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In this appendix, we first provide the pseudo-code of CM-GCL to facilitate the understanding of
CM-GCL. We then discuss the experimental settings of baseline methods.

A Pseudo-code of CM-GCL

In CM-GCL, we can either take the text feature xT or the image feature xI as the content feature,
and consider the corresponding text encoder fT or image encoder fI as the content encoder. In
Algorithm 1, we take text feature xT and the corresponding text encoder fT as an example.

Algorithm 1: Training Procedure of CM-GCL
Data: Graph G, Node feature xG, Content feature xT , GNN encoder fG, Content encoder fT ,

Node similarity set S
Result: f∗

G: pre-trained GNN encoder; f∗
T : fine-tuned content encoder

1 Initialize (fG,fT ) with parameters (θ0G,θ0T ).
2 for each epoch do
3 for each step l do
4 Prune e% of smallest-magnitude parameters in (θlG,θlT ) by creating the corresponding

masks (ml
G,ml

T ).

5 Obtain the embedding (h̃G,h̃T ) from (f̃G,f̃T ); Project: (h̃G,h̃T ) → (z̃G,z̃T ).
6 Calculate the inter-modality GCL loss Linter in Eq. 1 .
7 Release masks (mG,mT ).
8 for each step l do
9 Prune e% of smallest-magnitude parameters in θlG by creating corresponding masks ml

G.

10 Obtain the embedding (hG,h̃G) from (fG,f̃G); Project: (hG,h̃G) → (zG,z̃G).
11 Calculate the intra-modality contrastive loss Lintra in Eq. 3 among (zG,z̃G).
12 Release masks mG.
13 Optimize fG,f̃G,f̃T by minimizing the co-modality graph contrastive loss L in Eq. 4.
14 return f∗

G, f∗
T .
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B Baseline Settings

In this section, we discuss the settings of baseline models for imbalanced node classification over
four graphs.

G1: We convert the rich text content into the bag-of-words feature vectors, and further
feed the feature vectors with different imbalance ratios to a two-layer MLP [7] classifier to
get the classification results. For AMiner, YelpChi, and GitHub graph datasets, we implement
CHI-Square [11] to select useful feature words. For Instagram graph, we employ ResNet50 [3] to
obtain the initial image representations as the feature vector.

G2: We implement three graph neural network based representation learning models including
GCN [5], GAT [9], and GraphSAGE [2] to learn the node embeddings by leveraging both node
feature (bag-of-words feature vector) and graph structure information. Specifically, the number of
layers in GCN, GAT, and GraphSAGE is set as 2. In addition, the number of attention heads in GAT
is set as 8. Node representations generated by graph representation learning models are fed into a
two-layer MLP classifier. Except for the dataset Dinit with initial imbalance ratio, we also fed the
imbalanced data (i.e., D0.1 and D0.01) to train the GNN models and further get the classification over
imbalanced testing nodes.

G3: We also implement three popular approaches against imbalanced datasets, i.e., over-sampling [4],
re-weighting [1], and GraphSMOTE [12]. For over-sampling and re-weighting methods, they handle
the node representations generated by a two-layer GCN and the node representations are further fed
to a two-layer MLP. Specifically, we over-sample the nodes belonging to the minority classes by
adding the duplicated nodes and the duplicated edges among nodes (over-sampling) or we emphasize
the weight for minority classes during optimization (re-weighting). For GraphSMOTE, we utilize the
similarities among nodes to synthesize the nodes in monitory classes and train the edge generator to
learn relationships among nodes simultaneously. Different from the setting in GraphSMOTE, we
employ a two-layer GCN as the feature extractor such that we compare GraphSMOTE with other
baseline models fairly.

G4: To compare the ability of representation learning of CM-GCL, we conduct two graph contrastive
learning models, i.e., GCC [8] and GraphCL [10], to pre-train the graph encoder. To compare
CM-GCL with these aforementioned graph contrastive learning models fairly, all encoders are set as
a two-layer GCN. For GCC, we adopt an end-to-end strategy to build the subgraph dictionary (with
size 1023) in contrastive learning. For GraphCL, we adopt edge perturbation and node dropping as
graph augmentation methods to generate contrastive pairs and further pre-train the graph encoder
during contrastive learning. For the downstream classification, similar to CM-GCL, we fine-tune
the GCN encoder pre-trained by GCC or GraphCL and further adopt Focal loss [6] to handle node
classification over imbalanced datasets.
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