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Abstract

Multi-agent reinforcement learning (MARL) has witnessed significant progress
with the development of value function factorization methods. It allows optimizing
a joint action-value function through the maximization of factorized per-agent
utilities. In this paper, we show that in partially observable MARL problems, an
agent’s ordering over its own actions could impose concurrent constraints (across
different states) on the representable function class, causing significant estimation
errors during training. We tackle this limitation and propose PAC, a new framework
leveraging Assistive information generated from Counterfactual Predictions of
optimal joint action selection, which enable explicit assistance to value function
factorization through a novel counterfactual loss. A variational inference-based
information encoding method is developed to collect and encode the counterfactual
predictions from an estimated baseline. To enable decentralized execution, we
also derive factorized per-agent policies inspired by a maximum-entropy MARL
framework. We evaluate the proposed PAC on multi-agent predator-prey and a set
of StarCraft II micromanagement tasks. Empirical results demonstrate improved
results of PAC over state-of-the-art value-based and policy-based multi-agent
reinforcement learning algorithms on all benchmarks.

1 Introduction

Many real-world reinforcement learning (RL) problems, such as autonomous vehicle coordination [1]
and network packet delivery [2], often involve coordination among multiple entities and are naturally
formulated as multi-agent reinforcement learning (MARL). Factorization-based methods have greatly
progressed in dealing with the exponentially growing joint state-action space in MARL. Under the
notion of Centralized Training and Decentralized Execution (CTDE), algorithms like VDN [3] and
QMIX [4] learn a centralized joint action-value function Qtot through a monotonic factorization
into local per-agent value functions so that Qtot can be maximized as long as each per-agent value
function is maximized by local action selection. Even conditioned on joint state information, a
monotonic mixing network for Qtot is shown to restrict the representable function class. Despite
efforts to mitigate this, e.g., QTRAN [5] and WQMIX [6], in practice, they empirically perform
poorly in complex MARL environments with partial observability [7, 8, 9].

In this paper, we show that in partially observable MARL problems (as exemplified by a multi-state
matrix game), an agent’s ordering over its own actions could impose concurrent constraints on the
representable action-value Qtot in different states. This restriction causes large estimation errors of
Qtot during training. It cannot be addressed by existing methods, e.g., adding a state-value correction
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term (like QTRAN [5]) or introducing importance weights on dominant state-actions (like WQMIX
[6]). It aggravates the relative over-generalization problem [10] – when fully decomposed, per-agent
value functions only depend on partial observations and local actions. It renders optimal decentralized
policies unlearnable when the employed value function does not have enough representational ability.
Solving tasks that require significant coordination in partially observable problems remains a key
challenge.

The key insight of this paper is that an accurate factorization in partially observable MARL problems
requires improved representation of the value functions, which is crucial to supporting the learning of
optimal decentralized policies. We propose a novel architecture, denoted as PAC, for assisted value
factorization with counterfactual predictions. It leverages a counterfactual baseline that marginalizes
out an agent’s potential optimal action while keeping all other agents’ actions fixed. The counterfactual
predictions of potential optimal actions enable (i) training assistive information that is generated
using the variational inference method to expand the representational ability of value functions, and
(ii) directly optimizing the factorization of Qtot through a new counterfactual loss. We note that
in contrast to communication-based methods like NDQ [11], the use of assistive information in
PAC aims to directly improve per-agent value functions in factorization. Minimizing our proposed
counterfactual loss together with an information bottleneck loss ensures that such assistive information
is relevant, optimal, and succinct for value function factorization in PAC.

Relying on the accuracy of assisted factorization, we further decouple the decision-making of local
value function (through separate policy networks) from value function networks, which allows PAC
to maintain full CTDE despite the use of assistive information during training and also enables the
maximization of entropy to encourage exploration. The accuracy of assisted factorization makes
PAC outperform policy-based methods with factorization like DOP [12] and FOP [13]), especially
on difficult tasks that require more coordination among the agents since sub-optimality from one
agent’s policy might propagate and aggravate the training of other agents through the centralized
critic [12, 14]. Our key contributions are summarized as follows:

• We propose a novel method, PAC, the first framework for value function factorization by providing
variational-encoded counterfactual predictions as assistive information to facilitate per-agent value
function estimation.

• The counterfactual predictions can be efficiently computed from a feed-forward baseline Q∗

and based on a local search to facilitate direct optimization of Qtot factorization through a new
counterfactual loss.

• PAC decouples individual agents’ policy networks from value function networks and thus maintains
fully decentralized execution while enjoying the benefits of assisted value function factorization. It
also leads to an entropy maximization MARL for more effective exploration.

• We demonstrate the effectiveness of PAC and show that PAC significantly outperforms both state-
of-the-art value-based and policy-based multi-agent reinforcement learning algorithms on the
StarCraft II micromanagement challenge in terms of better performance and faster convergence.

2 Model and Background

Model: Consider a fully cooperative multi-agent task as decentralized partially observable Markov
decision process (DEC-POMDP) [15], given by a tuple G = ⟨I, S, U, P, r, Z,O, n, γ⟩, where I≡
{1, 2, · · · , n} is the finite set of agents. The state is given as s ∈ S, from which each agent draws its
own observation from the observation function oi ∈ O(s, i) : S ×A→O. At each timestamp t, each
agent i choose an action ui ∈ U , composing a joint action selection u. A shared reward is then given
as r=R(s,a) : S ×U→R, with the next state of each agent is s′ with transition probability function
P (s′|s,u) : S ×U → [0, 1]. Each agent has an action-observation history τi ∈ T ≡ (O×U)∗ from
its limited local observations. Then the overall objective is to find a joint policy π = ⟨π1, ..., πn⟩
which corresponds to the joint action-value function Q(st,ut) = E[Rt|st,ut], that is used to
maximize the joint policy function V (τ ,u) = Es0:∞,u0:∞ [

∑∞
t=0 γ

trt|s0 = s,u0 = u,π] , and
γ ∈ [0, 1) is the discount factor. Quantities in bold denote a joint quantities across all agents, and
quantity with super script i denote a quantity specifically belong to agent i.

Value Decomposition: Following the paradigm of CTDE, VDN [3] and QMIX [4] are popu-
lar and representative methods for value function decomposition which learn a centralized action
value Qtot through value decomposition assuming its additivity and monotonicity. In VDN, per-
agent sum of the local value is used to calculate the action value Qtot =

∑n
a=1Qa(τa, ua). In
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QMIX, a monotonic mixing function of each agents’ local utilities is proposed as Qtot(τ ,u, s; θ) =

fθ (s, [Q1(τ1, a1), ..., Qn(τn, an)]), where ∂Qtot(τ ,u)
∂Qi(τi,ui)

> 0,∀i ∈ N . The monotonic mixing function
is able to ensure the global optimal Qtot yields the same result as the set of individual optimal Qi,
where fθ is approximated by the monotonic mixing network parameterized by θ. The weights are
generated by a separate hyper-network that conditions on the global state, where its monotonicity
is ensured by performing absolution function on generated parameters for non-negative mixing
weights. Then QMIX is trained in a way like DQN [3] with goal to minimise the squared TD
error on minibatch of b samples from the replay buffer as

∑b
i=1(Q

tot(τ ,u, s; θ) − ytot)2 , where
ytot = r + γmaxu′ Qtot(τ ′,u′, s′; θ′), r is the global reward and θ′ is the parameters of the target
network whose parameters are periodically copied from θ for training stabilization.

3 Existing Limitations in Partially Observable Multi-state Problems

Figure 1: In partially observable multi-state games, Qtot is limited to a restricted function class
imposing concurrent inequality constraints on Qtot in different states. It causes large factorization
error and thus erroneous computation of argmax (Qtot). PAC successfully addresses this problem
by leveraging assistive information trained using counterfactual predictions, with the direct goal of
achieving better value function factorization.

The limitations of monotonic value function factorization have been identified via single-state matrix
games, which inspired new algorithms like QTRAN [5] and Weighted-QMIX [6]. In this paper,
we show in multi-state problems with partial observability, that one agent’s ordering over its own
actions could impose concurrent inequality constraints on the joint action-value Qtot in different
states, resulting in restrictive function representations of Qtot with large estimate error.

Consider a Markov decision process (MDP) consisting of 2 states with 0.5 transition probabilities
between them and two payoff matrices shown in Figure 1(a). Suppose that agent 1 has the same
partial observation o1 in states s(1) and s(2). Then, its per-agent value function q1(·, τ1) computed
from partial observation o1 are also the same in both states. Due to the monotonicity of the mixing
network (even though it is provided with complete joint state information), for any u1 and u′1
with ordering q1(u1, τ1) ≥ q1(u

′
1, τ1) without loss of generality, we must simultaneously have

Qtot(u1, u2, s
(1)) ≥ Qtot(u′1, u2, s(1)) and Qtot(u1, u2, s(2)) ≥ Qtot(u′1, u2, s(2)) for any action u2

of agent 2 in both states. Representing Qtot on this restricted function class results in significant error
in QMIX as shown in Figure 1(b). Although Weighted-QMIX introduces an importance weighting on
the dominant state-actions of this game, it only improves the approximation in state 1 and yet causes
even higher error in state 2 (in Figure 1(c)). This is exactly because of the inequality restrictions
simultaneously imposed on both states, limiting the representational ability of the value functions in
partially observable problems.

Clearly, additional information is needed to facilitate successful factorization in these partially
observable multi-state problems. It is also worth noticing that even with agent-wise communications,
NDQ [11] also fails the task since the communication messages and related loss functions are not
designed to drive better factorization. It underscores the importance of making effective use of the
right information for successful factorization. We put the results from other methods in Appendix A.3.
Our proposed PAC (in Figure 1(d)) addresses this issue by leveraging assistive information trained by
a novel notion of counterfactual predictions. More precisely, counterfactual predictions of potentially
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optimal agent actions are readily computed from an unrestricted, feed-forward baseline Q∗. Training
per-agent value functions using a new counterfactual assistance loss leads to substantially improved
estimate Qtot and correct (argmaxQtot) in different states. We compare PAC with a number of
state-of-the-art value-based and policy-based methods with function factorizations and demonstrate
its performance in challenging partially observable tasks that require significant coordination.

4 Methods

To overcome the limitations of existing Value Decomposition methods discussed in Sec. 3, in this
section, we introduce the idea of assisted optimal joint policy factorization and propose such a method
under the multi-agent soft actor-critic framework.

Framework overview. Fig. 2 shows the architecture of the learning framework. There are three main
components in PAC : (1) a weighted Qtot utilizing per-agent local critics qi(ui, τi,mi), where mi

serves as assistive information aiding value factorization, (2) an unrestricted joint action estimator Q̂∗,
which serves as a baseline estimator of Q∗ and allows the computation of counterfactual predictions
from a quick local search, and (3) an assisted information generating module, which is able to utilize
the deep variational bottleneck method to encode the counterfactual optimal joint action selection. In
addition to TD errors for Qtot and Q∗, the PAC system is trained using three more loss functions:
counterfactual assistance loss LCA for optimized value function factorization, information bottleneck
loss LLB for succinct and effective assistive information generation, and local policy loss LLP for
training factorized agent policy with entropy maximization.

Figure 2: The overall architecture of PAC. With the help of assistive information, m−i
t , counterfactual

predictions û∗t – which are obtained through an approximation of optimal Q∗ and an efficient local
search – are used to directly train the per-agent value functions qit(·, τ it ,m−i

t ) with respect to a new
counterfactual assistance loss. It results in significantly improved value function factorization for
partially-observable MARL problems.

Generating Counterfactual Predictions One of the key insights underlying this method is that
the optimal joint action selection u∗ from the centralized Q̂∗ can be used as a direct information
assisting Qtot explicitly. Although the complexity of computing u∗ = argmaxuE[Q∗(s, τ, ·)] is
impractical as it grows in O(|U |n), however, it is possible to compute a local estimation of û∗ as
û∗i = argmax Q̂∗(s, τ ,u−i, ·), which reduces the computational complexity from exponential to
linear level of O(n · |U |).
However, even with u∗ provided, in what manner it can benefit value function factorization is not
researched. Directly feeding this to the policy or critic network is counterproductive as the neural
network can easily learn that this specific input is the key to reducing the TD-error while it is not
helpful to explore or train the local policy and the training process might stall. Using an extra loss
function, e.g. cross-entropy, as an effort to train the network to make decisions u that are close to u∗
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sounds promising, however, it only quantifies the error without actually guiding the training since it
may trap the policy in local sub-optimum and further limits the exploration process.

Inspired by difference rewards [16] and counterfactual baseline [17] for policy gradients, we propose
a counterfactual assistance loss. For each agent a we can use an advantage function that compares the
û∗ from Q∗ and u from Qtot to a counterfactual baseline that marginalizes out the agent’s potential
optimal action which relegates û∗a, while keeping all other agents’ action u−a fixed, a counterfactual
assistance loss is proposed as:

LCA(u, π) =
∑
a

logπ(uai |τai )
∑

ui∈[u−u∗
i ]

[q(û∗i , oi,mi)− π(ui, oi)q(ui, oi,mi)] (1)

This looks similar to calculating the counterfactual advantage as used in COMA, however, in COMA
such counterfactual advantage is calculated for centralized critic which is computationally expensive
and unstable which limits its performance, while our counterfactual assistance loss is providing direct
guidance in training the policy network towards the direction of u∗i . We later show in ablation studies
that this loss is contributing to the performance improvements.

Generating Assistive Information Additionally, we show û∗ can be encoded and then used as input
for local critics qi(ui, τi,mi), as assistive information aiding value factorization. As previous works
suggests [11, 18], we consider the information bottleneck method [19], with the Markov chain o-m-û∗

during encoding. To be specific, we regard the internal representation of the intermediate layer as
stochastic encoding mi of input source oi, with the goal to learn an encoding that is maximally
informative about the result û∗i . Formally, the objective for each agent i can be written as:

JIB (θm) =

n∑
j=1

[
Iθm

(
û∗j ;mi|oj ,m−j

)
− βIθm (mi; oi)

]
(2)

mi is an instance of random variable of assitive information that is drawn from multivariate Gaussian
distribution N(fm(oi; θm), I)), θm is the parameters of encoder fm and I is an identity matrix,
a Lagrange multiplier parameter β ≥ 0 is used to control the trade-off between the encoding the
necessary information and reaching maximal compression. Yet this does not lead to a learnable
model, since this mutual information I is intractable. With the help of variational approximation,
specifically, deep variational information bottleneck [20], we are able to parameterize this model
using a neural network. We then derive and optimize a variational lower bound of such objective as

LIB (θm) = Eoi∼D,mj∼fm [−H[p(û∗j |o), qψ(û∗j |oj ,m)] + βDKL(p(mi|oi)∥qϕ(mi))] (3)

whereH is the entropy operator, DKL denotes Kullback-Leibler divergence operator and qϕ(mi) is a
variational posterior estimator of p(mi) with parameters ϕ. Using the loss above a message encoder
fm with parameters θm is trained to generate information mi ∼N(fm(oi; θm), I)) that is useful for
decision making. Compared to [11, 18] that encodes the general state information and other agents’
action selections as communication messages, which can not reduce the uncertainties in action-value
functions; using the encoded û∗ as assistance information can provide an explicit direction toward
better individual value estimation and thus a joint value factorization. Detailed derivations and proofs
can be found in Appendix A.1.

Factorized Policy Iteration with Entropy Maximization We leverage factorized policies to maintain
decentralized execution in PAC despite the use of assistive information for training. Recent works
have shown that Boltzmann exploration policy iteration is guaranteed to improve the policy and
converge to optimal with unlimited iterations and full policy evaluation[21], within MARL domain
it can be defined as: J(π) =

∑
t E [r (st,ut) + αH (π (·|st))] where α denotes the temperature

parameter that is used to adjust the balance between maximizing the entropy for a better exploration
and maximizing the expected reward. We present one possible method of expanding this to MARL
problems, to achieve decentralized policies in PAC and to encourage efficient exploration.

Several recent works are proposed to expand actor-critic or soft-actor-critic in to factorization based
MARL methods [13, 12, 14], they all follow a centralized critic with decentralized actors (CCDA)
framework. In this work, we train the actors in a centralized but factorized way. Unlike [14] that
reuses the local utility network for both actor or critic or [13] which consists of a soft V-network and
a soft Q-network for local policy net, we use a separate network as policy networks and propose a
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centralized but factorized soft policy iteration with factorized Maximum-Entropy trained as:
LLP (π) = ED [α logπ (ut|τ t)−Qπtot (st, τt,ut,mt)]

= −qmix
(
st,Eπi

[
qi
(
τ it , u

i
t,m

i
t

)
− αi log πi

(
uit|τ it

)]) (4)

where qmix is the monotonic value decomposition network with ui ∼ πi(oi) and D is the replay
buffer used to sample training data.

As noted in previous research, choosing the temperature term in soft-actor-critic is non-trivial as it can
vary in an unpredictable way when the policy becomes better as the training continues [13]. Instead
of finding each individual temperature using approximation functions, since we use a centralized but
factored policy, we consider one global temperature that is automatically adjusted by considering it
as a constrained optimization problem as a parameter that is trained independently with loss:

J (α) = Eut∼πt [−αi log πi(ut|st)−αH0], (5)
where H0 is a fixed entropy term so the temperature term α is generally decreasing such that the
degree of exploration is reduced as the training proceeds[21].

Training Process So far we have discussed the components of our method, to formulate the new
scalable RL algorithm, we now explain the implementation and the centralized training process for
deep RL under DEC-POMDP. In the decentralized execution phase, only the policy (agent) network
(marked as local policy in Fig.1 ) is enabled so that full CTDE is maintained.

Despite that monotonicity constraints limitations to the expressive power of the mixing network,
recent research [14, 22] demonstrated that the IGM principle [5] as equivalent to joint greed actions
and individual greedy actions is crucial, as it greatly promotes the sample efficiency; meanwhile most
designs with only one unrestricted joint action-value function show poor empirical performance[5, 23],
and thus we follow the design of WQMIX and keep both Qtot network and Q̂∗ network.

The Q̂∗ architecture (Green part in Fig. 1) is used as the estimator for Q∗ from unrestricted functions,
where its mixing network is a feed-forward network that takes its local utilities. While theQtot module
(blue part in Fig.1) looks similar to QMIX and many other factorized methods, there is a significant
difference, for its local estimator is provided with assistive information and the local value feeding
to the network q(u, τi,mi) is selected based on local policy, rather than taking argmax qi(·, τi,mi).
Then Qtot and Q∗ are trained with the objective to reduce their respective loss as:

LQ̂∗(θ) =
∑
i

(Q̂∗(s, τ , û)− yi)2. (6)

LQtot
(θ) =

∑
i

w(s,u)(Qtot(s, τ ,u,m)− yi)2 (7)

where ûi = argmax qi(·, τi,mi), yi = r+γQ̂∗(s′, τ ′, argmaxû′ Qtot(τ
′, û′, s′;θ)) with θ− being

the parameters of the target network that are periodically updated to stabilize the training. ui ∼ πi(oi)
and w(s,u) is the weighting function1 to ensure the weighted projection can recover the correct
maximal joint action value function for any Q[6]. Note the action selection for loss function in our
method is different from the original design of QMIX and WQMIX. Apart from the independently
updated entropy term α, all other components (including the message encoder) are trained in an
end-to-end manner with the objective to minimize the weighted sum of all losses proposed above,
including the counterfactual loss and information bottleneck loss as

L(θ) = LLP + LCA + LIB + LQ̂∗ + LQtot (8)

Detailed derivations can be found in Appendix A.1

5 Experiments

In this section, we compare the results with several state-of-the-art MARL methods on Predator-Prey
[24] and selected StarCraft Multi-Agent Challenge (SMAC) [8] scenarios as benchmarks. More
details on implementation, experiment settings, and hyperparameters are included in Appendix A.3.
Code is available at github.com/hanhanAnderson/PAC-MARL.

1In this work we follow the weighting function design of OW-QMIX in WQMIX [6], as w = 1 if
Qtot(s, τ , u,m)− yi <0, w = α otherwise.
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5.1 Cooperative Predator-Prey

We first consider Predator-Prey [24], which is a partially-observable multi-agent environment that
involves 8 agents in cooperation as predators to catch 8 built-in-AI controlled units as prey on a
10x10 grid. Only when two or more predator agents surround and capture the same prey at the same
time, it is considered a successful capture. We consider two settings: a simpler task without failed
capture punishment and a harder task with a punishment reward of -2 when a capture attempt fails.
This is to test the baseline algorithms on relative over-generalization and monotonicity constraint
limitations. More details about this environment can be found in Appendix A.3.2.
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Figure 3: Results on Predator-Prey benchmark

As shown in Fig. 3a, for the easy task value-based method like QMIX, WQMIX can learn a policy
that reaches the highest reward. However, in this environment, we see the performance gap between
state-of-the-art value-based and policy-based methods since policy-based methods might suffer
from relative over-generalization problem [9, 25, 26] or making a poor trade-off in joint policy
representation. Our work as an actor-critic method can match the highest performance, although it
takes a slightly longer time to converge, potentially due to the training of the variational inference
models.

On the other hand, for the harder task that requires significant coordination among agents as shown in
Fig. 3b, increased exploration and joint representation capabilities are required to finish the task which
makes WQMIX and PAC the only two methods capable of learning a usable policy. Intuitively, when
joint actions from uncoordinated decision-making occur more than coordinated ones, the penalty
term will then dominate the average return from the environment and further the value estimation
of each agent’s local utility. We attribute these performance improvements to the use of entropy
maximization which promotes more exploration attempts and the higher coordination abilities from
assistive information.

5.2 SMAC

We then consider the SMAC 2 as the second benchmark, wherein each agent controls a unit cooperat-
ing with other friendly units in combat against the game’s built-in AI-controlled units. The combat
can be symmetric (same units for both parties) or asymmetric. Since it is shown that most state-of-
the-art algorithms perform really well on easy and medium maps, which limits the demonstration
of clear comparison and the potential improvements, we begin our test in six maps including two
hard maps (5m_vs_6m, 3s_vs_5z) and four super-hard maps (MMM2, 27m_vs_30m, 6h_vs_8z,
corridor). Selected maps are classified as hard or super hard due to (i) very large action space like
27m-vs-30m, (ii) requiring advanced exploration strategies like corridor (iii) requiring a higher level
of coordination between the agents like 6h_vs_8z etc. We use the same default environment setting
for all benchmark algorithms throughout the test. Each baseline algorithm is trained with 4 random
seeds and evaluated every 10k training steps with 32 testing episodes. Details of the environment
setup and hyper-parameter settings are listed in Appendix A.3.3. We choose state-of-the-art MARL
algorithms as baseline including decomposed actor critic method: FOP [13] and DOP [12], decom-
posed policy gradient method: VDAC [14], decomposed value based method: QMIX [4], QPLEX [9]

2In this paper all SMAC experiments are carried out utilizing the latest SC2.4.10, performance is always
not comparable across versions. We implemented our algorithm based on an open-sourced codebase [22] and
acquired the results of QMIX and WQMIX from it.
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0 25 50 75 100 125 150 175 200
T (10k)

0.0

0.2

0.4

0.6

0.8

te
st

 w
in

 ra
te

 %

PAC
QMIX
NDQ
WQMIX
VDAC
FOP
DOP
QPLEX

(c) MMM2 (super hard)

0 25 50 75 100 125 150 175 200
T (10k)

0.0

0.2

0.4

0.6

0.8

te
st

 w
in

 ra
te

 %

PAC
QMIX
NDQ
WQMIX
VDAC
FOP
DOP
QPLEX

(d) 27m_vs_30m (super hard)

0 100 200 300 400 500
T (10k)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 w
in

 ra
te

 %

PAC
QMIX
NDQ
WQMIX
VDAC
FOP
DOP
QPLEX

(e) 6h_vs_8z (super hard)

0 100 200 300 400 500
T (10k)

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 w
in

 ra
te

 %

PAC
QMIX
NDQ
WQMIX
VDAC
FOP
DOP
QPLEX

(f) corridor (super hard)

Figure 4: Results on SMAC benchmark

and WQMIX [6] 3 and a communication enabled value-based method: NDQ [11]. Results are shown
in Fig.4. Overall, our method achieves the highest win rate compared to the baseline algorithms
in terms of higher performance or faster convergence, especially on those maps that require more
exploration and agents’ coordination. As previous research demonstrated, there is a gap between
SOTA value-based method and policy gradient methods, as the performance for most of them is
limited on those maps that require extensive exploration techniques. Specifically, on 3s_vs_5z
and 6h_vs_8z, PAC is able to train a usable policy that outperforms all baseline algorithms. On
corridor PAC and the selected two value-based methods are able to learn a model, with our method
converging faster with slightly better performance, while policy-based methods suffer from this map
as it requires more exploration to find the specific trick in winning this challenging scenario. Finally
on relatively easier maps, although most baseline algorithms hold a relatively close performance, the
value-based and policy-based method performance gap still exists. Although FOP recently claimed to
be the first multi-agent actor-critic method that outperforms state-of-the-art value-based methods on
SMAC, we empirically found its limits when the chosen environment is substantially complicated
and harder. We especially observe that our method as an actor-critic method has over-performed
SOTA value-based MARL methods and brought significant improvements for actor-critic MARL.

5.3 Ablation Studies

0 25 50 75 100 125 150 175 200
T (10k)

0.0

0.2

0.4

0.6

0.8

W
in

 R
at

e 
%

PAC
PAC_Fixed_
PAC_no_info
PAC_CE_loss
PAC_disabled
PAC_No_Q*

Figure 5: Ablations results comparing
PAC and its hyperparameter-tuned ab-
lated versions on SMAC map MMM2

We conduct ablation experiments to validate the effective-
ness and contribution of each core component introduced
in PAC on MMM2 scenario in SMAC. Namely, in Fig.5
we consider verifying the effect of (1) optimization of
temperature term in policy J (α) by fixing α = 0.5 as
PAC_fixedα, (2) assisted information loss LIB by disable
it as PAC_no_info, (3) counterfactual assistance loss LCA
by replace it with a simple cross-entropy loss as PAC_CE_
Loss, (4) disable both LIB and LCA while substituting all
û∗ with û as PAC_disabled and (5) further remove the Q∗

structure from PAC_disabled as PAC_No_Q∗. In this way,
overall we can observe PAC outperforms ablated versions,
especially by a large margin compared to PAC_disabled
which indicates that a general encoding of the state infor-

3In this section we refer WQMIX to ow-qmix as it shows a general better performance than cw-qmix.
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mation without explicit direction for training is not helpful
and may also harm the training.Although PAC_CE_ Loss later acquires competitive results, it takes
a longer time, potentially due to the cross-entropy loss in this case trapped the training in a local
sub-optimum. By fixing the entropy term α at 0.5 seems to be a balance point for maximizing the
reward while promoting the exploration, yet it brings a performance drop, indicating the importance
of updating the entropy term with its loss previously shown. PAC_No_Q∗ suffers from the most
significant performance drop after most core components are removed from the original design. Such
results validate how each component is crucial for achieving performance through experiments.

5.4 Limitations

Although the empirical results of PAC demonstrated improvements over both SOTA value-based
and policy-based methods, at this stage, no strict convergence guarantee to the optimum is provided
due to the scope of research. We also observe a higher variance in terms of the performance of PAC
than value-based methods, this might be because of the entropy-maximization penalty. Also, we
follow the tradition of parameter sharing among the agents, thus the role assignment of formulating
distinctive behaving agents, which is another important topic was not considered.

6 Related Works

Cooperative multi-agent decision-making often suffers from exponential joint state and action spaces.
Multiple approaches including independent Q-learning and mean-field games have been considered
in the literature, while they do not perform well in challenging tasks or require homogeneous agents
[14]. A paradigm of centralized training and decentralized execution (CTDE) has been proposed for
scalable decision-making [27]. QPLEX [9] takes a duplex dueling network architecture to factorize
the joint value function. Some of the key CTDE approaches include value function decomposition
and multi-agent policy gradient methods.

Policy Gradient methods are considered to have more stable convergence compared to value-based
methods [28, 29, 13] and can be extended to continuous action problems easily. A representative
multi-agent policy gradient method is COMA [17], which utilizes a centralized critic module for
estimating the counterfactual advantage of an individual agent. DOP [12] uses factorized policy
gradients with architecture similar to Qatten[30]. However, as pointed out in [31, 23], multi-agent
policy-based methods like MADDPG[32] are still outperformed by value-based methods StarCraft
multi-agent challenge (SMAC) [8].

Decomposed actor-critic methods, which combine value function decomposition and policy gradient
methods with the use of decomposed critics rather than centralized critics, are introduced to guide
policy gradients. VDAC [14] combined the structure of actor-critic and QMIX for the joint state-value
function estimation, while DOP [33] directly uses a network similar to Qatten [30] for policy gradients
with off-policy tree backup and on-policy TD. The authors of [33] pointed out that decomposed
critics are limited by restricted expressive capability and thus cannot guarantee the convergence of
global optima; even though the individual policies may converge to local optima [13]. Extensions of
the monotonic mixing function have also been considered, e.g., QTRAN [5] and weighted QMIX [6].
But solving tasks that require significant coordination remains a key challenge.

Another related topic is representational learning in reinforcement learning. A VAE-based forward
model is proposed in [34] to learn the state representations in the environment. [35] considers a model
to learn Gaussian embedding representations of different tasks during meta-testing. The authors in
[36] proposed a recurrent VAE model which encodes the observation and action history and learns
a variational distribution of the task. NDQ [11] encodes the state information as communication
messages between agents. [37] use an inference model to represent the decision-making of the
opponents. RODE [38] uses an action encoder to learn the action representations in restricting the
role action spaces for a reduced policy search space. MAR [39] learns the metarepresentation for
generalization problems. Unlike previous work, our method focuses on learning information from
counterfactual predictions that are explicitly assistive for local estimation and efficient factorization.
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7 Conclusions

In this paper, we propose PAC, a multi-agent framework utilizing extra state information as assistance
for a better value function factorization, under a centralized but factored soft-actor critic setting.
With the newly proposed counterfactual optimal joint action selection used for training and encoding
assistance information, empirically we show our method not only matches or outperforms both
state-of-the-art policy-based and value-based MARL algorithms on selected benchmarks but also
bridges the gap between the two. Future work will also explore more effective ways to formulate
and utilize extra state information to accelerate the training and tackle tasks in more complicated
environments.
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