matrix W by taking p{u,v} = 2W{u,v}/n implying that λ(p) = 2λW /n,
thus requiring n times more iterations to reach the same utility as the synchronous applications of
matrix W . However, for a given time-horizon T and node v, the number of communications v can be
bounded with high probability by a T/n multiplied by a constant whereas Algorithm 1 requires dvT
communications. Consequently, as reported in Table 1, for a fixed privacy mean εv , Algorithm 2 has
the same utility as Algorithm 1, up to two differences: the degree factor dv is removed, while

√
λW

degrades to λW as we do not accelerate randomized gossip (see Remark 1 below). Randomized
gossip can thus achieve an optimal privacy-utility trade-off with large-degree graphs, as long as the
spectral gap is small enough.
Remark 1 (Accelerating Randomized Muffliato). For simplicity, Randomized Muffliato (Algorithm 2)
is not accelerated, while Muffliato (Algorithm 1) uses Chebychev acceleration to obtain a dependency
on
√
λW rather than λW . Thus, and as illustrated by Table 1, Algorithm 2 does not improve

over Algorithm 1 for all values of d (maximum degree), n and λW . However, Algorithm 2 can be
accelerated using a continuized version of Nesterov acceleration [24, 25], thus replacing λ(p) in the
expression of T stop in Theorem 3, by

√
λ(p)/(dn). Doing so, using randomized communications

improve privacy guarantees over Algorithm 1 for all graphs considered in Table 1.

3.4 Erdös-Rényi Graphs

So far the graph was considered to be public and the amplification only relied on the secrecy of the
messages. In practice, the graph may be sampled randomly and the nodes need only to know their
direct neighbors. We show that we can leverage this through the weak convexity of Rényi DP to
amplify privacy between non-neighboring nodes. We focus on Erdös-Rényi graphs, which can be
built without central coordination by picking each edge independently with the same probability
q. For q = c ln(n)/n where c > 1, Erdös-Rényi graphs are good expanders with node degrees
dv = O(log n) and λW concentrating around 1 [33]. We obtain the following privacy guarantees.

Theorem 4 (Muffliato on a random Erdös-Rényi graph). Let α > 1, T ⩾ 0, σ2 ⩾ ∆2α(α−1)
2

and q = c ln(n)n for c > 1. Let u, v ∈ V be distinct nodes. After running Algorithm 1 with these
parameters, node u is (α, εTu→v(α))-PNDP with respect to v, with:

εTu→v(α) ⩽


α∆2

2σ2
with probability q ,

α∆2

σ2

Tdv
n− dv

with probability 1− q .

This results shows that with probability q, u and v are neighbors and there is no amplification com-
pared to LDP. The rest of the time, with probability 1− q, the privacy matches that of a trusted aggre-
gator up to a degree factor dv = O(log n) and T = Õ(1/

√
λW ) = Õ(1) [33]. In particular, if several

rounds of gossip averaging are needed, as in the next section for SGD, changing the graph mitigates
the privacy loss of the rounds where two nodes are neighbors thanks to the rounds where they are not.

4 Private Decentralized Optimization

We now build upon Muffliato to design decentralized optimization algorithms. Each node v ∈ V
possesses a data-dependent function ϕv : RD → R and we wish to privately minimize the function

ϕ(θ) =
1

n

∑
v∈V

ϕv(θ) , with ϕv(θ) =
1

|Dv|
∑

xv∈Dv

ℓv(θ, xv) , θ ∈ RD , (8)
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Algorithm 3: MUFFLIATO-SGD and MUFFLIATO-GD

Input: initial points θ0v ∈ RD, number of iterations T , step sizes ν > 0, noise variance σ2,
gossip matrices (Wt)t⩾0, local functions ϕv , number of communication rounds K

for t = 0 to T − 1 do
for all nodes v in parallel do

Compute θ̂tv = θtv − ν∇θℓv(θ
t
v, x

t
v) where xt

v ∼ Lv

θt+1
v = MUFFLIATO

(
(θ̂tv)v∈V ,Wt,K, ν2σ2)

where Dv is the (finite) dataset corresponding to user v for data lying in a space Xv, and ℓv : RD ×
Xv → R a loss function. We assume that ϕ is µ-strongly convex, and each ϕv is L-smooth, and denote
κ = L/µ. We note that our results can be extended to the general convex and smooth setting. Denoting
by θ⋆ the minimizer of ϕ, for some non-negative (ζ2v )v∈V , (ρ2v)v∈V and all v ∈ V , we assume:

∥∇ϕv(θ
⋆)−∇ϕ(θ⋆)∥2 ⩽ ζ2v , E

[
∥∇ℓv(θ⋆, xv)−∇ϕ(θ⋆)∥2

]
⩽ ρ2v , xv ∼ Lv ,

where Lv is the uniform distribution over Dv . We write ρ̄2 = 1
n

∑
v∈V ρ2v and ζ̄2 = 1

n

∑
v∈V ζ2v .

We introduce Algorithm 3, a private version of the classical decentralized SGD algorithm studied
in [39]. Inspired by the optimal algorithm MSDA of Scaman et al. [54] that alternates between
K Chebychev-accelerated gossip communications and expensive dual gradient computations, our
Algorithm 3 alternates between K Chebychev-accelerated gossip communications and cheap local
stochastic gradient steps. This alternation reduces the total number of gradients leaked, a crucial
point for achieving good privacy. Note that in Algorithm 3, each communication round uses a
potentially different gossip matrix Wt. In the results stated below, we fix Wt = W for all t and defer
the more general case to Appendix F, where different independent Erdös-Rényi graphs with same
parameters are used at each communication round.

Remark 2. Our setting encompasses both GD and SGD. Muffliato-GD is obtained by removing the
stochasticity, i.e., setting ℓv(·) = ϕv(·). In that case, ρ̄2 = 0.

Theorem 5 (Utility analysis of Algorithm 3). For suitable step-size parameters, for a total number
of T stop computations and T stopK communications, with:

T stop = Õ
(
κ
)
, and K =

⌈√
λW

−1
ln

(
max

(
n,

ζ̄2

Dσ2 + ρ̄2
))⌉

,

the iterates (θt)t⩾0 generated by Algorithm 3 verify E
[
ϕ(θ̃out)− ϕ(θ⋆)

]
= Õ(Dσ2+ρ̄2

µnT stop ) where

θ̃out ∈ RD is a weighted average of the θ̄t = 1
n

∑
v∈V θtv until T stop.

For the following privacy analysis, we need a bound on the sensitivity of gradients with respect to the
data. To this end, we assume that for all v and xv , ℓv(·, xv) is ∆ϕ/2 Lipschitz2.

Theorem 6 (Privacy analysis of Algorithm 3). Let u and v be two distinct nodes in V . After T
iterations of Algorithm 3 with K ⩾ 1, node u is (α, εTu→v(α))-PNDP with respect to v, with:

εTu→v(α) ⩽
T∆2

ϕα

2σ2

K−1∑
k=0

∑
w:{v,w}∈E

(W k)2u,w

∥(W k)w∥2
. (9)

Thus, for any ε > 0, Algorithm 3 with T stop(κ, σ2, n) steps and for K as in Theorem 5, there exists
f such that the algorithm is (α, f)-pairwise network DP, with:

∀v ∈ V , εv ⩽ ε and E
[
ϕ(θ̃out)− ϕ(θ⋆)

]
⩽ Õ

(
αD∆2

ϕd

µn2ε
√
λW

+
ρ̄2

nL

)
,

where d = maxv∈V dv .

2This assumption can be replaced by the more general Assumption 2 given in Appendix F.
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The term ρ̄2

nL above (which is equal to zero for Muffliato-GD, see Remark 2) is privacy independent.
It is typically dominated by the first term, which corresponds to the utility loss due to privacy.
Comparing Theorem 6 with the results for Muffliato (Table 1 in Section 3.2), the only difference lies
in the factor D∆2

ϕ/µ. Note that ∆2
ϕ plays the role of the sensitivity ∆2, and D appears naturally due

to considering D-dimensional parameters. On the other hand, µ is directly related to the complexity
of the optimization problem through the condition number κ: the easier the problem, the better the
privacy-utility trade-off of our algorithm. Regarding the influence of the graph, the same discussion as
after Corollary 1 applies here. In particular, for expander graphs like the exponential graph of [59], the

factor d/
√
λW is constant. In this case, converting to standard (ϵ, δ)-DP gives Õ

( D∆2
ϕ

µn2ϵ2

)
, recovering

the optimal privacy-utility trade-off of central DP [4, 56] up to logarithmic factors. Remarkably, we
achieve this optimal rate under a near-linear gradient complexity of T stop(κ, σ2, n)n = Õ(κn) and
near-linear total number of messages T stop(κ, σ2, n)Kn = Õ(κn).

Remark 3 (Time-varying graphs). The analysis of Muffliato-GD/SGD presented in this section
(Theorems 5 and 6) assumes constant gossip matrices Wt = W . A more general version of these
results is presented in Appendix F to handle time-varying matrices and graphs. This can be used
to model randomized communications (as previously described for gossip averaging in Section 3.3)
as well as user dropout (see experiments in Appendix H). Time-varying graphs can also be used to
split the privacy loss more uniformly across the different nodes by avoiding that nodes have the same
neighbors across multiple gossip computations. We illustrate this experimentally for decentralized
optimization in Section 5, where we randomize the graph after each gradient step of Muffliato-GD.

5 Experiments

In this section, we show that pairwise network DP provides significant privacy gains in practice even
for moderate size graphs. We use synthetic graphs and real-world graphs for gossip averaging. For
decentralized optimization, we solve a logistic regression problem on real-world data with time-
varying Erdos-Renyi graphs, showing in each case clear gains in privacy compared to LDP. The code
used to obtain these results is available at https://github.com/totilas/muffliato.

Averaging on synthetic graphs. We generate synthetic graphs with n = 2048 nodes and define the
corresponding gossip matrix according to the Hamilton scheme. Note that the privacy guarantees
of Muffliato are deterministic for a fixed W , and defined by Equation 4. For each graph, we run
Muffliato for the theoretical number of steps required for convergence, and report in Figure 1(a)
the pairwise privacy guarantees aggregated by shortest path lengths between nodes, along with the
LDP baseline for comparison. Exponential graph (generalized hypercube): this has shown to be an
efficient topology for decentralized learning [59]. Consistently with our theoretical result, privacy is
significantly amplified. The shortest path completely defines the privacy loss, so there is no variance.
Erdos-Renyi graph with q = c log n/n (c ⩾ 1) [22], averaged over 5 runs: this has nearly the same
utility-privacy trade-off as the exponential graph but with significant variance, which motivates
the time-evolving version mentioned in Remark 3. Grid: given its larger mixing time, it is less
desirable than the two previous graphs, emphasizing the need for careful design of the communication
graph. Geometric random graph: two nodes are connected if and only if their distance is below a
given threshold, which models for instance Bluetooth communications (effective only in a certain
radius). We sample nodes uniformly at random in the square unit and choose a radius ensuring full
connectivity. While the shortest path is a noisy approximation of the privacy loss, the Euclidean
distance is a very good estimator as shown in Appendix H.

Averaging on real-world graphs. We consider the graphs of the Facebook ego dataset [41], where
nodes are the friends of a given user (this central user is not present is the graph) and edges encode the
friendship relation between these nodes. Ego graphs typically induce several clusters corresponding
to distinct communities: same high school, same university, same hobbies... For each graph, we
extract the giant connected component, choose a user at random and report its privacy loss with
respect to other nodes. The privacy loss given by LDP is only relevant within the cluster of direct
neighbors: privacy guarantees with respect to users in other communities are significantly better, as
seen in Figure 1(b). We observe this consistently across other ego graphs (see Appendix H). This is
in line with one of our initial motivation: our pairwise guarantees are well suited to situations where
nodes want stronger privacy with respect to distant nodes.

9

https://github.com/totilas/muffliato


0 5 10 15 20 25
Shortest Path Length

10−5

10−4

10−3

10−2

10−1

100

Pr
iv

ac
y 

Lo
ss

LDP loss
Exponential
Erdos Renyi
Random Geometric
Grid

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0
Privacy loss

0

103

No
de

s LDP
PNDP (n=4000)
PNDP (n=2000)

0 2 4 6 8
Iterations

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Muffliato
Central

Figure 1: (a) Left: Privacy loss of Muffliato in pairwise NDP on synthetic graphs (best, worst and
average in error bars over nodes at a given distance), confirming a significant privacy amplification
as the distance increases. (b) Middle: Privacy loss of Muffliato from a node chosen at random on
a Facebook ego graph, showing that leakage is very limited outside the node’s own community.
(c) Right: Privacy loss and utility of Muffliato-GD when using different Erdös-Rényi graphs after
each gradient step, compared to a baseline based on a trusted aggregator.

Logistic regression on real-world data. Logistic regression corresponds to minimizing Equation 8
with loss function ℓ(θ;x, y) = ln(1 + exp(−yθ⊤x)) where x ∈ Rd and y ∈ {−1, 1}. We use a
binarized version of UCI Housing dataset.3 We standardize the features and normalize each data
point x to have unit L2 norm so that the logistic loss is 1-Lipschitz for any (x, y). We split the
dataset uniformly at random into a training set (80%) and a test set and further split the training set
across users. After each gradient step of Muffliato-GD, we draw at random an Erdös-Rényi graph of
same parameter q to perform the gossiping step and run the theoretical number of steps required for
convergence. For each node, we keep track of the privacy loss towards the first node (note that all
nodes play the same role). We report the pairwise privacy loss for this node with respect to all others
for n = 2000 and n = 4000 in Figure 1(c) (top). We see that, as discussed in Remark 3, time-varying
graphs are effective at splitting the privacy loss more uniformly across nodes: the privacy gains over
LDP are clear with respect to all nodes. As captured by our theory, these gains increase with the
number of nodes n in the system, and they also concentrate better around the mean. We compare
the utility of Muffliato-GD to a federated learning alternative which uses the same parameters but
aggregates noisy model updates using a trusted central server rather than by gossiping. As seen in
Figure 1(c) (bottom), both approaches behave similarly in terms of accuracy across iterations.

6 Conclusion

We showed that gossip protocols amplify the LDP guarantees provided by local noise injection as
values propagate in the graph. Despite the redundancy of gossip that, at first sight, could be seen
as an obstacle to privacy, the privacy amplification turns out to be significant: it can nearly match
the optimal privacy-utility trade-off of the trusted curator. From the fundamental building block —
noise injection followed by gossip — that we analyzed under the name Muffliato, one can easily
extend the analysis to other decentralized algorithms, such as the dual approach proposed in [54].
Our results are motivated by the typical relation between proximity in the communication graph and
lower privacy expectations. Other promising directions are to assume that closer people are more
similar, which leads to smaller individual privacy accounting [27], to design new notions of similarity
between nodes in graphs as done in personalization [26] that match the privacy loss variations, and to
study privacy attacks [52].
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A Preliminary Lemmas and Notations

We conduct our analysis with the Gaussian mechanism, introduced in Section 2, that we recall here
for readability.

Lemma 1 (Gaussian mechanism). For α > 1, noise variance σ2, sensitivity ∆ > 0 and x, y ∈ R
such that |x− y| ⩽ ∆, we have:

Dα

(
N (x, σ2) || N (y, σ2)

)
⩽

α∆2

2σ2
.

For the privacy analysis when the graph is private and randomly sampled (Appendix E), we use the
following result on the weak convexity of the Rényi divergence [29].

Lemma 2 (Quasi-convexity of Rényi divergence [29]). Let (µi)i∈I and (νi)i∈I be probability
distributions over shared space, such that for all i ∈ I, we have Dα(µi||νi) ⩽ c/(α− 1) for some
c ∈ (0, 1]. Let ρ be a distribution over I and µρ and νρ be obtained by sampling i from ρ, and
outputing a sample from µi and νi. Then, we have:

Dα(µρ||νρ) ⩽ (1 + c)E [Dα(µi||νi) | i ∼ ρ] .

In the following, we will use the notation u ∼ v to denote that two nodes u and v are neighbors.

B General Privacy Analysis (Theorem 1)

Proof. We need to bound the privacy loss that occurs from the following view:

Ov

(
AT (D)

)
=
{(

W0:t(x+ η)
)
w
| {v, w} ∈ Et , 0 ⩽ t ⩽ T − 1

}
∪ {xv} .

We have:

Dα

(
Ov(AT (D)) || Ov(AT (D′))

)
⩽

T−1∑
t=0

∑
w∈Nt(v)

Dα

((
W0:t(x+ η)

)
w
||
(
W0:t(x

′ + η)
)
w

)
.

We have (W0:t(x
′+η))w−(W0:t(x+η))w ∼ N ((W0:t(x

′+η))w−(W0:t(x+η))w, σ
2∥(W0:t)w∥2)

with a sensitivity verifying |(W0:t(x
′+η))w−(W0:t(x+η))w|2 ⩽ ∆2(W0:t)

2
u,w under Assumption 1

and D ∼u D′. Thus, using Lemma 1, we have:

Dα

((
W0:t(x+ η)

)
w
||
(
W0:t(x

′ + η)
)
w

)
⩽

α∆2

2σ2

(W0:t)
2
u,w

∥(W0:t)w∥2
,

leading to the desired f(u, v). The mean privacy loss is then obtained by summing the above
inequality for u ̸= v and t < T :

εv =
1

n

∑
u̸=v

f(u, v) ⩽
1

n

∑
u∈V

α∆2

2σ2

∑
w∈V

∑
t∈PT

{v,w}

(W0:t)
2
u,w

∥(W0:t)w∥2

=
1

n

α∆2

2σ2

∑
t∈PT

{v,w}

∑
w∈V

∑
u∈V

(W0:t)
2
u,w

∥(W0:t)w∥2

=
1

n

α∆2

2σ2

∑
t∈PT

{v,w}

∑
w∈V

1

=
α∆2Tv

2nσ2
,

where Tv =
∑

w∈V |PT
{v,w}| is exactly the number of communications node v is involved in, up to

time T .
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C Synchronous Muffliato

C.1 Utility Analysis (Theorem 2)

While the main text presents the result for the 1-dimensional case for simplicity, we prove here the
convergence for the general case where each node holds a vector of dimension D. Theorem 2 is then
a direct consequence of Equation (10) for D = 1.

Theorem 7 (Utility analysis). For any T ⩾ 0, the iterates (xT )T⩾0 of Muffliato (Algorithm 1) verify,
for λW defined in Definition 2 and x̄ = 1

n

∑
v∈V xv:

1

2n

∑
v∈V

E
[∥∥xT

v − x̄
∥∥2] ⩽ ( 1

n

∑
v∈V
∥xv − x̄∥2 +Dσ2

)
e−T

√
λW +

Dσ2

n
. (10)

Proof. For t ⩾ 0 and y ∈ RV×D, using results from Berthier et al. [8], we have, for a vector
y ∈ RV×D such that

∑
v∈V yv = 0, ∥Pt(W )y∥2 ⩽ 2(1−

√
λW )2∥y∥2. In particular:

∥∥Pt(W )(y − ȳ1⊤)
∥∥ ⩽ 2(1−

√
λW )t

∥∥y − ȳ1⊤∥∥2 ,
where 1 with the vector with all entries equal to 1. Since

xt = Pt(W )
(
x+N (0, σ2IV×D)

)
, t ⩾ 0 ,

we obtain that, for η ∼ N (0, σ2IV×D) and η̄ = 1
n

∑
v∈V ηv1

⊤ ∈ RV×D, using bias-variance
decomposition twice:

1

2
E
[∥∥xt − x̄

∥∥2] = 1

2
E
[∥∥∥Pt(W )(x(0) − x̄)

∥∥∥2]
=

1

2
∥Pt(W )(x+ η − x̄− η̄)∥2 + 1

2
E
[
∥Pt(W )η̄∥2

]
⩽ (1−

√
λW )tE

[
∥x+ η − x̄− η̄∥2

]
+

Dσ2

2n

⩽ (1−
√

λW )t
(
E
[
∥x− x̄∥2

]
+ nDσ2

)
+

Dσ2

2n
.

The precision 3Dσ2

n is thus reached for

T stop
(
W, (xv)v∈V , Dσ2

)
⩽
√

λW

−1
ln

(
n

Dσ2
max

(
Dσ2,

1

n

∑
v∈V
∥xv − x̄∥2

))
.

C.2 Privacy Analysis (Corollary 1)

Proof of Corollary 1. For a fixed gossip matrix W , we have W0:t = W t, so that Theorem 1 reads:

f(u, v) =
α∆2

2σ2

∑
t<T

∑
w:{v,w}∈E

(W t)2u,w

∥(W t)w∥2
.

Since W is bi-stochastic,
(W t)2u,w

∥(W t)w∥2 ⩽ n × (W t)2u,w = nP
(
Xt = u|X0 = w

)2
, using Cauchy-

Schwarz inequality.
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Summing over the neighbors w ∼ v, we obtain, for t < T :∑
w∼v

α

2σ2

∑
w:{v,w}∈E

(W t)2u,w

∥(W t)w∥2
⩽

αn

2σ2

∑
w∼v

P
(
Xt = u|X0 = w

)2
⩽

αn

2σ2

(∑
w∼v

P
(
Xt = u|X0 = w

))2

⩽
αn

2σ2

1

minw∼v W 2
v,w

(∑
w∼v

Wv,wP
(
Xt = u|X0 = w

))2

⩽
αn

2σ2

1

minw∼v W 2
v,w

P
(
Xt+1 = u|X0 = v

)2
,

where the last line is obtained by observing that:∑
w∼v

Wv,wP
(
Xt = u|X0 = w

)
= P

(
Xt+1 = u|X0 = v

)
,

by conditioning on the first step of the random walk. This leads to Corollary 1.

C.3 First Line of Table 1

The results in the first line of Table 1 are obtained by observing that v is involved in dvT commu-
nications up to time T , leading to ε̄v = α∆2dvT

2σ2n2 . Using Theorem 2, we have a utility of 3σ2/n for

T stop = λ
−1/2
W ln

(
n
σ2 max

(
σ2, 1

n

∑
v∈V

∥∥x0
v − x̄

∥∥2)) steps. Thus, imposing ε̄v ⩽ ε for a fixed

ε > 0 gives us σ2 = α∆2dT stop

2σ2n2 , leading to a utility of

Õ
( α∆2d

2σ2
√
λW

)
.

We then instantiate this formula on graphs with known spectral gaps, as described for instance in
Mohar et al. [47].

D Randomized Muffliato

D.1 Utility Analysis (Theorem 3)

As in the synchronous case, we prove a more general convergence result that holds for D-dimensional
inputs. Then, Theorem 3 follows directly from (11).
Theorem 8 (Utility analysis). For any T ⩾ 0, the iterates (xT )T⩾0 of randomized Muffliato
(Algorithm 2) verify:

1

2n

∑
v∈V

E
[∥∥xT

v − x̄
∥∥2] ⩽ ( 1

n

∑
v∈V

∥∥x0
v − x̄

∥∥2 +Dσ2

)
e−Tλ2(p) +

Dσ2

n
. (11)

Proof of Theorem 3. For t ⩾ 0 and y ∈ RV×D, using results from Boyd et al. [11], we have:

E
[∥∥W (t)(y − ȳ1⊤)

∥∥2] ⩽ (1− λ(p))t
∥∥y − ȳ1⊤∥∥2 ,

where 1 with the vector with all entries equal to 1 and ȳ = 1
n

∑
v∈V yv . The rest of the proof follows

as in the proof of Theorem 2 with two bias-variance decompositions.

The precision 2Dσ2

n is thus reached for

T stop
(
W, (xv)v∈V , σ

2
)
⩽ λ(p)−1 ln

(
n

Dσ2
max

(
Dσ2,

1

n

∑
v∈V
∥xv − x̄∥2

))
. (12)
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D.2 Privacy Analysis

In terms of privacy, randomized Muffliato satisfies the following guarantees, obtained by applying
Theorem 1.

Corollary 2. After T iterations of randomized Muffliato, and conditionally on the edges sampled,
node u ∈ V is (α, εTu→v(α))-PNDP with respect to v, with:

εTu→v(α) ⩽
α∆2

2σ2

∑
w∼v

∑
t∈PT

{v,w}

(W0:t)
2
uw

∥(W0:t)w∥2
.

Taking the mean over u ̸= v yields:

ε̄v =
1

n

∑
u∈V\{v}

εTu→v(α) ⩽
α∆2

2nσ2
Tv ,

where Tv =
∑

t<T

∑
w∼v 1{{v,w}={vt,wt}} the number of communications node v is involved in up

to time T .

Note that Tv is a Binomial random variable of parameters (T, πv) where πv =
∑

w∼v p{v,w}.

We now explain how we obtain the second line of Table 1.

Note that a choice p{v,w} = 2Wv,w/n for some given gossip matrix W yields probability activations.
For the sake of comparison with Muffliato with a fixed matrix, we place ourselves in this case. This
leads to πv = 2/n, so that

E [ε̄v] =
α∆2T

2n2σ2
,

and for any C > 0,

P (Tv − ETv ⩾ C) ⩽ exp
(
− C2

T

)
,

using Hoeffding’s inequality. We take as time-horizon T = T stop ⩾ 1/λ(p) defined in Theorem 3,
leading to

P (Tv − ETv ⩾ C) ⩽ exp
(
− C2λW

n

)
, E [ε̄v] = Õ(

α∆2

2nσ2λW
) ,

since λ(p) = 2λW

n in our case.

The same methodology as in the synchronous case (imposing ε̄v ⩽ ε for the time horizon T stop,
deriving σ2 from this and thus the resulting utility) leads to the second line of Table 1.

E Muffliato on Private Random Graphs (Theorem 4)

We fix all nodes, and in particular u the attacked node, and v the observer. We assume that G is drawn
randomly. Edges {v, w} are drawn independently from one another. The result we prove below is
just slightly more general than Theorem 4 that is recovered for P ({u, v} ∈ E) = q (Erdös-Rényi
random graph).

We make the following assumption: node v is only aware of its direct neighbors in the topology of
graph G, and conditionally on {v} ∪ N (v), the law of the graph is invariant under any permutation
over the set V \ ({v} ∪ N (v)).

Theorem 9 (Muffliato with a random graph). Let α > 1, T ⩾ 0, σ2 ⩾ ∆2α(α−1)
2 and let the

above assumptions on G be satisfied. After running Algorithm 1 with these parameters, node u is
(α, εTu→v(α))-PNDP with respect to v, with:

εTu→v(α) ⩽


α∆2

2σ2
with probability P ({u, v} ∈ E) ,

α∆2

σ2

Tdv
n− dv

with probability 1− P ({u, v} ∈ E) .
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Proof. If {u, v} ∈ E , we cannot do better than εTu→v ⩽ α∆2

2σ2 : v only sees x(0)
u +N (0, σ2) and then

next messages can be seen as post-processing of this initial message and thus do not induce further
loss. This happens with probability P ({u, v} ∈ E).
Now, we reason conditionally on {v} ∪ N (v) and u /∈ N (v). Using the averaged formula (6), we
have:

1

n

 ∑
w∈N (v)

α∆2

2σ2
+

∑
w∈V\(N (v)∪{v})

εTw→v(α)

 ⩽
α∆2dvT

2nσ2
.

Here we adapted the proof of the formula: to obtain the right-handside, a value εTw→v bigger than
α∆2

2σ2 was taken, so that the formula above is also true. Then, using the fact that node v only sees
its neighbors, we can use Lemma 2 that allows us to take the mean conditionally on v ∪N (v) (for
σ2 ⩾ ∆2α(α−1)

2 ), leading to

1

n

 ∑
w∈N (v)

α∆2

2σ2
+

∑
w∈V\(N (v)∪{v})

E
[
εTw→v(α) | v ∪N (v)

] ⩽
α∆2dvT

nσ2
.

In fact, we write it with the expected value, but all nodes are equal since node v only sees its neighbors.
Using the invariance under permutation of E

[
εTw→v(α)v ∪N (v)

]
over w ∈ V \ (N (v) ∪ {v}), we

have that:
1

n

 ∑
w∈N (v)

α∆2

2σ2
+ (n− dv)ε

T
u→v

 ⩽
α∆2dvT

nσ2
.

Rearranging this inequality gives the result.

F Differentially Private Decentralized Optimization

We consider Algorithm 3 with general time-varying matrices Wt. We assume that for all t ⩾ 0,
λWt

⩾ λ for some fixed λ > 0. An instance of this setting is to sample different Erdös-Rényi random
graphs at each communication round and adapt Wt accordingly. Such graphs have a spectral gap that
concentrates around 1, so that for λ = 1/2, with high probability λWt

⩾ λ will be verified [33].

F.1 Proof of Theorem 5 (Utility Analysis)

As before, we have a more general convergence result.

Theorem 10 (Utility analysis of Algorithm 3). Let K ⩾
⌈√

λ
−1

ln
(
max

(
n, ζ̄2

Dσ2+ρ̄2

))⌉
. For a

suitable choice of step size parameters, the iterates (θt)t⩾0 generated by Algorithm 3 verify:

E
[
ϕ(θ̃T )− ϕ(x⋆)

]
⩽ Õ

(
ρ̄2 +Dσ2

nµT
+ L

∥∥θ0 − θ⋆
∥∥2e− T

2κ

)
,

where θ̃T =
∑

t<T ωtθ̄t∑
t<T ωt is a weighted average along the trajectory of the means θ̄t = 1

n

∑
v∈V θtv .

The proof of Theorem 10 is a direct consequence of Theorem 2 in Koloskova et al. [39], and especially
the formula in their Appendix A.4. We apply their result with ρ̄2 +Dσ2 instead of their σ̄2, τ = 1

(no varying topology), and p such that 1− p = 2(1−
√
λ)K ⩽ 2min( 1n ,

Dσ2+ρ̄2

ζ̄2 ).

F.2 Proof of Theorem 6 (Privacy Analysis)

The function Lipschitzness can in fact be replaced by a more general assumption.
Assumption 2. We assume that, for some ∆2

ϕ > 0, for all v in V , and for all adjacent datasets
D ∼v D′ on v, we have:

sup
θ∈RD

sup
(xv,x′

v)∈Dv×D′
v

∥∇xℓ(θ, xv)−∇xℓ(θ, x
′
v)∥

2
⩽ ∆2

ϕ .
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Theorem 11 (Privacy analysis of Algorithm 3). Let (Wt)0⩽t<T be a sequence of gossip matrices of
spectral gap larger than λ. Let u and v be two distinct nodes in V . After T iterations of Algorithm 3
with K ⩾ 1, node u is (α, εTu→v(α))-PNDP with respect to v, with:

εTu→v(α) ⩽
∆2

ϕα

2σ2

T−1∑
t=0

K−1∑
k=0

∑
w:{v,w}∈Et

(W k
t )

2
u,w∥∥(W k

t )w
∥∥2 . (13)

Thus, for any ε > 0, Algorithm 3 with T stop(κ, σ2, n) steps and for K as in Theorem 5, there exists
f such that the algorithm is (α, f)-pairwise network DP, with:

∀v ∈ V , εv ⩽ ε and E
[
ϕ(θ̃out)− ϕ(θ⋆)

]
⩽ Õ

(
αD∆2

ϕd̄

n2µε
√
λ
+

ρ̄2

nL

)
,

where d̄ = supv∈V d̄v for d̄v = 1
T

∑
t<T |{w ∈ V : {v, w} ∈ Et}| the mean degree of node v

throughout time.

Proof of Theorem 11. The information leaked by u to v up to iteration T of Algorithm 3 consists in
the T (stochastic) gradients locally computed at node u and gossiped through the graph, using the
Muffliato algorithm. Using Theorem 1 (with Assumption 1 satisfied using Assumption 2) and a post
processing inequality, round of communication t leads to a privacy leak of:

∆2
ϕα

2σ2

K−1∑
k=0

∑
w:{v,w}∈Et

(W k
t )

2
u,w∥∥(W k

t )w
∥∥2 ,

where Et are the edges of the graph drawn at time t. We obtain the first inequality of Theorem 6 by
summing this over t < T .

For the second inequality, we have, by summing:

εv =
1

n

∑
u̸=v

εTu→v(α) ⩽
KTd̄v∆

2
ϕα

2nσ2
⩽

KTd̄∆2
ϕα

2nσ2
.

In order to reach a precision Dσ2+ρ̄2

n , are required T = O(κ ln(Dσ2/n)) iterations. Using K =

Õ(1/
√
λ), we have:

εv = O

(
d̄∆2

ϕα

2nσ2
κ
√
λ
−1

ln(Dσ2/n)

)
.

Taking σ2 such that
d̄∆2

ϕα

2nσ2 κ
√
λ
−1

ln(σ2/n) = ε yields the desired result.

G Extensions to Collusion and Group Privacy

In this section, we discuss natural extensions of our privacy definitions to the case of colluding nodes,
and to group privacy.

G.1 Presence of Colluding Nodes

G.1.1 Definitions

The notions of pairwise network DP we introduced in Section 2.3 can naturally be extended to account
for potential collusions. For V ⊂ V a set of colluding nodes, we define the view of the colluders as:

OV

(
A(D)

)
=
⋃
v∈V

OV

(
A(D)

)
,

or equivalently as:

OV

(
A(D)

)
= {(u,m(t), v) ∈ A(D) such that {u, v} ∈ E , v ∈ V } .

Below, P(V) denotes the powerset of V .
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Definition 6 (Pairwise Network DP with colluders). For f : V × P(V) → R+, an algorithm A
satisfies (α, f)-pairwise network DP if for all users u ∈ V , pairs of neighboring datasets D ∼u D′,
and any potential set of colluders V ∈ V such that u /∈ V , we have:

Dα

(
OV (A(D)) || OV (A(D′))

)
⩽ f(u, V ) . (14)

We note f(u, V ) = εu→V the privacy leaked to the colluding nodes V from u and say that u is
(α, εu→V )-PNDP with respect to V if only inequality (14) holds for f(u, V ). Finally, if for a function
f : V × P(V)→ R, inequality (14) holds for all (u, V ) ∈ V × P(V) such that u /∈ V , we say that
A is (α, f)-pairwise NDP.

This definition quantifies the privacy loss of a node u with respect to the collusion of any possible
subset V of nodes, and thus generalizes the definition of the main text (which corresponds to
restricting V such that |V | = 1).

The proofs of this section are actually direct consequences of the proof techniques of our results
without colluders, by replacing Ov (the view of a colluder) by OV (the view of the colluding set).
Roughly speaking, V can be seen as a unique abstract node, resulting from the fusion of all its nodes.

G.1.2 Adapting Theorem 1 and the Resulting Corollaries

For w ∈ V and V ∈ P(V), let Pt
{V,w} = {s < t : ∃v ∈ V , {v, w} ∈ Es} the times (up to time t) at

which an edge {v, w} for any v ∈ V is activated i.e. the times at which there is a communication
between w and a colluder. For t ⩾ 0 and V ⊂ V , let Nt(V ) be the neighbors in Gt of the colluders
set V , defined as:

Nt(V ) = {w ∈ V \ V | ∃v ∈ V , {v, w} ∈ Et} .
For T ⩾ 1,

∑
t<T |Nt(V )| is thus the total number of communications in which colluders are

involved with.
Theorem 12. Assume that Assumption 1 holds. Let T ⩾ 1, u ∈ V and V ⊂ V such that u /∈ V , and
α > 1. Then the algorithm AT is (α, f)-PNDP with::

f(u, V ) ⩽
α∆2

2σ2

∑
w∈V

∑
t∈PT

{V,w}

(W0:t)
2
u,w

∥(W0:t)w∥2
. (15)

Consequently, there exists f such that AT is (α, f)-PNDP with:

εV =
1

n

∑
u∈V\V

f(u, V ) ⩽
α∆2

2nσ2

∑
t<T

|Nt(V )| , (16)

where
∑

t<T |Nt(V )| is the total number of communications a colluding set V is involved with, up
to time T .

We now consider the synchronous Muffliato algorithm (Algorithm 1) with colluders.
Corollary 3. Let u ∈ V and V ∈ P(V) such that u /∈ V , α > 0. After T iterations of Algorithm 1,
node u is (α, εTu→V (α))-PNDP with respect to V , with:

εTu→V (α) ⩽
αn

2σ2
max
w∼V

W−2
v,w

T∑
t=1

P
(
Xt ∈ V |X0 = u

)2
,

where (Xt)t is the random walk on graph G, with transitions W , and w ∼ V if w /∈ V and if there
exists v ∈ V such that {v, w} ∈ E .
Corollary 4. There exists f : V × P(V)→ R+ such that Algorithm 1 after T steps is (α, f)-PNDP
with the following privacy-utility guarantees for any V ⊂ V:

εV =
1

n

∑
u∈V\V

f(u, V ) ⩽ ε ,
1

2n

∑
v∈V

E
[∥∥xout

v − x̄
∥∥2] ⩽ Õ(α dV ∆

2

εn2
√
λW

)
,

where xout is the output of Algorithm 1 after T stop(x,W, σ2) steps for σ2 = dV ∆2

2αε , and Õ hides
logarithmic factors in n and ε. dV is the degree of set V , defined as the number of w ∈ V \ V such
that there exists v ∈ V , {v, w} ∈ E .
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Corollary 5 (Muffliato on a random graph with collusions). Let α > 1, T ⩾ 0, σ2 ⩾ ∆2α(α−1)
2 and

q = c ln(n)n for c > 1. Let u ∈ V and V ∈ P(V) such that u /∈ V . After running Algorithm 1 on an
Erdos Rényi random graph of parameters (n, q) and under the assumptions of Theorem 4, node u is
(α, εTu→v(α))-PNDP with respect to colluders V , with:

εTu→V (α) ⩽


α

2σ2
with probability 1− (1− q)|V |

α

σ2

TdV
n− dV

with probability (1− q)|V |
.

G.1.3 Compensating for Collusions with Time-Varying Graph Sampling

We now consider the decentralized optimization problem of Section 4 in the presence of colluders,
and analyze its privacy with time-varying graph sampling as in Appendix F.2.

The motivation for this is that, if the graph is fixed, node u will suffer from poor privacy guarantees
(the same as in LDP) with respect to the colluding set V as soon as u is in N (V ) = N0(V ) (i.e.,
one of colluders in V is a neighbor of u). Even if the graph is sampled randomly, this will happen
with probability that increases with |V |. In contrast, for time-varying random graphs sampled
independently at each communication round and for sufficiently many communication rounds (i.e.,
large enough condition number κ), it becomes unlikely that u is in Nt(V ) for many rounds t, and
therefore the privacy guarantees with respect to V can improve.

Below, we consider Algorithm 3 with time-varying graphs (and associated gossip matrices (Wt)t⩾0)
sampled in an i.i.d. fashion at each communication round as Erdös-Rényi graphs of parameters
n, q = c ln(n)

n for some c > 1, such that they verify λWt
⩾ λ > 0 for all t (as noted before, this

happens with high probability for λ of order 1 [33]). In this context, we have the following result.

Proposition 1. Let α > 1, T ⩾ 0, σ2 ⩾ ∆2α(α−1)
2 . Let u ∈ V and V ∈ P(V) such that u /∈ V .

After running Algorithm 3 under the assumptions described above and the function assumptions of
Theorem 6, node u is (α, εTu→v(α))-PNDP with respect to colluders V , with:

εTu→V (α) ⩽
∆2

ϕα

σ2

T stop∑
t=0

βt + (1− βt)
K|Nt(V )|
n− |Nt(V )|

,

where T stop = Õ(κ) and K = Õ(1/
√
λ) (see Theorem 5), (βt)t are i.i.d. Bernoulli random

variables of parameter P (∃v ∈ V , {u, v} ∈ Et) = 1 − (1 − q)|V |, and |Nt(V )| is the number of
neighbors of V in the graph sampled at iteration t, of order c|V | ln(n)

n .

G.1.4 Discussion

Generally speaking, our bounds degrade in presence of colluding nodes. This is a fundamental
limitation of our approach that considers only privacy amplification due to decentralization. By
definition, our privacy guarantees can only provide amplification as long as the view of the attackers is
smaller than the one of the omniscient attacker considered in local differential privacy, i.eOV (AT ) ⊊
AT . A condition for having equality corresponds to observing all messages that are transmitted.
In the case of a fixed graph, this can be characterized by the fact that V contains a dominating set
for the graph. For Erdos Rényi graphs or exponential graphs, there exists dominating sets of size
O(log n), thus it is meaningless to expect guarantees for all possible sets of colluding nodes of that
size. However, if some/most colluding nodes are actually far from the target node u in the graph, then
good privacy amplification can still be achieved. This can be precisely measured by Equation 15.

G.2 Group Privacy

Symmetrically to the problem of collusions, where there are several attackers, one can study group
privacy, where privacy guarantees are computed towards a group rather than a single individual. This
is useful when some users have correlated data (e.g., close family members). The usual notion of
group privacy [see e.g., 20] would provide a guarantee against all groups of users of a given size.
However, this standard definition would provide pessimistic guarantees in some cases as it does not
take advantage of the fact that groups may correspond to specific subgraphs. Hence, we propose the
following definition.
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Figure 2: Level of the privacy loss for each node (color) with respect to a fixed node in the graph.
These graphs corresponds to the graphs used in Figure 1(a): from left to right, exponential graph,
Erdos-Renyi graph, geometric random graph and grid.

Definition 7 (Group Pairwise Network DP). For f : V × P(V) → R+, an algorithm A satisfies
(α, f)-group pairwise network DP if for all set of users U ⊂ V , pairs of neighboring datasets
D ∼U D′, and any vertex v ∈ V , we have:

Dα

(
Ov(A(D)) || Ov(A(D′))

)
⩽ f(U, v) . (17)

The modifications of the theorems are similar to the case of collusion, summing over the nodes in U
(instead of summing over the nodes in V for the case of collusion). The following theorem gives the
general case corresponding to Theorem 1. The other results can be adapted in the same way.
Theorem 13. Let T ⩾ 1 and denote by PT

{v,w} = {s < T : {v, w} ∈ Es} the set of time-steps with
communication along edge {v, w}. Under Assumption 1, AT is (α, f)-group PNDP for with:

f(U, v) =
α∆2

2σ2

∑
w∈V

∑
t∈PT

{v,w}

∑
u∈U (W0:t)

2
u,w

∥(W0:t)w∥2
. (18)

Note that in some configurations, this bound bound is clearly sub-optimal, as summing does not take
into account cases where the information gathered by some of the nodes in the group can be seen as a
post-processing of information received by other nodes in the group. In such cases, analyzing group
privacy by considering a modified graph where the nodes in the group are merged into a single node,
with edge/weights adjusted accordingly, would yield better results.

H Additional Numerical Experiments

H.1 Extra Synthetic graphs

Figure 1(a) summarizes the result of Muffliato according to the shortest path length. However, other
characteristics of the topology can play a role in the privacy leakage. Thus, we show the graph
representation for each of the synthetic graphs we considered in Figure 2.

We also report in Figure 3 how privacy guarantees improve when n increases for the exponential
graph. We see that privacy guarantees improve with n: distance between nodes increases, but also
the number of nodes with whom the contribution of a specific node is mixed. This is especially
significant for pairs of nodes that are not direct neighbors but at short distance of each other.

H.2 Proof of Fixed Privacy Loss for Exponential Graphs

For an exponential graph, the pairwise privacy loss is fully determined by the shortest length path,
i.e f(u, v) = g(d(u, v)) where d : V → N is the function that returns the length of the shortest path
between u and v.

This result is a consequence of the invariance per vertex permutation in the hypercube. For the
hypercube with 2m vertices, each vertex can be represented by a m-tuple in {0, 1}, where there is an
edge if and only if two vertices share all values of their tuple but one. Let us now fix two pairs of
vertices (u, v) and (u′, v′) with the same distance between them. To prove that their privacy loss is
the same, it is sufficient to exhibit an graph isomorphism Φ that sends (u, v) on (u′, v′).

By construction, d(u, v) corresponds to the number of coordinates that differ between their tuple,
and the same holds for (u′, v′). The set of equal coordinates Fix(u, v) is thus of the same size
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Figure 3: Privacy loss for the exponential graph with respect to the number of nodes n (following
powers of 2).

Figure 4: Privacy towards all the nodes as function of the Euclidean distance in a random geometric
graph. We see a high level of correlation between the Euclidean distance and the privacy loss.

m− d(u, v) than Fix(u′, v′). Hence we can construct a bijective function b of the coordinates that
is stable for the set of fixed coordinates

b(Fix(u, v)) = Fix(u′, v′) b({1, 2, . . . ,m} \ Fix(u, v)) = {1, 2, . . . ,m} \ Fix(u′, v′)

Finally, noting that 0 and 1 play the same role, we match each coordinate accordingly to the value
defined by our couple. We thus define our isomorphism per coordinate Φ(w) = (Φ1(w), . . . ,Φm(w))
with Φi(w) = s(wb−1(i)) where s is the identity function if ub−1(i) = ui and the swap function
otherwise. This function is clearly an isomorphism: by construction it is a bijection, and the edges
still exist if and only if the vertices differ on only one coordinate. We have Φ(u) = u′ and Φ(v) = v′

and thus the privacy loss is equal between the two pairs of vertices.

H.3 Random Geometric Graphs

Geometric graphs are examples of possible use cases of Pairwise Network Differential Privacy.
Constructing edges when nodes are at a distance below a given threshold naturally models short-range
wireless communications such as Bluetooth. In this situation, the Euclidean distance between nodes
is a convenient indicator for setting the privacy loss. Indeed, it is a parameter that we can measure,
and it can match the users expectations in terms of privacy loss. For instance, if direct neighbors in
the graph correspond to people within 5 meters around the sender, some information are bound to
be available to them independently of what may be revealed by the communication itself: sensitive
attributes such a gender, age, or overall physical fitness are leaked simply from physical proximity.
However, the user might have stronger privacy expectations for people far away. Hence, having
privacy guarantees as function of the Euclidean distance can be particularly interesting.
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Figure 5: Privacy loss on the 9 other Facebook Ego graphs, following the same methodology as in
Figure 1(b).

Our experiments show that the privacy loss is extremely well correlated to the Euclidean distance, as
represented in Figure 4. It is thus possible to design algorithms where one could impose Pairwise
Network DP for a function f(u, v) = g(∥zu − zv∥) where g is a non-increasing function and zu and
zv are the geolocation of nodes u and v.

H.4 Facebook Ego Graphs

We report figure on the other nine graphs of the Facebook Ego dataset, following the same methodol-
ogy and scale. Across these graphs, we can see that privacy losses depending on visible communities
is consistent through datasets, and become more consistent as the number of nodes increase.

H.5 Logistic Regression on Houses Dataset

We report in Table 2 the parameters used in the experiments of Figure 1(c).
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Table 2: Parameter for the logistic regression

Parameters Value

# of trials 10
Step-size 0.7
# of nodes 2000 or 4000
probability of edges q log(n)/n
score Mean accuracy
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Figure 6: Simulation (10 runs) of a dropout scenario (with different levels of dropout) with n = 1000,
where at each gossip step an Erdös-Renyi graph with parameter p = 0.002 over the set of available
users. (a) Left: Privacy loss of a node across iterations ;(b) Right: Convergence of the same runs to
the mean.

H.6 Modeling User Dropout using Time-Varying Graphs

In Theorem 1, we analyzed the very generic case where the gossip matrix is arbitrary at each time-step.
Then, for deriving the convergence rate and obtaining closed-form privacy-utility trade-offs and using
acceleration, we focused on fixed gossip matrices until the convergence of each gossip averaging step.
In this subsection, we show empirically that we can still reach a good privacy-utility trade-offs when
the gossip matrix change at each communication.

In particular, our experiment focuses on modelling user dropouts. Specifically, at each time step,
the availability of each node is modeled by an independent Bernouilli random variable and we draw
a new Erdos Renyi graph over the set of available nodes. We assume that at each step, each node
has the same given probability to be active so as to ensure convergence to the mean of the values.
One could design more sophisticated dropout models, as long as the contributions of nodes remain
balanced.

We vary the expected level of available nodes at each step from 10 to 90%. Note that the number of
iterations needed for convergence becomes stochastic: we thus set an arbitrary number of iterations
experimentally, and average several runs. For simplicity, we do not perform gossip acceleration. We
report several runs at each dropout level in Figure 6(a), and report the privacy loss and its standard
deviation at each dropout level in Table 3. As expected, the convergence time increases with the
proportion of inactive users, but the achievable privacy-utility trade-off is not significantly impacted.
Therefore, our approach scales gracefully difficulty to the situations where there is dropout.

I Broader Impact Assessment

Our work promotes increased privacy in federated ML. The potential longer-term benefits of our
work in this respect are a wider adoption of privacy-preserving and fully decentralized ML solutions
by service providers thanks to the improved privacy-utility guarantees, as well as better confidence of
users and the general public in the ability of decentralized ML systems to avoid catastrophic data leaks.
In particular, our work shows that the advantages of decentralized methods over centralized ones
have been overlooked, due to the lack of privacy analysis able to capture the benefits of decentralized
algorithms.

Conversely, there are potential risks of accidental or deliberate misuse of our work in the sense that it
could give a false sense of privacy to users if weak privacy parameters are used in deployment. This
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Table 3: Total Privacy loss in function of dropout

Dropout Privacy loss

No dropout (1.7± 0.6)× 10−2

10% dropout (1.8± 0.6)× 10−2

50% dropout (1.5± 0.7)× 10−2

90% dropout (1.4± 0.6)× 10−2

applies to all work on differential privacy. More applied research is needed towards developing a
methodology to choose appropriate privacy parameters in a data-driven manner and to reliably assess
the provided protection in practical use-cases.

Our work specifically proposes a varying privacy budget that depends on the relation between users,
which might be misused for giving smaller privacy guarantees than the ones that would be designed
otherwise. Modularity in privacy guarantees has however already been studied, for instance in [14]
where the privacy budget is a function of a metric on the input space. Informally, defining what
is an acceptable privacy budget based on the context in which some information is revealed is in
line with the idea of contextual integrity [51]. According to Helen Nissenbaum’s theory, the privacy
expectations should take into account five elements: the sender, the receiver, the message, the medium
of transmission and the purpose. Mathematically, adapting the privacy guarantee to the receiver and
promoting peer-to-peer communications for building a global model thus naturally fits this view. In
particular, contextual integrity emphasizes that the privacy budget should not only depend on the
information being transmitted, but also on who receives it.
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