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Abstract

Graph contrastive learning (GCL), leveraging graph augmentations to convert
graphs into different views and further train graph neural networks (GNNs), has
achieved considerable success on graph benchmark datasets. Yet, there are still
some gaps in directly applying existing GCL methods to real-world data. First,
handcrafted graph augmentations require trials and errors, but still can not yield
consistent performance on multiple tasks. Second, most real-world graph data
present class-imbalanced distribution but existing GCL methods are not immune
to data imbalance. Therefore, this work proposes to explicitly tackle these chal-
lenges, via a principled framework called Co-Modality Graph Contrastive Learning
(CM-GCL) to automatically generate contrastive pairs and further learn balanced
representation over unlabeled data. Specifically, we design inter-modality GCL to
automatically generate contrastive pairs (e.g., node-text) based on rich node con-
tent. Inspired by the fact that minority samples can be “forgotten” by pruning deep
neural networks, we naturally extend network pruning to our GCL framework for
mining minority nodes. Based on this, we co-train two pruned encoders (e.g., GNN
and text encoder) in different modalities by pushing the corresponding node-text
pairs together and the irrelevant node-text pairs away. Meanwhile, we propose
intra-modality GCL by co-training non-pruned GNN and pruned GNN, to ensure
node embeddings with similar attribute features stay closed. Last, we fine-tune the
GNN encoder on downstream class-imbalanced node classification tasks. Extensive
experiments demonstrate that our model significantly outperforms state-of-the-art
baseline models and learns more balanced representations on real-world graphs.
Our source code is available at https://github.com/graphprojects/CM-GCL.

1 Introduction

Contrastive learning, aiming to contrast instance pairs generated from unlabeled data to train better
representation models, has attracted considerable attention. Inspired by the consistent success of con-
trastive learning in computer vision and natural language processing [3, 2, 26], an increasing number
of works have started to investigate the great potential of contrastive learning on graphs [45, 52, 38].
Most existing graph contrastive learning (GCL) models leverage different graph transformation
methods to augment graph data into different views, and further train graph neural networks (GNNs)
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by maximizing the similarity between positive pairs while minimizing the similarity between negative
pairs. In particular, PyGCL [52] summarizes nine categories of graph augmentations from differ-
ent levels (e.g., node dropping, edge perturbation, and graph diffusion), and implements different
augmentation combinations to transform graph into different views for contrastive learning.

Yet, directly applying existing GCL models [28, 27, 31, 45] from the controlled benchmark graph
datasets to uncontrolled real-word graph datasets still has some gaps. First, notwithstanding suitable
handcrafted augmentation methods need professional knowledge as well as trials and errors, the
consistent excellent performance on multiple tasks can not be guaranteed [52]. Second, node
classes in most real-world graphs present imbalanced distribution (e.g., Zipf long-tail distribution).
For instance, the amount of illicit activities (e.g., malicious code/repository [44, 10, 7, 43], illicit
drug/crimeware trading [30, 48]) on the Internet and social networks is much less than that of normal
activities [33]. To tackle these challenges, we aim to design a novel GCL model that automatically
generates contrastive pairs without too much effort, but also can generalize well in real-world graphs
with the class imbalance problem.

Accordingly, inspired by existing cross-modality contrastive learning methods in computer vision and
NLP [32, 53], we naturally hypothesize that node embeddings in graph and the corresponding content
embeddings (e.g., text embedding) in different modalities will be closer if we train GNN encoder
and the content encoder (e.g., text encoder) simultaneously during contrastive learning. In this way,
we can automatically generate contrastive pairs, e.g., (node-text), based on the natural node content,
which is called inter-modality GCL. However, recent studies [14, 42] demonstrate that contrastive
learning can alleviate the data imbalance problem but fails to be fully immune to the data imbalance
issue. Therefore, motivated by the fact that minority data may be easily “forgotten” by pruning deep
neural networks [13], we extend the ad-hoc compression tool, network pruning, to GCL framework
and further discover minority samples not yet well represented by encoders during co-modality GCL.

To summarize, we propose a novel framework called co-modality graph contrastive learning (CM-
GCL) to automatically generate contrastive pairs from unlabeled data and further learn more balanced
node representations. As illustrated in Figure 1, we first prune the graph encoder and content encoder
in inter-modality GCL to uncover more minority samples, and further co-train two encoders via
optimizing the inter-modality contrastive loss. Besides, we propose to ensure that node embeddings
with similar attribute features should also stay closed. Therefore, we propose intra-modality GCL that
generates contrastive pairs based on the similarities among node attribute features and further co-trains
non-pruned graph encoder and pruned graph encoder. By the aforementioned steps, CM-GCL can
boost minority nodes weights in contrastive loss and lead to implicit loss re-balancing. Finally, we
fine-tune the pre-trained GNN encoder on the class-imbalanced node classification tasks. To conclude,
our work makes the following contributions:

• As handcrafted graph augmentations are not efficient on real-world graph datasets, we devise a
co-modality framework to automatically generate contrastive pairs. To the best of our knowledge,
this is the first work on GCL that co-trains encoders in different modalities to facilitate node
representation learning.

• To address the class imbalance issue on graphs, our model extends network pruning to prune
encoders in co-modality GCL for discovering minority samples and further learning more balanced
node representations.

• Extensive experiments on multiple real-world graph datasets show the effectiveness of our model
by comparing CM-GCL with state-of-the-art methods.

2 Related Work

Graph Contrastive Learning. Most GCL models [31, 45, 38, 46, 40, 39] leverage different types of
data transformations to augment graph into different views and further train an encoder by discrimi-
nating positive pairs and negative pairs generated from unlabeled data. Specifically, GraphCL [45]
designs four types of graph augmentations to generate contrastive pairs in different views for con-
trastive learning. GCC [31] implements the random walk for each node to sample subgraphs as
augmentation. In the heterogeneous domain, HeCo [38] employs cross-view (schema view and
meta-path view) contrastive learning to train an encoder. These handcrafted data augmentations
require trials and errors, and sufficient domain knowledge, but still cannot yield consistent excellent
performance on multiple tasks [45]. Hence, we naturally propose to automatically generate contrastive
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pairs for graph data. Inspired by CLIP [32], a cross-modality contrastive learning model on image
and text data, we devise cross-modality GCL that leverages the rich node content to automatically
generate useful contrastive pairs without resorting to handcrafting or expert knowledge.

Data Imbalance in Self-supervised Learning. Data imbalance is very common in real-world
applications (e.g., anomaly detection [5, 6]). Most existing methods against data imbalance focus on
supervised learning (e.g., re-sampling [1, 24], re-weighting [16, 35], and GraphSMOTE [51]). Recent
works [42, 15, 14] start to explore the benefits of the balanced feature space from self-supervised
learning. Yang and Xu [42] first studied the label bias in self-supervised learning and concluded that
classifiers that are pre-trained in a self-supervised manner consistently outperform their corresponding
supervised baselines. Kang et al. [15] found that contrastive learning can present a more balanced
feature space over imbalanced datasets by comparison with supervised learning. Based on this,
SDCLR [14] validates that contrastive learning is not fully immune to data imbalance. All mentioned
works study the imbalance problem of image. Motivated by these works, we devise an algorithm that
can well mitigate the data imbalance in our proposed co-modality GCL framework.

Network Pruning. Network pruning [19, 22, 20] has been considered as a popular compression
tool for DNN models. In recent years, some works [8, 13, 14] have started to explore the deeper
connection with DNN memorization and generalization. Specifically, Frankle and Carbin [8] found
that pruning a dense DNN can identify “significant subnetwork” whose testing accuracy is comparable
to the one in the original network. Hooker et al. [13] thought a small data subset, i.e., data belonging
to ambiguous classes and minority classes, is more likely to be impacted by the introduction of
sparsity via network pruning. Based on the conclusion, Jiang et al. [14] constructed a self-competitor
via network pruning to study the imbalanced image in contrastive learning. In this work, we introduce
network pruning in co-modality contrastive learning to uncover minority nodes and further gain the
more balanced representation.

3 Preliminary

Graph Neural Networks. Given a graph G = (V, E ,X ), where V is the set of different types
of nodes, E ⊆ V × V is the set of edges, and X is the attribute feature set. We aim to learn the
node representation by considering both structure and node attribute features. Current GNNs (e.g.,
GCN [18], GAT [37], GraphSAGE [9], and HetGNN [47]) follow a messaging-passing framework
and has gained consistent performance on various graph data. In this paper, we choose GCN as the
graph encoder to learn the node embedding hi

G ∈ RdG corresponding to node vi. In particular, GCN
is formulated as H l+1 = σ(ÃH l W l), where H l+1 denotes the node representations at l + 1 layer,
Ã is a symmetric normalization of A with self-loop, W l is the weight matrix at l-th layer, and σ is the
activation function. We use fG to denote the graph encoder and hG to denote the node embedding.
Besides GCN, we also discuss GAT and GraphSAGE as the graph encoder in experiments.

Text Pre-Trained Model. In most real-world graphs, nodes contain rich text information. Most
existing graph representation learning methods [18, 9, 50, 49, 41] extract the keyword from text
and convert the rich text content into sparse bag-of-words feature vector, and further utilize the
extracted features to facilitate the graph representation learning. Instead of directly utilizing the
bag-of-words feature vectors as the attribute features for nodes, we propose to fine-tune the pre-trained
language model on the handy unlabeled dataset within the graph. In this work, we leverage the
pre-trained transformer language model (e.g., DistilBERT [34], a distilled version of BERT) as the
text encoder and further fine-tune the text encoder with co-modality contrastive loss. The structure
of DistilBERT we implemented is a base size with a 6-layer 512-wide model along with 8 attention
heads. Text sequence is bracketed with [SOS] and [EOS] tokens and we take the activation of the
highest layer of transformer at [EOS] token as text representation hT ∈ RdT . In this paper, fT
denotes the text encoder. After fine-tuning fT via optimizing co-modality contrastive loss, we replace
the bag-of-words feature vectors with fine-tuned attributes for all nodes. Besides DistilBERT, we
also discuss other transformer models (i.e., BERT) as the text encoder and more details can be found
in Section 5.5.

Image Pre-Trained Model. Except for text information, image content is also very common for
nodes in graph (e.g., Instagram). We implement two different architectures (i.e., ResNets and
Transformer) as the image encoder. As ResNets is widely used and has been proven with excellent
performance, we implement ResNet50 [11] as the base architecture. Following [12], we make similar
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Figure 1: The overall framework of CM-GCL: (a) It constructs graph to depict content data (e.g.,
image and text) and relation data in networks; (b) It co-trains the pruned GNN and pruned content
encoder in inter-modality GCL to ensure node embeddings and content embeddings referring to the
same entity stay together; Intra-modality GCL that co-trains non-pruned GNN and pruned GNN is
further proposed to ensure node embeddings with similar attributes stay close. (c) It updates attribute
features via f∗

T and the pre-trained GNN f∗
G is fine-tuned on downstream class imbalance tasks.

modifications on ResNet and replace the global average pooling layer with an attention pooling
mechanism. Besides, we consider the recently introduced Swin Transformer [23] as the image
encoder and closely follow their implementations. We utilize fI to denote the image encoder to
obtain the image representation hI ∈ RdI . After fine-tuning fI via contrastive loss optimization,
we attach the fine-tuned image embedding to the corresponding nodes as the attribute features for
downstream tasks.
Problem 1. Co-Modality Graph Contrastive Learning for Imbalanced Node Classification. Given
a graph G = (V, E ,X ) built on multi-modality data along with imbalanced class label Y , we aim to
build a GCL model over G that can be further fine-tuned or applied to the downstream tasks with
imbalanced labels (e.g., imbalanced node classification).

4 Methodology

In this section, we present the details of CM-GCL (Figure 1) which includes three steps: (i) graph
construction (Figure 1.(a)); (ii) co-modality graph contrastive learning with network pruning (Fig-
ure 1.(b)); (iii) model fine-tuning on downstream imbalanced node classification tasks (Figure 1.(c)).

4.1 Graph Construction

Graph has been proven to be effective in modeling real-world networks (e.g., academic networks and
social networks). Merely taking the relational structure information among nodes into consideration
is deemed insufficient to learn the node representations. Thus, to model real-world graph data for
certain tasks (e.g., domain prediction for AMiner academic network), we depict both the informative
content and rich structure information within graph data. Following existing works [18, 9, 37], we
first convert the text content into sparse bag-of-words feature vectors attached to the corresponding
nodes, which is denoted as xG. For some graphs that have rich image content (e.g., Instagram), we
implement the pre-trained image encoder (e.g., ResNet) to obtain the image feature vectors applied to
the corresponding nodes. Besides that, different from existing works, we further fine-tune the content
encoder (denoted as fT for text encoder or fI for image encoder) via co-modality contrastive learning.
Inspired by CLIP [32] that co-trains the text encoder and the image encoder for the text image
matching task, we view the rich content as the text (image) modality data and the corresponding graph
structure with bag-of-words feature vectors as the graph modality data. We argue the corresponding
data in different modalities can achieve agreements in the learned representation space.

4.2 Co-Modality Graph Contrastive Learning

After graph construction, we first propose inter-modality contrastive learning to automatically generate
contrastive pairs. Then we introduce network pruning to discover minority nodes during contrastive
learning. Last, we design intra-modality contrastive learning to ensure that node embeddings with
similar semantics (attribute features) stay closed.
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4.2.1 Inter-Modality Graph Contrastive Learning

The main idea of contrastive learning is to make representations maximize the agreement on sample
pairs under proper graph augmentations. Yet, finding proper graph augmentation for every task is
always resource-consuming [45]. Inspired by existing works [32, 53] in terms of cross-modality
learning, we propose to fully utilize nodes’ content to automatically generate contrastive pairs, and
further co-train encoders in different modalities via contrastive learning. That is to say, we aim to learn
two encoders such that embeddings in two modalities are close to each other in the learned space if
they refer to the same entity, otherwise far away. In this paper, we mainly consider two combinations
of modalities as illustrated in Figure 1.(a) (i.e., graph-text or graph-image). For simplicity, we discuss
graph-text modalities as an example in this section, and will conduct experiments on graph-image
modalities. Specifically, given a sample pair (xi

G, x
i
T ), where xi

G is the original attribute feature
(i.e., bag-of-words feature vector) of node vi ∈ V and xi

T is the corresponding text content input,
we feed xi

G to the graph encoder fG and xi
T to the text encoder fT respectively, and further obtain

the corresponding representations (hi
G, hi

T ). Note that, as different types of nodes in G may have
different feature dimensions, we first transform the input attribute features of all nodes in G to a
common space. After obtaining the representation pair (hi

G, hi
T ), we apply nonlinear projection

heads to convert embeddings from different modalities to the same space (denoted as (ziG, ziT )) for
comparison, which can be formally defined as zi = MLP(hi). We apply separate projection heads
for representations generated by the encoder in different modalities. Here we denote (ziG, ziT ) as the
projected embedding pair. We consider (ziG, ziT ) as a similar pair (positive pair) if the node and the
text content refer to the same entity. Otherwise, (ziG, ziT ) is viewed as a dissimilar pair (negative pair).

4.2.2 Network Pruning

We are aware that imbalanced data fails many supervised approaches built on balanced benchmarks.
Whether contrastive learning is immune to data imbalance or not has remained controversial. Recent
studies [14, 15, 42] argue and demonstrate that self-supervised contrastive learning can alleviate the
data imbalance issue in representation learning but is not fully immune to data imbalance. Based on
the above findings, we propose to alleviate the data imbalance issue during our proposed co-modality
GCL. Some recent works [13, 14] discover that certain examples are particularly sensitive to sparsity
via network pruning and these samples mostly impacted after pruning are termed as Pruning Identified
Exemplars (PIEs) [13]. They further demonstrate that PIEs often show up in minority classes. Inspired
by this, we extend network pruning to our proposed framework to uncover minority samples. Unlike
pruning a single encoder for image model in the previous works [13, 14, 8], we co-prune multiple
encoders in different modalities. With PIEs dynamically generated during contrastive training, more
minority samples will be exposed along with training epochs, as we will show in Figure 2. In this
paper, we employ the magnitude pruning method [8] that uses the absolute value of weights to rank
their importance and removes weights that are below a certain threshold. Specifically, the detailed
process is described as follows:

1. Randomly initialize encoders fG and fT with parameters θ0G and θ0T respectively.
2. At each iteration l, prune e% of smallest-magnitude parameters in θlG and θlT by creating the

corresponding masks ml
G and ml

T .
3. Apply the masks ml

G and ml
T to the feed-forward encoders fG and fT respectively, and calculate

the corresponding contrastive loss.
4. Release the masks ml

G and ml
T on the masked parameters and update encoders’ parameters via

optimizing the contrastive loss.

In the above steps, the contrastive loss in inter-modality GCL is formulated as:

Linter = −log
∑
vi∈V

exp [sim (z̃iG, z̃
i
T )/τinter]∑2n

p=1 1[i̸=p]exp [sim (z̃iG, z̃
p
T )/τinter]

, (1)

where (z̃iG, z̃
i
T ) is the projected embedding pair generated by the pruned encoders f̃G and f̃T ,

sim(z̃iG, z̃
i
I) is the cosine similarity between z̃iG and z̃iI , τinter is the temperature value, and n is the

size of mini-batch. Following the iterative pruning process that repeatedly trains, prunes and releases
weights in each round, it effectively boosts minority samples’ weights in Linter and leads to implicit
loss re-balancing. In this way, minority samples are more likely to be uncovered and further force the
encoders to learn more about these minority samples.
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4.2.3 Intra-Modality Graph Contrastive Learning

Inter-modality graph contrastive learning ensures that embeddings from different modalities w.r.t.
the same entity stay closed in the projected space but fails to ensure that embeddings with similar
original features from the same modality stay closed. We argue that nodes with similar attribute
features naturally have similar semantics and their embeddings should be closer than those with
dissimilar attribute features. However, most existing GNNs are mainly dominated by the relationships
among nodes in graph [29]. In light of this, we propose intra-modality graph contrastive learning
to balance the importance of local neighbor relations and attribute features, and further ensure that
node embeddings with similar attribute features will stay closer in the projected space. Note that, we
mainly focus on graph modality in intra-modality graph contrastive learning. Specifically, we first
define S as the set of node pairs having the top-R similarity, which is formally defined as:

S = {(vi, vp) | sim(xi
G, x

p
G) in top-R of [sim(xi

G, x
p
G)]

N
p=1, ∀vi ∈ V}, (2)

where sim(xi
G, x

p
G) measures the cosine similarity of node attribute features between node vi and vp,

R is the number of top pairs chosen for each node, and N is the number of nodes in G.

The main difference between intra-modality GCL and inter-modality GCL lies in that, intra-modality
GCL employs the graph encoder and the pruned graph encoder for contrastive training, while inter-
modality GCL implements the graph encoder and the text (image) encoder for co-modality contrastive
training. Hence, we have a dense graph encoder fG and a sparse graph encoder f̃G pruned by iterative
magnitude pruning. Given a sample pair (xi

G, x
p
G), where i can equal p, it will be encoded by fG and

f̃G respectively. The projected embeddings (ziG, z̃
p
G) is regarded as a positive pair if (vi, vp) in S,

otherwise, it will be viewed as a negative pair. The intra-modality GCL loss is defined as follows:

Lintra = −log
∑
vi∈V

∑
(vi,vp)∈S exp [sim (z̃iG, z̃

p
G)/τintra]∑

(vi,vq)/∈S exp [sim (z̃iG, z̃
q
G)/τintra]

. (3)

By this way, for atypical and minority nodes, our model can amplify the representation differences
between the pruned and non-pruned graph encoders in intra level, and these nodes’ weights will be
implicitly increased in the intra-modality contrastive loss Lintra.

After performing inter-modality graph contrastive learning and intra-modality graph contrastive
learning, the overall objective of co-modality graph contrastive learning can be formulated as:

L = λLinter + (1− λ)Lintra, (4)
where λ is the trade-off hyper-parameter for balancing two loss terms. Pseudo-code of CM-GCL is
provided in Section A of the Appendix.

4.3 Fine-tuning

After sufficient training on the co-modality GCL, different from most existing methods that directly
fine-tune the pre-trained encoder f∗

G on downstream tasks [31, 45], we adopt a multi-step protocol
to evaluate the classification performance. (i) Representation learning via CM-GCL: we pre-train
encoders by optimizing the pre-training loss L in Eq. 4; (ii) Update the attribute feature: we leverage
the learned content encoder f∗

T to get the updated attribute features; (iii) Fine-tuning the GNN encoder:
we adopt the pre-trained weights from f∗

G as the initialized parameters for the fine-tuning encoder.
Then we train the GNN encoder together with the classifier (i.e., MLP) over imbalanced nodes.
To address the class imbalance problem, we introduce Focal Loss [21] that applies a modulating
term to the cross-entropy loss to focus on hard misclassified nodes. This can be considered as a
dynamically scaled cross entropy loss, where the scaling factor can down-weight the contribution of
easily classified nodes automatically during model fine-tuning and rapidly focuses the model on hard
nodes. In particular, the supervised multi-class focal loss Lfocal can be formally defined as:

Lfocal = − 1

|Vl|
∑
i∈Vl

C∑
c=0

αc yic (1− ŷic)
γ log(ŷic), (5)

where Vl is the node sets of labeled nodes, ŷic is the prediction score of node vi being classified as
class c, γ is the focusing parameter to control the rate at which easy nodes will be down-weighted,
and αc ∈ [0, 1] is a weighting hyper-parameter for different classes. Noted that Lfocal = Lce when
γ = 0 and α = 1.
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5 Experiments

In this section, we first introduce datasets we use to evaluate CM-GCL and baselines models. Then
we provide the detailed analysis to show the effectiveness of CM-GCL and its strong applicability
to real-world graph datasets. In addition, the baseline settings are provided in Section B of the
Appendix.

5.1 Experimental Setup

5.1.1 Dataset

Table 1: The number of labeled nodes, classes, and
the imbalance ratio (IR) for each dataset.

Dataset AMiner YelpChi GitHub Instagram

# of label 18,089 67,395 20,895 8,651
# of class 5 2 2 2
IR ≈1.0 0.15 0.50 0.59

In this paper, we adopt four multi-modality
graph datasets from existing works, i.e.,
AMiner [36], YelpChi [33], GitHub [29], and
Instagram [30], which contain the raw content
(e.g., text or image) and the graph structure infor-
mation. Specifically, AMiner graph is a paper-
citation academic network with raw text content
(i.e, title). We select a sub-graph (having 18,089 papers and 22,864 authors) from AMiner dataset,
and aim to predict the domain label (i.e., data mining, medical informatics, theory, visualization,
and database) of each paper. In order to solve a harder classification task, we cast aside venue
nodes from AMiner academic network and consider two relation types (i.e., author-write-paper and
author-collaborate-author) for this academic graph. Different relation types are regarded as the same
type. Each paper is characterized by the bag-of-words of keywords. We also count the number
of published papers for each author as the attribute feature. In this dataset, the class distribution
is relatively balanced (Tabel 1), so we use an imitative imbalanced setting by randomly selecting
two classes (two out of five) as the minority classes. YelpChi provided by [33] is a benchmark
graph dataset with the raw reviews for a set of restaurants and hotels in Chicago. We utilize YelpChi
dataset to identify genuine reviews (8,919) and fake reviews (58,476), which is a binary classification
task. Similar to AMiner, each review is characterized by the bag-of-words of keywords. Followed
by [33], we also extract three types of relations among reviews. GitHub graph, including 6,965
malicious and 13,930 benign repositories, aims to detect malicious repositories on GitHub platform,
which contains the raw content of repositories. Please refer to the detailed graph information in
[29]. To mimic the imbalanced situation, we employ an imitative imbalanced setting with different
imbalance ratios. Instagram graph contains the image and text information about users and posts
and the corresponding rich relationships. Different from other three datasets, we mainly utilize the
image information within this dataset to pre-train our proposed model and further detect illicit drug
traffickers (including 3,242 drug traffickers and 5,409 normal users) on Instagram.

5.1.2 Baseline Method

To evaluate the performance of CM-GCL, we compare CM-GCL with nine baseline methods which
are divided into four groups (Table 2): feature-based method (G1), graph learning models (G2),
methods against imbalanced data (G3), and GCL models (G4). For G1 (Feature), we feed the attribute
feature vector to a two-layer MLP [25]. For G2, we implement three graph learning methods, i.e.,
GCN [18], GAT [37], and GraphSAGE [9], to learn the node representations. For G3, we implement
three popular approaches, i.e., over-sampling [17], re-weighting [4], and GraphSMOTE [51], to
handle the imbalanced node representations generated by GCN. GraphSMOTE is the extension of
SMOTE [1] on graph data, which leverages node similarities to generate synthesized nodes and edges.
For G4, we reproduce two GCL methods, i.e., GCC [31] and GraphCL [45]. To compare them with
CM-GCL fairly, we fine-tune the pre-trained models with Focal loss Lfocal as well.

5.1.3 Experimental Settings

All experiments are conducted under the environment of the Ubuntu 16.04 OS, plus Intel i9-9900k
CPU, two GeForce GTX 2080 Ti Graphics Cards, and 64 GB of RAM. We train all methods
for each graph with a fixed epoch. Besides, all methods are trained ten times, and the average
performance multiplied by 100 on testing data is reported. We use 70% samples for training, 10% for
validation, and the remaining 20% for testing. Following existing works in evaluating imbalanced
class classification [1, 51], we adopt two metrics, i.e., Macro F1-score (F1) and AUC-ROC score
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Table 2: Performance comparison of all methods on imbalanced datasets with different ratios.

Datasets Ratio Metric Feature GCN GAT
Graph
-SAGE

Over
-sample

Re
-weight

Graph
-SMOTE

GCC GraphCL
CM

-GCL

AMiner
(Node ⇔ Text)

D0.01
F1 50.16 54.89 54.71 52.87 55.24 58.28 56.08 55.43 55.27 56.73

AUC 88.68 91.99 92.25 89.05 91.23 93.20 90.81 93.25 93.51 95.04

D0.1
F1 53.62 55.67 55.45 53.95 56.34 69.11 65.43 72.35 73.51 74.78

AUC 92.12 92.95 92.24 92.34 93.78 94.88 94.05 95.21 94.01 96.42

Dinit
F1 75.28 77.34 77.83 75.51 79.40 79.46 79.37 84.57 84.78 85.59

AUC 94.53 95.09 95.38 94.53 95.49 95.86 96.04 96.25 97.14 98.02

YelpChi
(Node ⇔ Text)

D0.01
F1 46.86 49.58 49.80 47.75 49.78 50.98 51.41 49.98 50.23 50.45

AUC 57.11 59.08 60.51 58.84 89.69 82.25 90.94 87.35 88.52 90.79

D0.1
F1 52.60 56.27 57.14 53.62 65.01 67.08 70.08 72.47 73.38 75.10

AUC 65.29 83.74 83.84 78.83 89.91 85.63 91.81 91.04 91.23 93.02

Dinit
F1 53.46 64.57 65.21 46.46 72.61 72.77 77.04 77.45 78.56 80.75

AUC 67.02 85.04 85.45 82.70 89.42 87.85 92.20 92.28 93.45 94.48

Github
(Node ⇔ Text)

D0.01
F1 23.88 32.33 32.51 29.41 35.73 37.77 45.97 42.51 43.20 45.89

AUC 57.91 80.09 79.25 77.87 82.97 84.66 86.73 85.54 86.21 88.51

D0.1
F1 64.92 69.15 69.42 66.14 71.64 72.45 74.43 72.51 73.24 76.35

AUC 79.69 86.85 86.25 84.25 89.76 91.48 93.37 91.54 92.39 95.27

Dinit
F1 66.74 72.55 73.27 70.48 73.18 74.12 77.59 79.54 80.59 83.35

AUC 78.21 88.28 88.24 86.82 90.99 92.84 93.32 92.74 93.75 96.48

Instagram
(Node ⇔ Image)

D0.01
F1 4.35 12.51 12.58 10.29 15.28 17.39 23.48 19.32 20.42 22.47

AUC 51.04 58.71 58.91 56.27 60.24 62.75 66.41 64.05 64.28 67.34

D0.1
F1 36.02 42.62 42.32 40.54 44.11 47.53 49.65 48.32 49.88 51.24

AUC 62.71 81.45 81.98 79.27 83.83 85.24 88.42 85.32 87.21 89.14

Dinit
F1 66.77 72.55 72.32 71.24 73.05 74.57 75.32 77.25 78.25 80.71

AUC 76.83 87.28 87.12 85.39 88.68 89.05 89.24 91.08 92.53 94.25

(AUC) to evaluate all models. Besides, except for the initial imbalance ratio of datasets, to evaluate
the model performance in more imbalanced scenarios, we set β (imbalance ratio) as 0.1 and 0.01
and further utilize Dinit, D0.1, and D0.01 to denote dataset with initial imbalance ratio, 0.1, and 0.01,
respectively. Note that, we leverage Dinit to train CM-GCL and fine-tune the pre-trained encoder
over Dinit, D0.1, and D0.01 to conduct the downstream classification tasks. With the grid search,
pruning ratio e is set as 20%, the number of contrastive pairs R for each node in intra-modality
GCL is different for different graphs (e.g., 5 for AMiner graph) , and the number of mini-batch n is
different for different tasks, (e.g., 100 for AMiner graph). Besides, the temperature parameter τinter
and τintra are set as 0.1 and the trade-off hyper-parameter λ among co-modality GCL is set as 0.5. For
fine-tuning, α and γ in Lfocal for different graphs are different (e.g., (0.75, 1.0) for AMiner graph).

5.2 Performance Comparison

Table 2 shows the performances of all models on four graphs with different imbalance ratios. The best
performances are highlighted in bold and the second-best performances are emphasized by underline.
In Table 2, we can conclude that: (i) Merely considering content data (Feature) is not supportive
enough to learn node representations. Integrating rich content and relations in graph can learn better
representations. (ii) Leveraging unlabeled data to train graph encoder via contrastive learning can
enhance node representations (i.e., GCC and GraphCL). Note that, to compare with baseline models
fairly, most models (i.e., over-sampling, re-weighting, GraphSMOTE, GCC, GraphCL, and CM-GCL)
are based on the embeddings generated from a two-layer GCN. (iii) Some popular methods (i.e.,
over-sampling, re-weighting, and GraphSMOTE) against imbalanced data in supervised learning can
alleviate the influence of imbalance and further improve the performance. In addition, GraphSMOTE
has excellent performance when the class is too imbalanced (i.e., D0.01). (iv) CM-GCL has excellent
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performance in most scenarios when dealing with imbalanced node classification over four real-world
graphs. By comparing CM-GCL with GCL models (i.e., GCC and GraphCL), we also conclude that
CM-GCL can learn better representations for real-world graphs.

5.3 Ablation Study

Table 3: Comparison among model variants of
CM-GCL on D0.1.

Dataset Method F1 AUC

AMiner
(Node ⇔ Text)

CM-GCL 74.78 96.42
- Co-Modality 56.21 92.34
- Pruning 72.42 95.31
- Intra-Modality 72.51 95.23

Instagram
(Node ⇔ Image)

CM-GCL 51.24 89.14
- Co-Modality 42.62 81.45
- Pruning 48.53 87.18
- Intra-Modality 49.25 87.69

To show the effectiveness of different compo-
nents in CM-GCL, we conduct a set of ablation
experiments over subset D0.1 of AMiner (node-
text) and Instagram (node-image) datasets and
further analyze the contribution of each com-
ponent (i.e., co-modality GCL, pruning, and
intra-modality GCL) by removing it separately.
First, we remove co-modality GCL from CM-
GCL, which means we directly employ a two-
layer GCN to learn the node embedding for both
datasets. As shown in Table 3, we can conclude
that our model is effective as the performances
on both datasets drop significantly. In addition,
we remove network pruning and intra-modality
on CM-GCL. We find the performance on both datasets decreases obviously, validating the effective-
ness of network pruning and intra-modality in CM-GCL.

5.4 CM-GCL Uncovers More Minority Samples

Figure 2: The percentage of PIEs that belong to
minority classes under different training epochs.

We further investigate whether network pruning
is effective to discover minority samples dur-
ing contrastive learning. Based on the pruning
process introduced in Section 4.2.2, we measure
the distribution of PIEs mined by CM-GCL over
the different subsets (i.e., Dinit, D0.1, D0.01) of
Instagram (node-image) graph. Specifically, we
sample the top 1% training data that are most
easily affected by pruning, and further calculate
the percentages of PIEs that belong to the mi-
nority class. As shown in Figure 2, minority
samples in D0.1 and D0.01 are more easily to be
detected by CM-GCL along with the training
epochs. Notwithstanding the minority samples
in D0.01 are less likely to be detected at the beginning, it shows a general increasing trend along with
training epochs. Dinit keeps a relatively low percentage during the pre-training process. Hence, we
again demonstrate that network pruning in CM-GCL is able to mine minority samples and further
learn more balanced representations.

5.5 CM-GCL is Applicable to Mainstream Models in Different Modalities

Figure 3: Model size vs. F1 score over Dinit.

Our proposed CM-GCL aims to study vari-
ous real-world graphs: text-based graphs (i.e.,
AMiner, YelpChi, and GitHub), image-based
graphs (i.e., Instagram). To this end, CM-GCL
is designed as a plug-and-play tool that is ap-
plicable to most mainstream models in different
modalities. Hence, we adopt at least two mod-
els in each modality (i.e., graph: GCN, GAT,
and GraphSAGE (SAGE); text: BERT and Dis-
tilBERT (DBERT); image: ResNet50 (ResNet)
and Swin Transformer (ST)) in Figure 3 to show
the strong applicability and the effectiveness of
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CM-GCL. This figure shows the model size and the performance (F1) of encoder combinations
over the subset Dinit of GitHub (node-text) and Instagram (node-image) graphs. We find that all
combinations have excellent performances. Due to efficiency and resource concerns, We choose GCN
as the graph encoder, Swin Transformer as the image encoder, and DistilBERT as the text encoder for
our experiments. In addition, besides the above models in Figure 3, our framework is applicable to
other mainstream models.

5.6 Hyper-parameter Sensitivity

Figure 4: Hyper-parameters sensitivity analysis on
two datasets.

To explore the hyper-parameter sensitivity of
CM-GCL, we conduct four sets of experiments
w.r.t. the number R in Eq. 2 of positive node
pairs for each node in intra-modality GCL,
the trade-off hyper-parameter λ in Eq. 4 be-
tween inter-modality GCL and intra-modality
GCL, the percent e of pruning parameters for
co-modality GCL, and the hyper-parameters
(α,γ) in Lfocal (Eq. 5) for the downstream class-
imbalanced node classification. Note that, the
hyper-parameter sensitivity analysis about R
(Figure 4.(a)) and λ (Figure 4.(b)) are based
on AMiner and Instagram graphs with the initial
imbalance ratio (Dinit). The analysis in terms of
the class imbalance problem is conducted on the
dataset D0.1 of AMiner and Instagram graphs
(Figure 4.(c) and Figure 4.(d)) . Specifically, in
Figure 4.(a), we vary the value of R in the range
of {1, 3, 5, 7, 10, 15, 30} to generate positive samples for each node in intra-modality GCL. We can
find that the optimal value for AMiner graph and Instagram graph is 5 and 7, respectively, while
the performance drops obviously with too many positive pairs. That is to say, the intra-modality
GCL has inverse performance if the positive pairs are not qualified enough. Besides, in Figure 4.(b),
we vary the trade-off value λ during pre-training. By comparing the performance when λ = 0 and
λ = 0.5 (optimal value), we can demonstrate the effectiveness of inter-modality GCL in enhancing
the performance of CM-GCL. Meanwhile, by comparing the performance when λ = 0.5 and λ = 1.0,
we also validate the effectiveness of intra-modality GCL in CM-GCL. In addition, from Figure 4.(c),
we vary the pruning percent e in the range of {0.1, 0.2, 0.4, 0.6, 0.8, 0.9} to prune encoders’ network.
We conclude that network pruning is effective for CM-GCL, while the performance will drop if the
percent is large (i.e., 0.9). Lastly, we can conclude from Figure 4.(d) that the optimal value of (α,γ)
in Lfocal is (0.75,1.0) for AMiner graph and (0.25,1.0) for Instagram graph.

6 Conclusion

In this work, we develop a graph contrastive learning model (CM-GCL) to handle real-world
multi-modality graphs with the class imbalance problem. Specifically, we propose co-modality
GCL including inter-GCL and intra-GCL to automatically generate contrastive pairs based on the
rich content. In addition, we propose network pruning to uncover minority samples during co-
modality GCL pre-training. Our proposed CM-GCL is designed as a plug-and-play tool that is
applicable to most mainstream models in different modalities. Extensive experiments across real-
world graph datasets demonstrate that CM-GCL outperforms most state-of-the-art baselines for
multiple downstream tasks and can alleviate the data imbalance problem.
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