
A Appendix

A.1 More Details on Preliminaries

A.1.1 Fixed-Point Encoding

Same as other neural networks, Transformer-based models use floating-point arithmetic, however
cryptographic protocols operate on integers. Therefore, we require a float-to-integer conversion
[46, 30, 17] to represent a floating-point number x ∈ Q into the ring Z2ℓ . Specifically, we first
encode it as a fixed-point number, which is parametrized by a scale parameter s that determines
the fractional precision. Then, we embed the fixed-point representation into the ring with 2’s
complement representation. The formulation is a = ⌊2s × x⌋ ∈ Z2ℓ if x is a non-negative number,
and a = 2ℓ − ⌊2s × |x|⌋ ∈ Z2ℓ if x is a negative number, where s is the length of the (binary)
fractional bits and ℓ is the bitwidth of the secret sharing ring. Unless otherwise stated, similar as prior
works [14], we set the bitwidth as 37 and the scale as 12 in the fixed-point encoding. Because of the
use of the above fixed-point encoding, after multiplication, the scale of the output is 2s. Therefore,
a truncation operation is required to reduce scale. We use the ΠTrunc protocol proposed in [13] and
improved by [17], which leads to faithful implementation of fixed-point arithmetic. For simplicity, we
omit this operation in our protocol description. The overhead of truncation in Iron will be reported
in Table 4.

A.1.2 Formal Description of the Threat Model

Same as prior private inference works [13, 14, 17], the security of Iron is provably provided
in the simulation paradigm against static honest-but-curious probabilistic polynomial-time (PPT)
adversaries. Namely, a PPT adversary A passively corrupts either the server or the client at the
beginning of the protocol and honestly follows the protocol specification. In the simulation paradigm,
two worlds are defined: a real world where the server and the client perform the protocol according
to the specification in the presence of A, and an ideal world where the parties send their inputs to a
trusted dealer (also called functionality) that executes the evaluation faithfully. The executions in both
worlds are coordinated by the environment Env, which chooses the inputs to the parties and plays the
role of a distinguisher between the real and ideal executions. It is required that for any adversary, the
real-world distribution is computationally indistinguishable to the ideal-world distribution. Some
of our protocols invoke sub-protocols and we describe them using the hybrid model. This is similar
to a real execution, except that sub-protocols are replaced by the invocations of the corresponding
functionality instances. We recap the definition of a private inference protocol in [38] [14] as below.

Definition A.1. A protocol ΠPI between the server having as input a model M with weights w
and the client having as input a sample x is a private inference protocol against honest-but-curious
adversaries if it satisfies the following guarantees: 1) Correctness: on every model weights w and
every input sample x, the output of the client at the end of the protocol is the correct inference
M(w, x). 2) Security: For a corrupted client, there exists an efficient simulator SimC such that
ViewPI

C is computationally indistinguishable SimC(output), where ViewPI
C is the view of the client in

the execution of ΠPI and output denotes the output of the inference. Similarly, for a corrupted server,
there exists an efficient simulator SimS such that ViewPI

S is computationally indistinguishable SimS .

Notice that the honest-but-curious security proof of Iron according to the above definition will follow
trivially from sequential composibility of individual sub-protocols [47, 13, 30]. Hence, we require to
provide a security proof for our matrix multiplication and non-linear protocols. We refer to Section
A.2.3 and A.3.4 for the sub-protocols’ security analysis.

A.1.3 Multi-Head Attention

Instead of performing a single attention function, existing Transformer-based models [1, 2] follow a
multi-head attention variant, which can be represented as

MultiHeadAtten = Concat (Attention(XQ,j ,XK,j ,XV,j), j ∈ [H])WO, (4)

where H is the number of heads, and XQ,j = XQWQ,j , XK,j = XKWK,j , XV,j = XV WV,j

for j ∈ [H]. The main intuition is that multi-head attention allows the model to jointly attend to
information from different representation subspaces at different positions [1].

15

A.2 More Details on the Matrix Multiplication Protocol

A.2.1 Correction Proof of the Matrix Multiplication Protocol

Proof. For each i ∈ [m] and j ∈ [k], we write ϵi,j = i · n · k + (j + 1) · n− 1 for simplicity. Based
on the description of Section 4.1, for ϵi,j ≥ nk, ŷ[ϵi,j] = 0 holds. Therefore, given the definition of
Equation 1, we have ẑ [ϵi,j] =

∑
0≤µ<n x̂[i·n·k+(n−1)−µ]ŷ[j ·n+µ] =

∑
0≤µ<n X[i, µ]Y[µ, j],

which is exactly Z[i][j].

A.2.2 Optimal Parameters Selection in the Matrix Multiplication Protocol

As shown in Section 4.1, the matrix multiplication Xm×n ·Yn×k requires the communication of
m
mw

(n
nw

+ k
kw

) ciphertexts. To minimize the ciphertext communication cost, we formalize the selection
of the parameters mw, nw, kw as an optimization problem, i.e., min{mw,nw,kw}

m
mw

(n
nw

+ k
kw

), s.t.,
mwnwkw ≤ N , where m,n, k,N are constants. Given the difficulty of solving the above multivariate
optimization, we figure out a sub-optimal solution. To this end, we first fix mw = m5, and hence
the constraint is transformed to nwkw ≤ N

m . Correspondingly, the new optimization problem is
min{nw,kw}

n
nw

+ k
kw

, s.t., nwkw ≤ N
m . Then, the following holds:

n

nw
+

k

kw
= 1/

nw

n
+ 1/

kw
k

≥ 2
√
nk√

nwkw
≥ 2

√
mnk√
N

, (5)

where the first inequality is due to 1
a + 1

b ≥ 2√
ab

, and the second inequality comes from nwkw ≤ N
m .

As a result, assuming mw = m, the optimal communication size is 2
√
mnk√
N

ciphertexts. Notably, it
may not have the optimal analytical solution, because the variables must be discrete positive integers,
rather than real number. To achieve minimal communication in our implementation, like Cheetah
[14], we use the exhaustive testing approach on all the results satisfying the constraint to find the
optimal matrix partitioning strategy. Note that this is quite fast due to the small search range.

Communication comparison with Cheetah. As shown in Section 3.1 of [14], the Cheetah’s
communication overhead is m(n

nw
+ k

kw
) ciphertexts with the constraint nwkw ≤ N . By using the

similar analysis as above, we can obtain its optimal solution, i.e., 2m
√
nk√

N
. Therefore, we obtain a

√
m× communication improvement in an ideal situation (i.e., the optimal analytical integer solution

exists).

A.2.3 Security Proof of the Matrix Multiplication Protocol

Theorem A.2. In presence of an honest-but-curious adversary, the protocol ΠMatMul in Algorithm 1
realizes the matrix multiplication functionality, in which P0 and P1 take as inputs the matrices X
and Y, and learn the secret shares ⟨Z⟩0 and ⟨Z⟩1, respectively, such that Z = XY.

Proof. The correctness of Theorem A.2 is directly derived from Theorem 4.1. We below focus on
the protocol’s security when the server or the client is corrupted. Our security proof follows the
simulation paradigm defined in Section A.1.2. In this paradigm we need show that the real-world
distribution is computationally indistinguishable to the simulated distribution by the simulator Sim in
the ideal world.

Proof of indistinguishability with the corrupted server. The server’s view of ViewMatMul
S consists

of ciphertexts CTβ,γ . The simulator SimS for this view can be constructed as follows:

Given the access to public parameters, SimS outputs ciphertexts C̃Tβ,γ = Enc(0) to the server.

The security against the corrupted server is directly reduced to the semantic security of the underlying
homomorphic encryption scheme. Thus we have that the simulated view ViewMatMul

S in the ideal
world is computationally indistinguishable from the real-world distribution of the protocol.

Proof of indistinguishability with corrupted clients. The client’s view of ViewMatMul
C consists of

ciphertexts CT′
α,γ , and the decryption of these ciphertexts, i.e., ⟨Z⟩1. The simulator SimC for this

view can be constructed as follows:
5In our setting, m is always less than N .

16

On receiving the ciphertexts CTα,γ from the client, SimC samples uniformly random polynomials

r̂α,γ ∈ AN,2ℓ , and computes C̃T
′
α,γ = Enc(r̂α,γ). Given the access to the output, SimC outputs

C̃T
′
α,γ to the client.

Similarly, the ciphertexts C̃T
′
α,γ are computationally indistinguishable from C̃Tα,γ due to the

semantic security. Besides, the values of ⟨Z⟩1 distribute uniformly in Z2ℓ , which is exactly the
same distribution of values decoded from r̂α,γ . Thus we have that ViewMatMul

C is computationally
indistinguishable from the real-world distribution of the protocol.

A.3 More Details on Non-linear Protocols

A.3.1 Tanh

Algorithm 5 Secure Tanh Protocol

Input: P0, P1 hold ⟨x⟩0 ∈ Z2ℓ , ⟨x⟩1 ∈ Z2ℓ , respectively.
Output: P0, P1 get ⟨y⟩0 ∈ Z2ℓ , ⟨y⟩1 ∈ Z2ℓ , respectively, where y = Tanh(x).
1: P0, P1 parse ⟨x⟩0 = msb0∥a0 and ⟨x⟩1 = msb1∥a1, and invoke ΠCMP to learn ⟨carry⟩Bb , where

carry = 1{a0 + a1 > 2ℓ−1 − 1}, and the inputs are 2ℓ−1 − a0 − 1 and a1 from P0 and P1,
respectively. For b ∈ {0, 1}, Pb outputs ⟨MSB(x)⟩Bb = ⟨carry⟩Bb ⊕ msbb.

2: P0, P1 invoke ΠMulOT with inputs ⟨2x⟩ and ⟨MSB(x)⟩B , and set outputs as ⟨x̄⟩, where x̄ =
2x · MSB(x)− x that is always negative with the constraint of |x̄| = |x|.

3: P0, P1 invoke ΠnExp with negative inputs ⟨2x̄⟩ and learn ⟨e2x̄⟩.
4: P0, P1 invoke ΠRecip with inputs ⟨e2x̄⟩, and learns ⟨ȳ⟩ where ȳ = 1− 2

e2x̄+1 .
5: P0, P1 invoke an instance of ΠMulOT on input ⟨MSB(x)⟩B and ⟨ȳ⟩, and learn ⟨y⟩, where y =

ȳ + MSB(x) · (−2ȳ).

We present an optimized protocol for Tanh in Algorithm 5, which builds over the protocol used in
[17]. Our optimization relies on the observation: when evaluating on x, the sign of Tanh(x) is the
same as that of x. Compared with the protocol in [17], our alternative saves one invocation of the
reciprocal protocol ΠRecip and multiplication protocol ΠMulOT .

A.3.2 Underlying Protocols from [17, 13]

We outline the underlying protocols from existing works [17, 13], and the detailed implementation
could be found in the corresponding papers.

• Multiplication (MulOT): The OT-based multiplication protocol ΠMulOT takes as input ⟨x⟩ ∈
{0, 1}ℓ and ⟨y⟩ ∈ {0, 1}ℓ and returns ⟨z⟩ such that z = xy. The well-known technique
is proposed by ABY [22] and optimized in [13]. Currently, the optimal solution invokes
2-COTi for i ∈ {1, . . . , ℓ} requiring communication ℓ(λ + ℓ+1

2) bits with 2 rounds that
is equivalent to ℓ instances of COT ℓ+1

2
. A variant of multiplication is multiplexer6, which

takes as input ⟨x⟩B ∈ {0, 1} and ⟨y⟩ ∈ {0, 1}ℓ and outputs ⟨z⟩ ∈ {0, 1}ℓ such that z = y if
x = 1 and 0 otherwise. The multiplexer protocol ΠMux can be realized by 2 parallel calls of
2-COTℓ with communication 2(λ+ ℓ) bits and 2 rounds.

• Comparison (CMP): The comparison protocol ΠCMP takes as input ⟨x⟩ ∈ {0, 1}ℓ, and
returns ⟨z⟩ such that z = 1{x ≥ 0}. Recently, [13] gave an efficient protocol for ΠCMP with
communication less than λℓ+ 14ℓ bits with log ℓ rounds.

• Exponential on negative inputs (nExp): The exponential protocol ΠnExp takes as input
x ∈ {0, 1}ℓ, where x ≤ 0, and returns ⟨z⟩ such that z = ex . The protocol is proposed by
[17], which invokes digit decomposition to generate small-length inputs and integrates the
OT-based lookup table technique to compute exponential on the small-length inputs.

6In the protocol description, we treat these two types of multiplication indiscriminately, but we implement
them using different techniques.

17

• Reciprocal of Square Root (rSqrt): The protocol of square root’s reciprocal, ΠrSqrt, takes
as input x ∈ {0, 1}ℓ and returns ⟨z⟩ ∈ {0, 1}ℓ such that z = 1√

x
. [17] proposed the

state-of-the-art OT-based protocol, which relies on the Goldschmidt’s algorithm [48] that
iterates on an initial approximation.

• Reciprocal (Recip): The reciprocal protocol ΠRecip takes as input x ∈ {0, 1}ℓ and returns
⟨z⟩ ∈ {0, 1}ℓ such that z = 1/x. The most efficient implementation is proposed in [17]
with a similar idea as the protocol ΠrSqrt.

A.3.3 Extra Optimization

MSB-known protocol optimization. As pointed out by [17], 2PC protocols could be designed in a
far more efficient way when the MSB of the inputs are known. In particular, we optimize truncation
and OT-based multiplication in this case. For example, the MSB-known truncation protocol requires
O(λ(s+ 3)) communication, instead of O(λ(ℓ+ 3)), where λ is the security parameter, ℓ is the bit
length of the secret sharing ring and s is the fractional scale.

We elaborate the optimization for the GELU protocol in Algorithm 3, and the same idea can also be
used in the Softmax and LayerNorm protocols. For GELU, we fist compute the shares of MSB(x),
instead of calculating it in the latter Tanh protocol, and then in the following sub-process, we use this
knowledge to reduce overhead. Moreover, we further observe that the GELU protocol implies more
MSB-known operations if proper computation order is considered. We rewrite the GELU formulation
as below:

GELU(x) = 0.5
(
x+ xTanh

[√
2/πx

(
1 + 0.044715x2

)])
. (6)

We observe that 1 + 0.044715x2 and xTanh
[√

2/πx
(
1 + 0.044715x2

)]
are always non-negative,

where the latter holds because the sign x equals to that of Tanh
[√

2/πx
(
1 + 0.044715x2

)]
.

A.3.4 Security Proof of Non-linear Protocols

Similar as the security of protocols in [13, 17], our protocols directly follow in the hybrid
model. In particular, the security of the Softmax and GELU protocols are easy to see in
(CMP, nExp,Recip,MULOT)-hybrid. Besides, the security of the LayerNorm protocol follows in
(rSqrt,MULOT)-hybrid.

A.4 More Details on Experimental Evaluation

A.4.1 Additional Experimental Setup

Table 2: Models and hyper-parameters

Models #Params
Hyper-parameters

b d t

BERT-Tiny 4.4M 2 128 128

BERT-Medium 41.7M 8 512 128

BERT-Base 110.1M 12 768 128

BERT-Large 340M 24 1024 128

Table 3: Datasets and tasks description

Datasets #Train #Test Task Domain

SST-2 67K 872
Single-sentence
2-classification

Movie reviews

MRPC 3.7K 408
Sentence pair

2-class paraphrase
News

MNLI 393K 2K
Sentence pair

3-class inference
Misc.

QNLI 105K 2K
Sentence pair

2-class inference
Wikipedia

We evaluation Iron on 4 widely used pre-trained BERT models with different hyper-parameters,
as shown in Table 2. We denote the number of blocks as b, the dimension of representations as
d, and the number of input tokens as t. We always fix the number of self-attention heads to d/64
and the size of feed-forward features to 4d. The end-task models are obtained by stacking a linear
classifier on top of the Transformer architectures with fine-tuning. We follow the default fine-tuning
hyper-parameters in [35], e.g., batch size 32, learning rate 2× 10−5 and epoch 3. Notice that any
hyper-parameters optimization during the training phase is compatible with our scheme. Besides, we
use 4 datasets for different tasks from GLUE [18], which include the Stanford Sentiment Treebank

18

Table 4: Detailed performance breakdown of our protocols on BERT
Models Metrics MatMul Truncation GELU Softmax LayerNorm Total

BERT-Tiny
Runtime (Sec) 1.54 2.61 14.65 5.04 2.40 26.24

Comm. (MB) 29.99 108.66 642.38 214.01 99.02 1094.07

BERT-Medium
Runtime (Sec) 11.25 9.70 58.79 20.24 8.56 108.53

Comm. (MB) 132.00 404.63 2565.53 856.05 374.53 4332.74

BERT-Base
Runtime (Sec) 22.12 14.87 88.08 30.31 13.05 168.43

Comm. (MB) 197.68 626.94 3848.30 1284.08 575.23 6532.23

BERT-Large
Runtime (Sec) 36.66 19.50 117.45 40.43 16.65 230.70

Comm. (MB) 240.05 809.25 5131.06 1712.10 733.83 8626.28

(SST-2), the Microsoft Research Paraphrase Corpus (MRPC), the Multi-Genre Natural Language
Inference Corpus (MNLI) and the Stanford Question Answering Dataset (QNLI). Table 3 shows the
datasets’ details. Besides, we assume the embedding table is publicly available to all parties, and
hence the evaluation does not include the results of embedding layers.

A.4.2 Additional Experimental Results

Detailed performance breakdown on BERT. In Table 4, we show the detailed performance break-
down including the communication and computation costs of matrix multiplication, truncation,
GELU, softmax and layer normalization. The most expensive non-linear operation is GELU due to
its huge number. For example, for each layer of BERT-Base, the number of GELU is 393,216. We
also observe that the our linear operation is lightweight in terms of communication.

A.5 Related Works

Recently a quantity of works have designed customized protocols for performing private inference on
neural networks, especially convolutional neural networks. These special-purpose protocols improve
the computation and communication costs and generally fall into two categories: linear protocols and
non-linear protocols. We briefly discuss the progress as below.

Linear protocols. Gazelle [29] proposed an optimized AHE-based linear algebra kernels, which
support matrix-vector multiplication and convolution operations. The main innovation is a new
packing method to minimize the expensive rotation operations, which is the critical component for
the linear algebra. After that, CrypTFlow2 [13] proposed a comprehensive implementation for linear
layers, based on both AHE-based and OT-based solution7. For the AHE-based solution, they use
the protocol from Gazelle, and employ several optimizations such as parallelization and reducing
ciphertext size. They observe the AHE-based solution performs better than the OT-based counterpart,
especially for large-scale models. More recently, Huang et al. presented Cheetah [14], the most
efficient AHE-based linear layer protocols, including matrix-vector multiplication and convolution
operations. The improvement comes from a novel input packing technique, which is rotation-free
and hence efficient. Moreover, the packing method is compatible with secret sharing in a ring. This
support further benefits the subsequent non-linear operations [14]. However, existing protocols are
only optimized for matrix-vector multiplication, rather than general matrix multiplication Iron relies
on. As mentioned earlier, directly extending the most efficient matrix-vector multiplication protocol
still causes prohibitively high communication overhead. Therefore, to approach such communication
issue, we propose a special-purpose protocol for matrix multiplication, based on the state-of-the-art
protocol in Cheetah.

Notice that different from the setting of 2PC private inference, [49] proposed a private outsourced
inference scheme, which stands for encrypted data and encrypted model. To this end, [49] designs
a homomorphic matrix multiplication protocol for multiplying two encrypted matrices, which is
fundamentally different our homomorphic multiplication with a plaintext. As a result, it requires to
invoke costly homomorphic multiplication and rotation operations, which are about 2 ∼ 20× more
expensive than the underlying operations of our protocol (refer to Table 9 of [50]).

7The OT-based linear protocol is also used in SIRNN [17]

19

Non-linear protocols. Although earlier works [29, 38] implemented non-linear function evaluation
with garbled circuits (GC), CrypTFlow2 [13] found that these GC-based solutions result in high
communication overhead. Therefore, the authors designed optimized OT-based protocols, such as
truncation and comparison. These protocols achieve state-of-the-art performance, and can be seen as
general underlying building blocks for the design of advanced protocols [17]. Despite the efficiency
advantage for truncation and comparison, these protocols can not support complex functions, like
exponent in Transformers. Actually, the state-of-the-art general-purpose framework, MP-SPDZ,
provides comprehensive protocols. However, as shown in SIRNN [17], the protocols implemented
with MP-SPDZ are communication-heavy and computation-intensive. Therefore, SIRNN [17]
proposed special-purpose protocols for exponent on negative inputs, sigmoid and reciprocal of square
root, which achieve orders of magnitude improvement over MP-SPDZ, both in terms of runtime
and communication. However, these functions are still insufficient to implement a private inference
framework on Transformers. Therefore, on the basis of the building blocks in [13, 17], we propose
new protocols for three non-linear functions that are critical components for Transformers, and
make several specialized optimizations. Note that, [11] also proposed a softmax protocol but in
an unrealistic setting, where except the client and the server, a trusted third party (TTP) exists and
assists to generate correlated randomness to accelerate protocol evaluation. However, in a practical
application, it is difficult to have a completely TTP [13, 14]. In contrast to [11], our setting lies in a
practical client-server setting, without any unrealistic assumptions.

20

	Appendix
	More Details on Preliminaries
	Fixed-Point Encoding
	Formal Description of the Threat Model
	Multi-Head Attention

	More Details on the Matrix Multiplication Protocol
	Correction Proof of the Matrix Multiplication Protocol
	Optimal Parameters Selection in the Matrix Multiplication Protocol
	Security Proof of the Matrix Multiplication Protocol

	More Details on Non-linear Protocols
	Tanh
	Underlying Protocols from rathee2021sirnn, rathee2020cryptflow2
	Extra Optimization
	Security Proof of Non-linear Protocols

	More Details on Experimental Evaluation
	Additional Experimental Setup
	Additional Experimental Results

	Related Works

