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Abstract

We consider the stochastic gradient descent (SGD) algorithm driven by a general
stochastic sequence, including i.i.d noise and random walk on an arbitrary graph,
among others; and analyze it in the asymptotic sense. Specifically, we employ the
notion of ‘efficiency ordering’, a well-analyzed tool for comparing the performance
of Markov Chain Monte Carlo (MCMC) samplers, for SGD algorithms in the
form of Loewner ordering of covariance matrices associated with the scaled iterate
errors in the long term. Using this ordering, we show that input sequences that are
more efficient for MCMC sampling also lead to smaller covariance of the errors
for SGD algorithms in the limit. This also suggests that an arbitrarily weighted
MSE of SGD iterates in the limit becomes smaller when driven by more efficient
chains. Our finding is of particular interest in applications such as decentralized
optimization and swarm learning, where SGD is implemented in a random walk
fashion on the underlying communication graph for cost issues and/or data privacy.
We demonstrate how certain non-Markovian processes, for which typical mixing-
time based non-asymptotic bounds are intractable, can outperform their Markovian
counterparts in the sense of efficiency ordering for SGD. We show the utility
of our method by applying it to gradient descent with shuffling and mini-batch
gradient descent, reaffirming key results from existing literature under a unified
framework. Empirically, we also observe efficiency ordering for variants of SGD
such as accelerated SGD and Adam, open up the possibility of extending our notion
of efficiency ordering to a broader family of stochastic optimization algorithms.

1 Introduction

Stochastic gradient descent (SGD) is widely used in machine learning, signal processing and other
engineering fields to solve the optimization problem

θ∗ = argmin
θ∈Θ

{
f(θ) ≜

1

n

n∑
i=1

F (θ, i)

}
, (1)

where Θ ⊂ Rd is some closed and convex set, and F (·, i) : Rd → R for i ∈ [n] ≜ {1, · · · , n} are
smooth functions on Θ, not necessarily convex, such that their summation f : Rd → R exhibits a
minimizer θ∗ ∈ Θ satisfying ∇f(θ∗)=0. The update rule of the iterative SGD scheme is of the form

θt+1 = ProjΘ (θt − γt+1∇θF (θt, Xt+1)) , (2)

where γt is the step size that can be constant or diminishing as t→∞, ProjΘ is a projection operator
onto the constraint set Θ, and {Xt}t≥0 is some sequence taking values in [n]. This sequence is
often generated in a stochastic manner, and samples can be drawn from temporally independent
and identically distributed (i.i.d) random variables that are either uniformly distributed over [n]
[60, 54, 14], or leverage importance sampling techniques for variance reduction [52, 12, 27]. {Xt}t≥0
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can also be constructed by repeatedly shuffling over all possible states without repetition,2 leading to
faster convergence than stochastic counterparts drawing i.i.d samples from [n] [64, 3, 32, 72].

Random Walk Stochastic Gradient Descent (RWSGD): Some applications observe restricted
access to the state space, such as decentralized optimization [65, 71, 46], where communication
occurs between nodes in a network to collaboratively solve the optimization problem (1). For instance,
disease classification in confidential clinical swarm learning [69] considers peer-to-peer networks
due to the highly private nature of medical data. In such a setting, the random sequence {Xt}t≥0

is usually realized as a Markov chain on a general graph G(V, E) that only samples local gradients
of the nodes in V ≜ [n] and traverses the network via edges connecting them without divulging
the update history or its own gradient. The randomness of the communication path ensures that the
compromised node can not easily leak the data of its neighbors [46].

Apart from the privacy concern, such dynamics are also employed in swarm learning/optimization
in robotics [17] and wireless sensor networks [43] due to their low communication cost and asyn-
chronous nature. The need for data privacy and demand for communication-efficient algorithms for
decentralized optimization has spurred the study of RWSGD algorithms in recent years [57, 34, 67],
with the underlying Markov chain in the form of Metropolis-Hasting random walk (MHRW) [48].

Common analytical approach - Finite time bounds based on mixing time: Most of the existing
works analyzing iteration (2) provide so-called finite-time upper bounds on expected error in either
the objective function E[f(θ̃t) − f(θ∗)], where θ̃t is some weighted average of the iterates, or its
gradient E[||∇f(θt)||22]; and are used to infer the convergence rate of the iterate sequence [57, 25, 67].
For diminishing step sizes γt = t−α with α ∈ (0.5, 1),3 the upper bound on E[∥∇f(θt)∥22] reads as

E[∥∇f(θt)∥22] ≤ O

(
max {M, 1/ log(1/β)}

t1−α

)
, (3)

and a similar form for E[f(θ̃t) − f(θ∗)] as well [67, 24, 7]. Here, β ∈ (0, 1) is the second largest
eigenvalue modulus (SLEM) of the underlying Markov chain’s transition matrix and is related to
its mixing time property, since smaller SLEM leads to faster mixing of the Markov chain [18, 44].
On the other hand, M > 0 is usually a quantity proportional to the local gradients evaluated at the
minimizer, or their upper bound. Both the gradient information and the mixing time play a key role
in quantifying the convergence rate derived from this upper bound, and the mixing time is especially
important since it hints that convergence rate of the SGD algorithm can potentially be accelerated
using faster mixing Markov chains for the input driving sequence. It has also been noted that the
inherent correlation of the underlying random walk has to be addressed in any analysis concerning
Markov-chain-driven gradient descent [67]. The mixing time technique, by capturing the rate at
which the chain converges to its stationary distribution [18, 44], is one way of doing so.

Alternative approach - Asymptotic analysis and efficiency ordering: In addition to the afore-
mentioned mixing time, another widely used metric for characterizing the second order properties
of Markov chains is the asymptotic variance (AV). For any scalar valued function g : [n] → R,
the estimator µ̂t(g) ≜ 1

t

∑t
i=1 g(Xi), associated with an irreducible Markov chain {Xt}t≥0 with

stationary distribution π, is the average of the samples of g(·) obtained along the chain’s sample path
up to time t > 0. The AV of the Markov chain, denoted by σ2

X(g), is then defined as the the limiting
variance of the estimator; that is,

σ2
X(g) ≜ lim

t→∞
t · Var(µ̂t(g)). (4)

For all functions g(·) satisfying Eπ(g
2) < ∞, the AV is associated with the Central Limit Theorem

(CLT) for any Markovian kernel on a finite state space, as the variance of the normally distributed
estimates in the limit [61, 35, 18]. More formally, we have

√
t · [µ̂t(g)− Eπ(g)]

dist−−−→
t→∞

N (0, σ2
X(g)). (5)

A smaller AV means that fewer samples are required post mixing of the chain4 in order to obtain a
desired accuracy - in some sense quantifying the chain’s efficiency.

2One complete pass over the entire set [n] is typically called an epoch. Shuffling can refer to passing over [n]
in the same order for every epoch (single shuffling), or in a random order (random shuffling).

3We only need the step size to be O(t−α), but we omit the O(·) notation for simplicity. We also consider a
slightly more general case, allowing for α = 1 as well.

4Achieved by employing a burn-in period to get rid of the correlation with the initial state [29].
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Both the AV and the mixing time of a Markov chain are very strongly related concepts5. In fact, the
AV has an upper bound in terms of the SLEM, which decreases as the SLEM gets smaller (chain
mixes faster) [50]. However, an ordering of the SLEM between two Markov chains does not imply
an ordering of their AV, as we shall demonstrate later in Section 4 for a special case. Both of these
second-order properties therefore lead to different notions of optimality; and the comparison of two
chains based on their AV leads to the concept of efficiency ordering [50], where we say that a chain is
more efficient than the other if it has a smaller AV, uniformly over all functions g : [n] → R.

Figure 1: Comparison of MHRW (P1),
Modified-MHRW (P2) and FMMC (P3) as
stochastic inputs for RWSGD on two differ-
ent graphs G1 and G2.

As mentioned earlier, the common intuition asserted
by finite time bounds such as (3) is that Markov
chains with smaller SLEM lead to faster conver-
gence of the SGD iteration (2) to the minimizer
[67, 7]. We put this logic to test by simulating the
RWSGD algorithm with three different reversible
Markov chains (w.r.t. uniform stationary distribu-
tion) as the stochastic inputs - the MHRW, a modifi-
cation of MHRW, which is also shown in Appendix
I [1] to be more efficient than MHRW, and the so-
called ’fastest mixing Markov chain’ (FMMC) as
defined in [16] as the Markov chain obtained by
minimizing the SLEM over the entire class of re-
versible chains for a given graph topology. We
employ RWSGD to minimize a quadratic objective
function for two underlying graphs. The exact de-
tails of the setup are deferred to Appendix I [1], and
our numerical results in Figure 1 show that even
though the FMMC is theoretically guaranteed to
have the smallest SLEM (βi for i∈{1, 2, 3}) of the
three reversible chains simulated, it is the worst per-
forming one with largest mean square error (MSE).
Although MHRW and Modified-MHRW share the
same SLEM in the lower plot of Figure 1, they still have performance differences. This is contradic-
tory to the intuition derived from (3), and could be attributed to the finite time results providing upper
bounds for all times t > 0, which may therefore not necessarily be tight. On the other hand, the
performance of the chains seem to be ordered according to their AV (σ2

i for i∈{1, 2, 3}) evaluated
for a test function. This lends credence to developing techniques based on AV, for judging the
performance of different stochastic inputs for SGD, as possible alternatives to using SLEM as the
sole performance metric.

The asymptotic variance also appears in the CLT for stochastic approximation (SA) algorithms
[11, 21], though this time not directly as the variance in the limit, but as a component of the limiting
covariance matrix of the scaled iterate errors. Recent works [21, 51] point out that the covariance
matrix itself is of special interest, and typically contains more information than the non-asymptotic
MSE bounds [51]. In the sense of SGD algorithms, we will show in Section 3 that it embeds explicit
information of the exact vector-valued gradient evaluated at the optimizer as well as the entire
spectrum of the transition matrix; as opposed to the upper bound M of the gradients and only the
second largest eigenvalue modulus commonly found in mixing time based non-asymptotic bounds. It
has been suggested [20, 23], and also proved for the special case of linear SA [21], that the covariance
matrix emerging out of the CLT dominates as a leading term of the finite-time MSE bounds. This
also holds true for finite-time bounds on weighted MSE for any preferred weight; the weighted MSE
being utilized in fields such as wireless MIMO [68] and process optimization [30]. Overall, while
finite-time bounds have enjoyed great success in the literature, the potential for performance gains
out of the asymptotic analysis of SGD algorithms have remained largely unexplored.

Contributions: We employ asymptotic analysis to propose a general framework that offers seamless
connection between AV in the MCMC literature with efficiency ordering and covariance matrix in the
SGD algorithms. Our framework can be used to design different random walk variants and also to
systematically compare the existing sampling methods in the SGD iteration (2) with diminishing step

5For reversible Markov chains, the AV can be written explicitly as an increasing function of every eigenvalue
of the transition matrix [18], while the mixing time is related to the SLEM as mentioned earlier.
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size, not just limited to random walks. In particular, we show that any two random walks following
an efficiency ordering have their covariance matrices Loewner ordered, including non-Markovian
stochastic processes versus its Markovian counterpart, which defies any mixing-time (SLEM) based
analysis. Such ordering can be harnessed into improving the accuracy of SGD iterates, which implies
a reduction in the weighted MSE with arbitrary weights. Moreover, via a specific augmentation
of the state space, we are able to analyze SGD for both single and random shuffling and show
the efficiency of shuffling over i.i.d sampling for a set of objective functions that may not satisfy
‘Polyak-Łojasiewicz inequality’. We further extend such comparison to mini-batch SGD algorithms.
Lastly, we present numerical results where the efficiency ordering via asymptotic analysis tends to
hold over all time periods and input sequences with higher efficiency have smaller errors in SGD.

2 Modeling setup

Basic notations: We use lower case, bold-faced letters to denote vectors (v ∈ Rd), and use upper
case, bold-faced letters to denote matrices (M ∈ Rd×d). ∥ · ∥2 denotes the l2 norm for vectors or
2-norm for matrices. We use ∇f(·) as Jacobian matrix of vector-valued function f(·), and ∇2g(·) as
Hessian matrix of scalar-valued function g(·). We let ∇θg(θ,X) be the gradient of the scalar-valued
function g(θ,X) with respect to θ and omit the subscript θ for simplicity. Loewner ordering of
matrices is denote by ‘≤L’ such that A ≤L B ⇐⇒ xT (A −B)x ≤ 0 for any x ∈ Rd. The term
Tr(A) denotes the trace of matrix A, and let 1{·} be the indicator function. We write N (0,V)
to represent a multivariate Gaussian distribution with zero mean and covariance matrix V. For a
connected and undirected graph G(V, E) with node set V and edge set E , we use N(i) for the set of
neighbors of node i ∈ V and d ≜ [d1, d2, · · · , dn]T for the degree vector where di = |N(i)|.
SGD algorithm with arbitrary input sequence: We consider random walks {Xt}t≥0 for which
the limit πi ≜ limt→∞

1
t

∑t
k=1 1{Xk=i} exists almost surely and is positive for all i ∈ [n], with

π = [πi]i∈[n] denoting the limiting or stationary distribution. This is trivially satisfied via strong law
of large numbers [26] when Xt for each t > 0 are i.i.d random variables with distribution π over [n],
and via the ergodic theorem [18] when {Xt}t≥0 is an irreducible, aperiodic and positive recurrent
(ergodic) Markov chain. Note however that this way of defining the stationary distribution π allows
for the input sequence {Xt}t≥0 to be more general, possibly being non-Markov on [n]. Then, we can
use π to rewrite the objective in (1) as

f(θ) =
1

n

n∑
i=1

F (θ, i) = EX∼π [G(θ,X)] , (6)

where function G(θ, i) ≜ 1
nπi

F (θ, i) for any θ∈Θ, i∈ [n]. The generalized update rule then becomes

θt+1 = ProjΘ (θt − γt+1∇G (θt, Xt+1)) . (7)
This change of notation allows us to consider input sequences having possibly non-uniform stationary
distributions, and is a version of importance sampling for RWSGD schemes, as in [7]. For example,
the iteration (7) with the input sequence generated from a MHRW with uniform target distribution
π = 1/n will reduce down to (2) with G(θ, i) = F (θ, i) for all θ ∈ Θ, i ∈ [n]. If the input sequence
is instead a simple random walk on a connected graph G(V, E) with V = [n], we have π ∝ d, and
G(θ, i) = 1Td

ndi
F (θ, i) for all θ ∈ Θ, i ∈ V .6

Asymptotic covariance matrix. We now quickly review the multivariate CLT for Markov chains,
since it is a natural way to introduce the asymptotic covariance matrix, used heavily throughout
the paper. For any finite, irreducible Markov chain {Xt}t≥0 with stationary distribution π, its
estimator is defined as µ̂t(g) ≜ 1

t

∑t
k=1 g(Xk) for any vector-valued function g : [n] → Rd.

Then, the ergodic theorem [18, 19] states that for any initial distribution and any g(·) such that
Eπ(g) =

∑
i∈[n] g(i)πi < ∞, we have µ̂t(g)

a.s.−−−→
t→∞

Eπ(g). Similarly to the asymptotic variance

σ2
X(g) for a scalar-valued function g(·), we can also define the asymptotic covariance matrix ΣX(g)

for vector-valued function g(·),

ΣX(g) ≜ lim
t→∞

t · Var(µ̂t(g)) = lim
t→∞

1

t
· E
{
∆t∆

T
t

}
, (8)

6In practice, knowing πi up to a multiplicative constant is enough to converge to the optimal point.
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where ∆t ≜
∑t

s=1(g(Xs)− Eπ(g)). The associated multivariate CLT is then given as follows.

Theorem 2.1 (Chapter 1 [19]). For any function g : [n] → Rd that satisfies Eπ(g
2) < ∞, we have

√
t · [µ̂t(g)− Eπ(g)]

dist−−−→
t→∞

N (0,ΣX(g)).

In the next section, we will show how the the asymptotic covariance matrix ΣX(·) also appears as
part of the CLT result for SGD algorithms.

3 Efficiency Ordering of SGD Algorithms

In this section, we present our main result concerning the performance comparison of different SGD
algorithms to solve (1). We first begin by stating our assumptions on the objective function and the
stochastic input sequence, providing a CLT result for SGD algorithms, and analyzing the covariance
matrix arising therein. We then introduce the notion of efficiency ordering of Markov chains in the
context of MCMC sampling, and form the connection with covariance matrices as our main result in
Theorem 3.6.

For the rest of this section we assume that the functions F (·, i) (possibly non-convex), the summands
of the objective function in (1), and the input process {Xt}t≥0 for the SGD iteration (7) satisfy:

(A1) The step size is given by γt = t−α for α ∈ (1/2, 1];
(A2) There exists a unique minimizer θ∗ in the interior of the compact set Θ with ∇f(θ∗) = 0,

and matrix ∇2f(θ∗) (resp.∇2f(θ∗)− I/2) is positive definite for α∈(1/2, 1) (resp.α=1);
(A3) Gradients are bounded in the compact set Θ, that is, supθ∈Θ supi∈[n] ∥∇F (θ, i)∥2 < ∞;

(A4) For every z ∈ [n], θ ∈ Rd, the solution F̃ (θ, z) ∈ Rd of the Poisson equation F̃ (θ, z)−
E[F̃ (θ,Xt+1) | Xt = z] = ∇F (θ, z)−∇f(θ) exists, and supθ∈Θ,z∈[n] ∥F̃ (θ, z)∥2 < ∞;

(A5) The functions F (θ, i) are L-smooth for all i ∈ [n], that is, ∀θ1, θ2 ∈ Θ,∀i ∈ [n], we have
∥∇F (θ1, i)−∇F (θ2, i)∥2 ≤ L∥θ1 − θ2∥2.

We then have the following CLT result for SGD algorithms.
Lemma 3.1. For iterates {θt}t≥0 of the SGD algorithm (7) satisfying (A1)–(A5), we have

θt
a.s.−−−→
t→∞

θ∗, and (θt − θ∗) /
√
γt

Dist−−−→
t→∞

N (0,VX), (9)

where covariance matrix VX is the unique solution to the Lyapunov equation ΣX+KVX+VXKT =

0 when α ∈ (0.5, 1) (resp. ΣX +
(
K+ I

2

)
VX +VX

(
K+ I

2

)T
= 0) when α = 1). Here, ΣX ≜

ΣX(∇G(θ∗, ·)) is the asymptotic covariance matrix7 as in (8), and K ≜ ∇2f(θ∗).

Additionally, for the averaged iterates {θ̄t}t≥0 where θ̄t ≜ 1
t

∑t−1
i=0 θt, we have

θ̄t
a.s.−−−→
t→∞

θ∗, and
√
t(θ̄t − θ∗)

Dist−−−→
t→∞

N (0,V′
X), (10)

where V′
X = K−1ΣX(K−1)T with the same matrices K and ΣX as in the non-averaged case.

Remark 3.2. Lemma 3.1 is itself a special case of the more general CLT result for SA algorithms
provided in Appendix A [1], and as proved in Appendix B [1].
Remark 3.3. While (A2) may appear to be too strict at first, it can be relaxed to the setting of
the objective function f(·) having multiple minimizers, by leveraging more general CLT results
from SA literature, such as Theorem 2.1 in [28]. However, this comes at a cost of cumbersome
notation, requiring conditioning of iterates converging to one of the minimizers, potentially making
the mathematical parts harder to follow. We also show in Appendix C [1] that (A2) is no stricter than
the Polyak-Łojasiewicz inequality – a popularly adopted weak assumption in recent SGD literature
studying non-convex objective functions [36, 47, 70, 72].

7We slightly abuse the notation and shorten ΣX(∇G(θ∗, ·)), that is, the asymptotic covariance matrix
evaluated at ∇G(θ∗, ·)), to ΣX for better readability. In this paper, ΣX(∇G(θ∗, ·)) and ΣX are equivalent.
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Remark 3.4. Assumptions (A3) and (A5) are widely seen in the RWSGD literature [57, 34, 67],
while (A4) is automatically satisfied for any ergodic Markov chain (see [49, 21] for details), a
common assumption for the stochastic noise sequence [34, 25, 7]. The compactness in (A3) can also
be relaxed, given assumptions on the objective function in [37], such that the estimator θt generated
by Markov-driven sequences can still be ‘locked in’ a compact set after a sufficiently long time.

Lemma 3.1 implicitly indicates that the asymptotic convergence rate (in distribution) for θt − θ∗

(resp. θ̄t − θ∗) is O(
√
γt) (resp. O(1/

√
t)). While this does not necessarily translate to O(

√
γt)

convergence rate for E[∥θt − θ∗∥2] (O(1/
√
t) for E[∥θ̄t − θ∗∥2]), it has been suggested [20, 23], and

is in fact true for cases such as quadratic objective functions since they satisfy the linear stochastic
approximation in [21], which is of the form

θt+1 = θt − γt+1(Aθt − b(Xt+1)), (11)

for which the connection between finite-time MSE and covariance matrix VX has been established
[21]. This is also true for arbitrarily weighted MSE, which can be obtained as a weighted sum of
diagonal entries of the covariance matrices VX and V′

X .

In addition to the apparent connection to MSE, the covariance matrix plays a wider role in SGD
performance. Given any vector of weights w ∈ Rd, from Lemma 3.1 we also have that the weighted
sum of errors wT (θt − θ∗) converges to zero almost surely, and that wT (θt − θ∗)/

√
γt

Dist−−−→
t→∞

N (0,wTVXw). This means that, for sufficiently large t, we can estimate

P

(
wT (θt − θ∗)√
γtwTVXw

> α

)
≈ 1

2π

∫ ∞

α

e−x2/2dx,

such that, for instance, the 95% confidence interval for wT θt is approximately wT θ∗±2
√
γtwTVXw.

In other words, smaller wTVXw leads to narrower confidence interval and higher accuracy. The
form wTVXw for any vector w ∈ Rd naturally implies that Loewner ordering should come into play
when concerning the performance of SGD algorithms.

To proceed, we first employ the widely used notion of efficiency ordering of Markov chains. The
efficiency of different chains is compared by ordering them using their respective AV as follows.
Definition 3.5 (Efficiency Ordering [50]). For two random walks {Xt}t≥0 and {Yt}t≥0 with the
same stationary distribution π, we say {Xt}t≥0 is more efficient than {Yt}t≥0, which we write as
X ≥E Y , if and only if σ2

X(g) ≤ σ2
Y (g) for any g : [n] → R.

We are now ready to state our main result. We first extend the efficiency ordering of Markov chains
by proving the equivalence of comparing their scalar-valued AVs, to comparing their asymptotic
covariance matrices via Loewner ordering. We then use this extension to show that more efficient
inputs {Xt}t≥0 (as in Definition 3.5) to the SGD algorithm lead to performance improvements in the
form of smaller covariance matrices in the Loewner ordering sense.
Theorem 3.6. Consider the SGD iteration (7) with two random walks {Xt}t≥0 and {Yt}t≥0 as input
sequences, with the same stationary distribution π, satisfying (A1)–(A5). Then,

(i) X≥E Y if and only if ΣX(g)≤LΣY (g) for any vector-valued function g;

(ii) If ΣX(∇G(θ∗, ·))≤LΣY (∇G(θ∗, ·)), then VX ≤LVY (V′
X ≤LV

′
Y for the case of averaged

iterates);

where function ∇G(θ∗, ·) : [n] → Rd is defined in the SGD iteration (7), VX and V′
X (resp. VY

and V′
Y ) are the covariance matrices from Lemma 3.1, corresponding to {Xt}t≥0 (resp. {Yt}t≥0)

as the stochastic input sequence.

Theorem 3.6 enables us to provide a sense of efficiency ordering of SGD algorithms which are
driven by different stochastic inputs. Since this is achieved via Loewner ordering, it also leads to
smaller confidence intervals in the long run as mentioned earlier, as well as potentially smaller MSE8

depending on the objective function.
8The mean square error can be retrieved as the trace of the covariance matrix (weighted sum of its diagonal

entries in case of weighted MSE). Loosely speaking, an iterate having a smaller covariance matrix in the Loewner
ordering will then also have a smaller MSE (weighted MSE).
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Remark 3.7. In addition to the CLT result for SGD algorithms with diminishing step size described
in Lemma 3.1, we include in Appendix E [1] similar results for constant step sizes and quadratic
objective functions, where the statement of Theorem 3.6 still holds.

4 Applications: Towards More Efficient SGD

In this section, we present some SGD variants and compare them in terms of efficiency ordering of
SGD. Specifically, we first show that a certain class of non-Markov random walks can provide a better
input sequence than its Markovian counterpart. We then analyze shuffling-based gradient descent and
compare it to the SGD with i.i.d input in terms of efficiency ordering for SGD algorithm. We also
extend our approach to a more general mini-batch version, the discussion for which is deferred to
Appendix H.3 [1].

High-Order Efficient Random Walk for SGD: The simple random walk (SRW) is a popular
Markov chain that has been extensively studied in the literature [62, 58, 29]. Several recent works
have focused on the non-backtracking random walk (NBRW) on a connected undirected graph
G(V, E) in the MCMC literature, which is an extension of SRW with the same limiting distribution
π = d/1Td [53, 5, 41, 38, 10]. Intuitively speaking, NBRW is a random walk that selects one of its
neighbors uniformly at random except the one it just came/transitioned from. Specifically, the NBRW
{Yt}t≥0 is a second-order non-reversible Markov chain (i.e., it is non-Markov on V = [n]) with its
transition probability given by

P (Yt+1 = j|Yt = i, Yt−1 = k) =


1

di−1 if j ̸= k, j∈N(i), di > 1,

1 if di=1, j∈N(i),

0 otherwise.
(12)

Since the limiting distributions of NBRW and SRW are the same, NBRW can be used as the input for
SGD iterations (7) with the same re-weighted local functions G(θ∗, i) as that of SRW for all i ∈ [n]
whenever the applications call for random-walk type of inputs. Let ΣY (∇G(θ∗, ·)) be the asymptotic
covariance matrix of this NBRW {Yt}t≥0, as defined in (8). One of the main results in [41] concerns
the efficiency ordering of NBRW and SRW. They show that NBRW has a smaller AV, or equivalently,
from our Theorem 3.6 (i), a smaller asymptotic covariance in terms of Loewner ordering. Our next
result forms the necessary connection between the asymptotic covariance matrix arising in the CLT
result and ΣY (∇G(θ∗, ·)).
Proposition 4.1. Consider the SGD iteration (7) with two input sequences SRW {Xt}t≥0 and NBRW
{Yt}t≥0 respectively. Then, both the respective estimators θXt , θYt

a.s.−−−→
t→∞

θ∗, and VY ≤L VX , that
is, NBRW is more efficient than SRW in the SGD algorithm.

By augmenting the state space, we can represent NBRW as a Markov chain Zt = (Yt−1, Yt) ∈ V×V ,
as was done in [53, 41]. This transformation then allows us to build CLT for an SGD iteration with
{Zt}t≥0 as the input. The subtlety here is to prove that the asymptotic covariance matrix arising
out of the CLT with respected to the augmented process {Zt}t≥0 is indeed equal to ΣY (∇G(θ∗, ·)).
This is shown by cultivating the relationship between the stationary distribution of {Zt}t≥0 on the
augmented state space V × V and {Yt}t≥0 on the node space V , as provided in [53].

Thus, our Theorem 3.6 together with the existing works on efficiency ordering of NBRW versus SRW
in the MCMC literature [53, 41] enable us to show that NBRW is a more efficient input sequence
than SRW for the SGD iteration (7). Interestingly, it has been shown that non-backtracking walks
mix faster when the underlying graph is d−regular [5]. In this case, a faster convergence rate is also
suggested by mixing time based non-asymptotic bounds prevalent in RWSGD literature. However,
no such results concerning mixing time and SLEM exists for NBRW on a general graph. Thus, in the
form of Proposition 4.1, we demonstrate the utility of our approach in settings where mixing time
based comparisons are unavailable.

Shuffling versus i.i.d Input Sequence: Shuffling-based methods have been widely used in machine
learning applications [13]. They work by repeatedly passing over the entire state space [n] without
repetition, each complete pass forming an epoch. Random shuffling and single shuffling are two
versions therein and differ in the order in which they pass over [n]. Random shuffling, as the
name suggests, makes the pass in a randomly chosen order in each epoch, while single shuffling
maintains the same predetermined order (often randomly chosen once at the beginning) for all
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epochs. Shuffling-based methods are known to show better empirical performance than i.i.d input
[15], although intense theoretical analysis for shuffling-based gradient descent has only emerged
in recent years [66, 33, 64, 3, 32]. In what follows, we use our results from Section 3 to compare
shuffling-based gradient descent to SGD with i.i.d input. To do so, we first analyze the asymptotic
covariance matrix for shuffling-based methods.
Lemma 4.2. Let the input process {Xt}t≥0 be single or random shuffling. Then, for any vector-
valued function g : [n] → Rd, ΣX(g) = 0, where ΣX(g) is defined in (8).

For i.i.d input sequence with distribution π̂, the asymptotic covariance from Lemma 3.1 reduces to

ΣX(∇G(θ∗, ·)) ≜ VarX0∼π̂ (∇G(θ∗, X0)) (13)

following its definition in (8), and thus, trivially, ΣX(∇G(θ∗, ·)) ≥L 0. Lemma 4.2 shows that
shuffling-based methods are more efficient than i.i.d input sequence due to a smaller asymptotic
covariance matrix in Loewner ordering. Next, we show that they also outperform i.i.d input when
used for driving the input sequence of SGD algorithms.
Proposition 4.3. Consider the SGD iteration (7) with stochastic inputs single/random shuffling
{Xt}t≥0 and i.i.d sampling {Yt}t≥0, we have θXt , θYt

a.s.−−−→
t→∞

θ∗ and VX = 0 ≤L VY .

Though it may seem so at first, Proposition 4.3 is not a simple application of Theorem 3.6, es-
pecially for random shuffling because it is hard to check if random shuffling, formulated as a
time-inhomogeneous Markov chain, indeed satisfies (A4). To overcome this difficulty, in Appendix
H [1] we come up with a non-trivial augmentation to a much higher dimensional state space ([n]n+1)
to make random shuffling a time-homogeneous periodic Markov chain in order to show that both
single shuffling and random shuffling satisfy (A4) and thus apply Theorem 3.6.

The case of shuffling versus i.i.d inputs is an example of a setting where the sequence with larger
SLEM is more efficient than one with smaller SLEM9 as an input sequence to the SGD iteration (7).
For quadratic objective functions that satisfy the linear SA iteration in [21], it also attains a faster
convergence speed in terms of MSE than i.i.d inputs to SGD algorithms. Although some recent
works provide more informative finite-time error bounds on the MSE of the objective function for
shuffling-based methods, by studying a special case of the matrix norm AM-GM inequality and
proving faster convergence rate than i.i.d inputs [56, 3, 32], our result is not a subset of theirs. To be
precise, we show in Appendix C [1] that our assumption (A2) on the objective function is no less
general than their most general setting based on the Polyak-Łojasiewicz inequality.
Remark 4.4. Mini-batch gradient descent is another popular gradient descent variant and is widely
used in the machine learning tools [22, 2, 55] to accelerate the learning process when compared to
SGD. In Appendix H.3 [1] we show how our framework can be applied to study min-batch based
SGD algorithms, and include the asymptotic analysis on mini-batch gradient descent with shuffling.

Besides mini-batch gradient descent, there are other SGD variants, e.g., momentum SGD, Nesterov
accelerated SGD and ADAM, that have been studied in the SGD literature for non-asymptotic analysis
[39, 59, 6]. However, asymptotic analysis on the SGD variants is not well studied in the literature,
with only very recent results on the CLT for i.i.d input sequences [42, 8, 9, 45]. Asymptotic analysis
and CLT for variants more general Markovian input sequences, which would be a prerequisite for
Theorem 3.6, remains an open problem. We defer the discussion on related works to Appendix I.3
[1], where we also empirically test the SGD variants and find that the efficiency ordering result still
holds for these SGD variants - opening up the possibility for further theoretical analysis.

5 Numerical Experiments

In this section, we empirically validate our theoretical analysis. We select two convex objective
functions as follows.

f̃(θ)=
1

n

n∑
i=1

log(1+exp(−yix
T
i θ))+

1

2
∥θ∥22 , f̂(θ)=

1

n

n∑
i=1

θT (aia
T
i +Di)θ+bT θ. (14)

For l2-regularized logistic regression f̃(θ), we choose the dataset CIFAR-10 [40] where n is the
total number of data points. Here, xi ∈ R108 is the vector flattened from the cropped image i with

9The single shuffling when realized as a periodic Markov chain has SLEM = 1 (transition matrix is unitary),
while the i.i.d input sequence has SLEM = 0 (transition matrix is rank one).
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shape (6, 6, 3), and yi ∈ R is the label. For sum-of-non-convex functions f̂(θ), which is based on
the experiment setup in [31, 4], we generate random vectors ai,b and matrices Di which ensure the
invertibility of matrix

∑n
i=1 aia

T
i and

∑n
i=1 Di = 0 (details are deferred to Appendix I.2 [1]). For

both experiments, we assign a data point to each node i on the general graph ‘Dolphins’ (62 nodes)
[63]. We set the step size in the SGD algorithm as 1/t0.9, and use MSE E[∥θt − θ∗∥22] to measure
the relative performance of different inputs. We also employ the scaled MSE E[∥θt − θ∗∥22]/γt to
empirically show its relationship to the CLT result (9). Due to space constraints, additional simulation
results which support our efficiency ordering result in the setting of large graphs, and non-convex
functions are deferred to Appendix I.3 in [1]. Therein, via numerical simulations, we also observe
the efficiency ordering for other SGD variants such as Nesterov accelerated SGD and ADAM when
comparing their iterations under efficiency ordered noise sequences.

In Figure 2 we compare NBRW and SRW as input sequences on the graph ‘Dolphins’ for two
objective functions in (14). We also compare uniform sampling, random shuffling and single shuffling,
assuming that they can access any node on the graph in each iteration. We can see in Figure 2a and 2c
that NBRW always falls below SRW throughout all time periods, which indicates that NBRW tends
to have smaller MSE than SRW. Single and random shuffling are both better than uniform sampling
in terms of smaller MSE. The oscillation of single shuffling comes from a predetermined fixed data
sampling sequence, while random shuffling changes the permutation whenever traversing all nodes.
Such oscillation is not visible in Figure 2c and Figure 2d because it is small on the current y-axis
scale. The curves of single and random shuffling in Figure 2b and 2d fall below that of uniform
sampling and still decrease in the linear rate because eventually their covariance matrices will be zero
matrix, as indicated in Proposition 4.3. Figure 2b shows that the scaled MSEs of NBRW, SRW and
uniform sampling approach some constants after some time, which is consistent with the CLT result
(9). The curves of NBRW are still below that of SRW, showing that the input with smaller scaled
MSE tends to have higher efficiency, which supports Proposition 4.1. We can see from Figure 2d
that the curves NBRW, SRW are still increasing andd they have not yet entered the regime where the
covariance matrix becomes the main factor. On the other hand, uniform sampling and both shuffling
methods are just entering this regime.
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Figure 2: Performance comparison of different stochastic inputs on the graph ‘Dolphins’.

6 Conclusion

We have introduced the notion of efficiency ordering of SGD algorithms, and shown that processes
with smaller asymptotic covariance are always more efficient as input sequences for SGD algorithms.
Furthermore, we numerically observe that this sense of efficiency ordering is also seen SGD variants
such as Nesterov accelerated SGD and ADAM. Since the asymptotic analysis of such SGD variants
is not well-established under general stochastic inputs, establishing theoretical results on efficiency
ordering remain an open problem.

9



7 Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their constructive comments. The research was conducted
while Vishwaraj Doshi was with the Operations Research Graduate Program, North Carolina State
University. This work was supported in part by National Science Foundation under Grant Nos.
CNS-2007423, IIS-1910749, and CNS-1824518.

References
[1] Efficiency ordering of stochastic gradient descent – supplementary material, 2022.

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pages 265–283, 2016.

[3] Kwangjun Ahn, Chulhee Yun, and Suvrit Sra. Sgd with shuffling: optimal rates without
component convexity and large epoch requirements. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, volume 33, pages 17526–17535, 2020.

[4] Zeyuan Allen-Zhu and Yang Yuan. Improved svrg for non-strongly-convex or sum-of-non-
convex objectives. In International conference on machine learning, pages 1080–1089. PMLR,
2016.

[5] Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin. Non-backtracking random walks
mix faster. Communications in Contemporary Mathematics, 9(04):585–603, 2007.

[6] Mahmoud Assran and Michael Rabbat. On the convergence of nesterov’s accelerated gradient
method in stochastic settings. In Proceedings of the 37th International Conference on Machine
Learning, pages 410–420, 2020.

[7] Ghadir Ayache and Salim El Rouayheb. Private weighted random walk stochastic gradient
descent. IEEE Journal on Selected Areas in Information Theory, 2(1):452–463, 2021.

[8] Anas Barakat and Pascal Bianchi. Convergence and dynamical behavior of the adam algorithm
for nonconvex stochastic optimization. SIAM Journal on Optimization, 31(1):244–274, 2021.

[9] Anas Barakat, Pascal Bianchi, Walid Hachem, and Sholom Schechtman. Stochastic optimization
with momentum: convergence, fluctuations, and traps avoidance. Electronic Journal of Statistics,
15(2):3892–3947, 2021.

[10] Anna Ben-Hamou, Eyal Lubetzky, and Yuval Peres. Comparing mixing times on sparse
random graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1734–1740. SIAM, 2018.

[11] Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and stochastic
approximations, volume 22. Springer Science & Business Media, 2012.

[12] Zalán Borsos, Sebastian Curi, Kfir Yehuda Levy, and Andreas Krause. Online variance reduction
with mixtures. In International Conference on Machine Learning, pages 705–714. PMLR,
2019.

[13] Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms.
Unpublished open problem offered to the attendance of the SLDS 2009 conference, 2009.

[14] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer, 2010.

[15] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages
421–436. Springer, 2012.

[16] Stephen Boyd, Persi Diaconis, and Lin Xiao. Fastest mixing markov chain on a graph. SIAM
review, 46(4):667–689, 2004.

10



[17] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm robotics: a
review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.

[18] Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues, volume 31.
Springer Science & Business Media, 2013.

[19] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng, editors. Handbook of Markov
Chain Monte Carlo (1st ed.). Chapman and Hall/CRC, New York, 2011.

[20] Shuhang Chen, Adithya Devraj, Andrey Bernstein, and Sean Meyn. Accelerating optimization
and reinforcement learning with quasi stochastic approximation. In 2021 American Control
Conference (ACC), pages 1965–1972, 2021.

[21] Shuhang Chen, Adithya Devraj, Ana Busic, and Sean Meyn. Explicit mean-square error bounds
for monte-carlo and linear stochastic approximation. In International Conference on Artificial
Intelligence and Statistics, pages 4173–4183. PMLR, 2020.

[22] Francois Chollet et al. Keras, 2015.

[23] Adithya M. Devraj and Sean P. Meyn. Q-learning with uniformly bounded variance. IEEE
Transactions on Automatic Control, 2021.

[24] Thinh T Doan, Lam M Nguyen, Nhan H Pham, and Justin Romberg. Finite-time analysis of
stochastic gradient descent under markov randomness. arXiv preprint arXiv:2003.10973, 2020.

[25] John C Duchi, Alekh Agarwal, Mikael Johansson, and Michael I Jordan. Ergodic mirror descent.
SIAM Journal on Optimization, 22(4):1549–1578, 2012.

[26] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

[27] Ayoub El Hanchi and David Stephens. Adaptive importance sampling for finite-sum optimiza-
tion and sampling with decreasing step-sizes. In Advances in Neural Information Processing
Systems, volume 33, pages 15702–15713, 2020.

[28] Gersende Fort. Central limit theorems for stochastic approximation with controlled markov
chain dynamics. ESAIM: Probability and Statistics, 19:60–80, 2015.

[29] Minas Gjoka, Maciej Kurant, Carter T Butts, and Athina Markopoulou. Practical recommenda-
tions on crawling online social networks. IEEE Journal on Selected Areas in Communications,
29(9):1872–1892, 2011.

[30] JHF Gomes, AP Paiva, SC Costa, Pedro Paulo Balestrassi, and EJ Paiva. Weighted multivariate
mean square error for processes optimization: A case study on flux-cored arc welding for
stainless steel claddings. European Journal of Operational Research, 226(3):522–535, 2013.

[31] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. Sgd: General analysis and improved rates. In International Conference on Machine
Learning, pages 5200–5209. PMLR, 2019.

[32] Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo A Parrilo. Why random reshuffling beats
stochastic gradient descent. Mathematical Programming, 186(1):49–84, 2021.

[33] Jeff Haochen and Suvrit Sra. Random shuffling beats sgd after finite epochs. In International
Conference on Machine Learning, pages 2624–2633. PMLR, 2019.

[34] Björn Johansson, Maben Rabi, and Mikael Johansson. A randomized incremental subgradient
method for distributed optimization in networked systems. SIAM Journal on Optimization,
20(3):1157–1170, 2010.

[35] Galin L Jones. On the markov chain central limit theorem. Probability surveys, 1:299–320,
2004.

[36] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

11



[37] Prasenjit Karmakar and Shalabh Bhatnagar. Stochastic approximation with iterate-dependent
markov noise under verifiable conditions in compact state space with the stability of iterates not
ensured. IEEE Transactions on Automatic Control, 66(12):5941–5954, 2021.

[38] Mark Kempton. Non-backtracking random walks and a weighted ihara’s theorem. Open Journal
of Discrete Mathematics, 6(4):207–226, 2016.

[39] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR
(Poster), 2015.

[40] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
2009.

[41] Chul-Ho Lee, Xin Xu, and Do Young Eun. Beyond random walk and metropolis-hastings
samplers: why you should not backtrack for unbiased graph sampling. ACM SIGMETRICS
Performance evaluation review, 40(1):319–330, 2012.

[42] Jinlong Lei and Uday V Shanbhag. Variance-reduced accelerated first-order methods: Central
limit theorems and confidence statements. arXiv preprint arXiv:2006.07769, 2020.

[43] Victor Lesser, Charles L Ortiz Jr, and Milind Tambe. Distributed sensor networks: A multiagent
perspective, volume 9. Springer Science & Business Media, 2003.

[44] David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American
Mathematical Soc., 2017.

[45] Tiejun Li, Tiannan Xiao, and Guoguo Yang. Revisiting the central limit theorems for the
sgd-type methods. arXiv preprint arXiv:2207.11755, 2022.

[46] Xianghui Mao, Kun Yuan, Yubin Hu, Yuantao Gu, Ali H Sayed, and Wotao Yin. Walkman:
A communication-efficient random-walk algorithm for decentralized optimization. IEEE
Transactions on Signal Processing, 68:2513–2528, 2020.

[47] Panayotis Mertikopoulos, Nadav Hallak, Ali Kavis, and Volkan Cevher. On the almost sure
convergence of stochastic gradient descent in non-convex problems. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, pages 1–32, 2020.

[48] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The journal of
chemical physics, 21(6):1087–1092, 1953.

[49] Sean P Meyn and Richard L Tweedie. Markov chains and stochastic stability. Springer Science
& Business Media, 2012.

[50] Antonietta Mira. Ordering and improving the performance of monte carlo markov chains.
Statistical Science, pages 340–350, 2001.

[51] Wenlong Mou, Chris Junchi Li, Martin J Wainwright, Peter L Bartlett, and Michael I Jordan. On
linear stochastic approximation: Fine-grained polyak-ruppert and non-asymptotic concentration.
In Conference on Learning Theory, pages 2947–2997. PMLR, 2020.

[52] Hongseok Namkoong, Aman Sinha, Steve Yadlowsky, and John C Duchi. Adaptive sampling
probabilities for non-smooth optimization. In International Conference on Machine Learning,
pages 2574–2583. PMLR, 2017.

[53] Radford M Neal. Improving asymptotic variance of mcmc estimators: Non-reversible chains
are better. Technical report, Department of Statistics, University of Toronto, July 2004.
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