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Abstract

We prove identifiability of a broad class of deep latent variable models that (a) have
universal approximation capabilities and (b) are the decoders of variational autoen-
coders that are commonly used in practice. Unlike existing work, our analysis does
not require weak supervision, auxiliary information, or conditioning in the latent
space. Specifically, we show that for a broad class of generative (i.e. unsupervised)
models with universal approximation capabilities, the side information u is not
necessary: We prove identifiability of the entire generative model where we do not
observe u and only observe the data x. The models we consider match autoencoder
architectures used in practice that leverage mixture priors in the latent space and
ReLU/leaky-ReLU activations in the encoder, such as VaDE and MFC-VAE. Our
main result is an identifiability hierarchy that significantly generalizes previous
work and exposes how different assumptions lead to different “strengths” of identi-
fiability, and includes certain “vanilla” VAEs with isotropic Gaussian priors as a
special case. For example, our weakest result establishes (unsupervised) identifia-
bility up to an affine transformation, and thus partially resolves an open problem
regarding model identifiability raised in prior work. These theoretical results are
augmented with experiments on both simulated and real data.

1 Introduction

One of the key paradigm shifts in machine learning (ML) over the past decade has been the transition
from handcrafted features to automated, data-driven representation learning, typically via deep neural
networks. One complication of automating this step in the ML pipeline is that it is difficult to provide
guarantees on what features will (or won’t) be learned. As these methods are being used in high
stakes settings such as medicine, health care, law, and finance where accountability and transparency
are not just desirable but often legally required, it has become necessary to place representation
learning on a rigourous scientific footing. In order to do this, it is crucial to be able to discuss ideal,
target features and the underlying representations that define these features. As a result, the ML
literature has begun to move beyond consideration solely of downstream tasks (e.g. classification,
prediction, sampling, etc.) in order to better understand the structural foundations of deep models.

Deep generative models (DGMs) such as variational autoencoders (VAEs) [37, 56] are a prominent
example of such a model, and are a powerful tool for unsupervised learning of latent representations,
useful for a variety of downstream tasks such as sampling, prediction, classification, and clustering.

⇤Equal contribution
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Despite these successes, training DGMs is an intricate task: They are susceptible to posterior collapse
and poor local minima [13, 24, 69, 72], and characterizing their latent space remains a difficult
problem [e.g. 40, 67]. For example, does the latent space represent semantically meaningful or
practically useful features? Are the learned representations stable, or are they simply artifacts of
peculiar choices of hyperparameters? These questions have been the subject of numerous studies
in recent years [e.g. 7, 12, 42, 45, 48, 60], and in order to better understand the behaviour of
these models and address these questions, the machine learning literature has recently turned its
attention to fundamental identifiability questions [14, 35, 69]. Identifiability is a crucial primitive
in machine learning tasks that is useful for probing stability, consistency, and robustness. Without
identifiability, the output of a model can be unstable and unreliable, in the sense that retraining under
small perturbations of the data and/or hyperparameters may result in wildly different models.1 In the
context of deep generative models, the model output of interest is the latent space and the associated
representations induced by the model.

In this paper, we revisit the identifiability problem in deep latent variable models and prove a
surprising new result: Identifiability is possible under commonly adopted assumptions and without
conditioning in the latent space, or equivalently, without weak supervision or side information in the
form of auxiliary variables. This contrasts a recent line of work that has established fundamental new
results regarding the identifiability of VAEs that requires conditioning on an auxiliary variable u that
renders each latent dimension conditionally independent [35]. While this result has been generalized
and relaxed in several directions [10, 22, 23, 36, 39, 43, 50, 61, 73], fundamentally these results
still crucially rely on the side information u. We show that this is in fact unnecessary—confirming
existing empirical studies [e.g 18, 70]—and do so without sacrificing any representational capacity.
What’s more, the model we analyze is closely related to deep architectures that have been widely used
in practice [16, 18, 32, 33, 41, 41, 44, 71]: We show that there is good reason for this, and provide
new insight into the properties of these models and support for their continued use.

Overview More specifically, we consider the following generative model for observations x:

x = f(z) + ", x = (x1, . . . , xn) 2 Rn, z = (z1, . . . , zm) 2 Rm, (1)

where the latent variable z follows a Gaussian mixture model (GMM),2 f : Rm ! Rn is a piecewise
affine nonlinearity such as a ReLU network, and " 2 Rn is independent, random noise.3 We do not
assume that the number of mixture components, nor the architecture of the ReLU network, are known
in advance, nor do we assume that z has independent components. Both the mixture model and neural
network may be arbitrarily complex, and we allow for the discrete hidden state that generates the
latent mixture prior to be high-dimensional and dependent. This includes both vanilla VAEs (i.e. with
a standard isotropic Gaussian prior) and classical ICA models (i.e. for which the latent variables are
mutually independent) as special cases. Since both z and f are allowed to be arbitrarily complex, the
model (1) has universal approximation capabilities, which is crucial for modern applications.

This model has been widely studied in the literature from a variety of different perspectives:

• Nonlinear ICA. When the zi are mutually independent, (1) recovers the standard nonlinear
ICA model that has been extensively studied in the literature [1, 26–29, 74]. Although our
most general results do not make independence assumptions, our results cover nonlinear
ICA as a special case (see Section A.2 for more discussion).

• VAE with mixture priors. When the prior over z is a mixture model (e.g. such as a GMM),
the model (1) is closely related to popular autoencoder architectures such as VaDE [32],
SVAE [33], GMVAE [16], DLGMM [52], VampPrior [66], MFC-VAE [18], etc. Although
such VAEs with mixture priors have been used extensively in applications, theoretical results
are missing.

• Warped mixtures. Another closely related model is the warped mixture model of Iwata et al.
[31], which is a Bayesian version of (1). Once again, theoretical guarantees for these models
are lacking.

1Formally, identifiability means the parametrization of the model is injective. See Section 2 for details.
2See Remark 2.1 for extensions to more general mixture priors.
3Our results include the noiseless case " = 0 as a special case.
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Assumptions on f Assumptions on Z Theoretical guarantees Result

(P1) (F1), (F2) P(Z) identifiable up to Theorems
an affine transformation 3.9(a), 3.10(a)

(P1) (F1), (F4) P(Z) and f up to identifiable Theorems
an affine transformation 3.9(c), 3.10(d)

(P1), (P2) (F1), (F4) P(Z) and f identifiable up to Theorems
permutation, scaling and translation 3.9(b), 3.10(b)

(P1), (P2), (P3) (F1), (F4) P(U,Z) and f are identifiable up to Theorems
permutation, scaling and translation 3.10(c), 3.10(d)

Table 1: Summary of results in this paper. The strength of the assumptions increases in each
successive row, as do the strength of the guarantees. See Section 3.3 for formal statements.

• iVAE. Finally, (1) is also the basis of the iVAE model introduced by Khemakhem et al.
[35], where identifiability (up to certain equivalences) is proved when there is an additional
auxiliary variable u that is observed such that zi ?? zj |u.

Contributions Driven by this recent interest from both applied and theoretical perspectives, our
main results (Theorems 3.9, 3.10) show that the model (1) is identifiable up to various linear
equivalences, without conditioning or auxiliary information in the latent space. In fact, we develop a
hierarchy of results under progressively stronger assumptions on the model, beginning with affine
equivalence and ending up with a much stronger equivalence up to permutations only. See Table 1
for a summary.

In order to develop this hierarchy, we prove several technical results of independent interest:

1. First, we establish a novel identifiability result for nonparametric mixtures (Theorem C.2);

2. Second, we show how to use the mixture prior to strengthen existing identifiability results
for nonlinear ICA (Theorem D.1);

3. Third, we extend existing results [38] on the recovery of structured multivariate discrete
latent variable models to recovery under an unknown affine transformation (Theorem F.2).

Our proof techniques—based on elementary tools from analytic function theory and mixture
identifiability—are new and depart from existing work in this area. As a consequence, the analysis
itself provides new insight into the structure and behaviour of deep generative models.

Related work This problem is widely studied, and has garnered significant recent interest, so we
focus only on the most closely related work here.

Classical results on nonlinear ICA [28] establish the nonidentifiability of the general model (i.e.
without restrictions on z and f ); see also Darmois [15], Jutten et al. [34]. More recently, Khemakhem
et al. [35] proved a major breakthrough by showing that given side information u, identifiability of
the entire generative model is possible up to certain (nonlinear) equivalences. Since this pathbreaking
work, many generalizations have been proposed [10, 22, 23, 36, 39, 43, 50, 61, 73], all of which
require some form of auxiliary information. Other approaches to identifiability include various
forms of weak supervision such as contrastive learning [75], group-based disentanglement [46], and
independent mechanisms [20]. Non-identifiability has also been singled out as a contributing factor
to practical issues such as posterior collapse in VAEs [69, 72].

Our approach is to avoid additional forms of supervision altogether, and enforce identifiability in a
purely unsupervised fashion. Recent work along these lines includes Wang et al. [69], who propose
to use Brenier maps and input convex neural networks, and Moran et al. [51] who leverage sparsity
and an anchor feature assumption. Aside from different assumptions, the main difference between
this line of work and our work is that their work only identifies the latent space P (Z), whereas our
focus is on jointly identifying both P (Z) and f . In fact, we provide a decoupled set of assumptions
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that allow f or P (Z) or both to be identified. Thus, we partially resolve in the affirmative an open
problem regarding model identifiability raised by the authors in their discussion.

Another distinction between this line of work and the current work is our focus on architectures and
modeling assumptions that are standard in the deep generative modeling literature, specifically ReLU
nonlinearities and mixture priors. As noted above, there is a recent tradition of training variational
autoencoders with mixture priors [16, 18, 32, 33, 41, 41, 44, 71]. Our work builds upon this empirical
literature, showing that there is good reason to study such models: Not only have they been shown to
be more effective compared to vanilla VAEs, we show that they have appealing theoretical properties
as well. In fact, recent work [18, 70] has observed precisely the identifiability phenomena studied in
our paper, however, this work lacks rigourous theoretical results to explain these observations.

Another related line of work studies identification in graphical models with latent variables, albeit
without any explicit connection to deep generative models [17, 38, 49, 54].

Finally, since a key step in our proof involves the analysis of a nonparametric mixture model (see
Appendix C for details), it is worth reviewing previous work in mixture models. See Allman et al.
[2] for an overview. Of particular use for the present work are Teicher [63] and Barndorff-Nielsen
[8], wherein the identifiability of Gaussian and exponential family mixtures, respectively, are proved.
Specifically for nonparametric mixtures, existing results consider product mixtures [21, 64], grouped
observations [57, 68], symmetric measures [9, 25], and separation conditions [4]. For context, we
note here that a discrete VAE can be interpreted as a mixture model in disguise: This is a perspective
that we leverage in our proofs. We are not aware of previous work in the deep generative modeling
literature that exploits this connection to prove identifiability results.

2 Preliminaries

We first introduce the main generative model that we study and its properties, and then proceed with
a brief review of identifiability in deep generative models.

Generative model The observations x 2 Rn are realizations of a random vector X , and are
generated according to the generative model (1), where z 2 Rm represents realizations of an
unobserved random vector Z. We make the following assumptions on Z and f :4

(P1) P (Z) is a (possibly degenerate) Gaussian mixture model with an unknown number of
components J � 1, i.e.

p(z) =
JX

j=1

�j'(z;µj ,⌃j),
JX

j=1

�j = 1, �j > 0, (2)

where p(z) is the density of P (Z) with respect to some base measure, and '(z;µj ,⌃j) is
the gaussian density with mean µj and covariance ⌃j .

(F1) f is a piecewise affine function, such as a multilayer perceptron with ReLU (or leaky ReLU)
activations.

Recall that an affine function is a function x 7! Ax + b for some matrix A. As already discussed,
special cases of this model have been extensively studied in both applications and theory, and both
(P1)-(F1) are quite standard in the literature on deep generative models and represent a useful model
that is widely used in practice [e.g. 16, 18, 32, 33, 41, 41, 44, 71]. In particular, when J = 1 this is
simply a classical VAE with an isotropic Gaussian prior (see Section A.2 for more discussion).
Remark 2.1. The assumption that P (Z) is a GMM can be replaced with more general exponential
family mixtures [8] as long as (a) the resulting mixture prior p(z) is an analytic function and (b) the
exponential family is closed under affine transformations.

Universal approximation Under assumptions (P1)-(F1), the model (1) has universal approxima-
tion capabilities. In fact, any distribution can be approximated by a mixture model (2) with sufficiently

4In the sequel, we will use (P#) to index assumptions on the prior P (Z), and (F#) to index assumptions on
the decoder f .
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many components J [e.g. 53]. Alternatively, when J is bounded, by taking f to be a sufficiently deep
and/or wide ReLU network, any distribution can be approximated by f(Z) [e.g. 47, 65], even if f is
invertible [30]. Thus, there is no loss in representational capacity in (P1)-(F1). To the best of our
knowledge, our results are the first to establish identifiability of both the latent space and decoder for
deep generative models without conditioning in the latent space or weak supervision. We note that
Wang et al. [69] and Moran et al. [51] also propose deep architectures that identify the latent space,
but not the decoder.

Identifiability A statistical model is specified by a (possibly infinite-dimensional, as in our setting)
parameter space ⇥, a family of distributions P , and a mapping ⇡ : ⇥ ! P; i.e. ⇡(✓) 2 P for each
✓ 2 ⇥. In more conventional notation, we define P = {p✓ : ✓ 2 ⇥}, in which case p✓ = ⇡(✓). A
statistical model is called identifiable if the parameter mapping ⇡ is one-to-one (injective). In practical
applications, the strict definition of identifiability is too strong, and relaxed notions of identifiability
are sufficient. Classical examples include identifiability up to permutation, re-scaling, or orthogonal
transformation. More generally, a statistical model is identifiable up to an equivalence relation ⇠
defined on ⇥ if ⇡(✓) = ⇡(✓0) =) ✓ ⇠ ✓0. For more details on the different notions of identifiability
in deep generative models, see [35, 36, 58].

More precisely, we use the following definition. Let f]P denote the pushforward measure of P by f .
Definition 2.2. Let P be a family of probability distributions on Rm and F be a family of functions
f : Rm ! Rn.

1. For (P, f) 2 P ⇥ F we say that the prior P is identifiable (from f]P ) up to an affine
transformation if for any (P 0, f 0) 2 P ⇥ F such that f]P ⌘ f 0

]P
0 there exists an invertible

affine map h : Rm ! Rm such that P 0 = h]P (i.e., P 0 is the pushforward measure of P by
h).

2. For (P, f) 2 P ⇥ F we say that the pair (P, f) is identifiable (from f]P ) up to an affine
transformation if for any (P 0, f 0) 2 P ⇥ F such that f]P ⌘ f 0

]P
0 there exists an invertible

affine map h : Rm ! Rm such that f 0 = f � h�1 and P 0 = h]P .

If the noise " has a known distribution, then f]P is identifiable from the convolution (f]P )⇤". Hence,
this definition can be automatically extended to the setup with known noise. This definition also can
be extended to transformations besides affine transformations (e.g. permutations, translations, etc.) in
the obvious way.

Identifiability is a crucial property for a statistical model: Without identifiability, different training
runs may lead to very different parameters, making training unpredictable and replication difficult.
The failure of identifiability, also known as underspecification and ill-posedness, has recently been
flagged in the ML literature as a root cause of many failure modes that arise in practice [14, 69, 72].
As a result, there has been a growing emphasis on identification in the deep learning literature, which
motivates the current work. Finally, in addition to these reproducibility and interpretability concerns,
identifiability is a key component in many applications of latent variable models including causal
representation learning [59], independent component analysis [11], and topic modeling [3, 5]. See
Ran and Hu [55] for additional discussion and examples.

Auxiliary information and iVAE It is well-known that assuming independence of the latent
factors—i.e. Zi ?? Zj—is insufficient for identifiability [28]. Recent work, starting with iVAE,
shows identifiability by additionally assuming that a k-dimensional auxiliary variable u is observed
such that p(z |u) is conditionally factorial, i.e. Zi ?? Zj |U . This extra information serves to break
symmetries in the latent space and is crucial to existing proofs of identifiability.

To make the connection with this work clear, observe that assumption (P1) is equivalent to assuming
that there is an additional hidden state U 2 {1, . . . , J} such that P (Z = z |U = j) = pj(z) and
P (U = j) = �j . More generally, U = (U1, . . . , Uk) may be multivariate. In this way, a direct
parallel between our work and previous work is evident, with several crucial caveats:

• We do not assume that U is observed—even partially—or known in any way;
• We allow for the Zi to be arbtrarily dependent even after conditioning on U , and this

dependence need not be known;
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• We do not even require the number of states J to be known, and we do not require any
bounds on J (e.g. iVAE requires J � m+ 1).

• In the case where U is multivariate (i.e k := dim(U) > 1), we do not require the number of
latent dimensions k, the state spaces, or their dependencies to be known.

• The original iVAE paper only proves identifiability of f up to a nonlinear transformation
(see Lemma G.2 in Appendix G for details). By contrast, we will show identifiability of f
up to an affine transformation, without knowing U .

In order to break the symmetry without knowing anything about U or its dependencies, we develop
fundamentally new insights into nonparametric identifiability of latent variable models.

3 Main results

For any positive integer d, let [d] = {1, . . . , d}. By (P1), we can write the model (1) as follows.
Let U = (U1, . . . , Uk) 2 [d1]⇥ · · · [dk] where di := dim(Ui) and k := dim(U); we allow U to be
multivariate (k > 1) and dependent—i.e., we do not assume that the Ui are marginally independent.
It follows trivially from (P1) that P (U1 = u1, . . . , Uk = uk) 2 {�1, . . . ,�J} and J =

Q
i di, where

we recall that J is the unknown number of mixture components in P (Z). Denote the marginal
distribution of U , which depends on �j , by P�. The variables (U,Z) are unobserved and encode the
underlying latent structure:

U = u ⇠ P�(U = u)

[Z |U = u] ⇠ N(µu,⌃u)

[X |Z = z] ⇠ f(z) + ", " ⇠ N (0,�2)

9
>=

>;
=) U ! Z ! X. (3)

Here, P� is the distribution on U described above. Our goal is to identify the latent distribution
P (U,Z) and/or the nonlinear decoder f from the marginal distribution P (X) induced by (3). We
will additionally assume throughout that m  n; see Remark 3.6 for a discussion of the overcomplete
case with m > n.

Our main results (Theorems 3.9-3.10) provide a hierarchy of progressively stronger conditions under
which P (U,Z), f , or both, can be identified in progressively stronger ways. The idea is to illustrate
explicitly what conditions are sufficient to identify the latent structure up to affine equivalence (the
weakest notion of identifiability we consider), equivalence up to permutation, scaling, and translation,
and permutation equivalence (the strongest notion of identifiability we consider, and the strongest
possible for any latent variable model).

We defer the statement of the main results to Section 3.3, after the main conditions have been
described. As a preview to the main results, we first present the following corollary:
Corollary 3.1. Suppose k = dim(U) = 1 , J � 1, (U,Z) are unobserved, and X is observed.
(a) If f is an invertible ReLU network, then both P (U,Z) and f are identifiable up to an affine
transformation. (b) If f is only weakly injective (cf. (F2)), then P (U,Z) is still identifiable up to an
affine transformation.

For comparison, Corollary 3.1 already strengthens existing results, since U is not required to be
known and we are able to identify f . In fact, the latter answers an open question raised by Wang
et al. [69]. What’s more, this is just the weakest result implied by our main results: Under stronger
assumptions on the latent structure, the affine equivalence presented above can be strengthened
further.

Taken together, the results in this section have the following concrete implication for practitioners:
For stably training variational autoencoders, there is now compelling justification to work with a
GMM prior and deep ReLU/Leaky-ReLU networks. As we saw above, this is commonly done in
practice already.

3.1 Possible assumptions on f

To distinguish cases where f is and is not identifiable, we require the following technical definition.
Recall that for sets A,B, f�1(A) = {x : f(x) 2 A} and f(B) = {f(x) : x 2 B}.
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Definition 3.2. Let m  n (see Remark 3.6) and f : Rm ! Rn.

(F2) We say that f is weakly injective if (i) there exists x0 2 Rn and � > 0 s.t. |f�1({x})| = 1
for every x 2 B(x0, �) \ f(Rm), and (ii) {x 2 Rn : |f�1({x})| = 1} ✓ f(Rm) has
measure zero with respect to the Lebesgue measure on f(Rm).

(F3) We say that f is observably injective if {x 2 Rn : |f�1({x})| > 1} ✓ f(Rm) has measure
zero with respect to the Lebesgue measure on f(Rm). In other words, f is injective for
almost every x in its image f(Rm) (i.e. almost every “observable” x).

(F4) We say that f is injective if |f�1({x})| = 1 for every x 2 f(Rm).
Remark 3.3. For piecewise affine functions assumption (F2) is weaker than assumption (F3), which in
turn is weaker than (F4). Therefore, for piecewise affine functions we have the chain of implications:

(F4) =) (F3) =) (F2).

In the sequel, we mostly focus on (F2) and (F4) for simplicity; although we prove results for (F3) in
Appendix D.1. See also Remarks 3.5, 3.11.
Example 3.4. In general, a deep ReLU network may be either injective or observably injective, or
neither (e.g. ReLU(�ReLU(x)) = 0). For example, although x 7! ReLU(x) is not injective, it
is observably injective, where ReLU(x) = max{0, x} is the usual rectified linear unit. To see this,
note that image of ReLU is the set R� = {y | y � 0}, and ReLU has the unique preimage for every
y 2 R> = {y | y > 0}. Clearly, (R� \ R>) = {0} has measure zero inside R�.

At the same time, x 7! 0 and x 7! |x| are not even weakly injective.
Remark 3.5. In Appendix H, we show that ReLU networks or Leaky ReLU networks are generically
observably injective (and hence also weakly injective) under simple assumptions on their architecture.
Remark 3.6. We restrict attention to the case m  n, which is a standard assumption, as it is
common to think of a latent space to be a low-dimensional representation of the observed space. In
the overcomplete case, i.e. when m > n, we believe that identifiability is unlikely unless stronger
assumptions are made, or weaker notions of identifiability are considered. To see this, consider the
projection f(x, y) = x, which is trivially affine. Then we can arbitrarily transform the y-coordinate
without changing P , i.e. (f � g)]P = f]P , where g(x, y) = (x, h(y)) for any h. As an example of
identifiability in the overcomplete regime under stronger assumptions, when the auxiliary variable u
is known, [36] show that the feature maps f and g in conditional energy-based models (for which
p(x | u) / exp(f(x)T g(u))) can be identified up to an affine transformation.

3.2 Possible assumptions on Z

Our weakest result requires no additional assumptions on Z beyond (P1); see Corollary 3.1. Under
stronger assumptions, more can be concluded. As with the previous section, the assumptions presented
here are not necessary, but may be imposed in order to extract stronger results.

The first condition is a mild condition that allows us to strengthen affine identifiability:

(P2) Zi ?? Zj | U for all i 6= j and there exist a pair of states U = u1 and U = u2 such that all
((⌃u1)tt / (⌃u2)tt | t 2 [m]) are distinct. (Note that this implies J � 2).

The second condition is more technical, and is only necessary if k > 1 and we wish to identify P (U)
in addition to P (Z). In fact, not only will we recover P (U), but also the (unknown) number of
hidden variables (i.e. k) and their state spaces (i.e. dj). Note that P (U) is not needed to sample from
(1), as long as we have P (Z). Before introducing this condition, we need a preliminary definition.
Definition 3.7. Let U�i denote {Uj : j 6= i}. We define ne(Ui) = [m] \ {t : Zt ?? Ui | U�i} and
ne(Zi) = {t : Zi 2 ne(Ut)}. For a subset Z 0 ⇢ Z, ne(Z 0) = [Zi2Z0 ne(Zi).

The neighborhood ne(Ui) collects the variables Zt that depend on Ui directly.

(P3) The following conditions hold:
(a) For all Z 0 ⇢ Z and u1 6= u2, P (Z 0 | ne(Z 0) = u1) 6= P (Z 0 | ne(Z 0) = u2);
(b) If P (U 0, Z,X) = P (U,Z,X), then dim(U 0)  dim(U); and
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(c) For any Ui 6= Uj the set ne(Ui) is not a subset of ne(Uj).

Condition (P3) is a “maximality” condition that is adapted from Kivva et al. [38]: We are interested
in identifying the most complex latent structure with the most number of hidden variables. This is
in fact necessary since we can always merge two (or more) hidden variables into a single hidden
variable without changing the joint distribution. Moreover, if two distinct hidden variables Ui 6= Uj

have the same neighborhood (or one is a subset of another), then it is known that P (U) cannot be
identified [17, 38, 54]. Evidently, if we seek to learn P (U) in addition to P (Z), then this must be
avoided. Finally, as the proof will indicate, this condition is slightly stronger than what is needed (see
Remark F.3 for details).
Remark 3.8. Condition (P3) should be contrasted with the stronger “anchor words” assumption
that has appeared in prior work [5, 6, 51]: In fact, the existence of an anchor word for each Uj

automatically implies that ne(Ui) is not a subset of ne(Uj) for i 6= j. Thus, anchor words are a
sufficient but not necessary condition for identifiability, whereas Condition (P3) is indeed necessary
as described above.

More details and discussion on these assumptions can be found in Appendix F.

3.3 Main identifiability results

When dim(U) = 1, there is no additional structure in U to learn, and so the setting simplifies
considerably. We begin with this special case before considering the case of general multivariate U .

Theorem 3.9. Assume dim(U) = 1. Under (P1)-(F1), we have the following:

(a) (F2) =) P (U,Z) is identifiable from P (X) up to an affine transformation of Z.

(b) (F2)+(P2) =) P (U,Z) is identifiable from P (X) up to permutation, scaling, and/or
translation of Z.

(c) In either (a) or (b), if additionally (F4) holds and f is continuous, then f is also identifiable
from P (X) up to an affine transformation.

The next result generalizes Theorem 3.9 to arbitrary (possibly multivariate) discrete U . This is an
especially challenging case: Unlike previous work such as iVAE that assumes U (and hence its
structure) is known, we do not assume anything about U is known. Thus, everything about U must
be reconstructed based on P (X) alone, hence the need for (P3) to identify P (U) below.

Theorem 3.10. Under (P1)-(F1), we have the following:

(a) (F2) =) P (Z) is identifiable from P (X) up to an affine transformation.

(b) (F2)+(P2) =) P (Z) is identifiable from P (X) up to permutation, scaling, and/or
translation.

(c) (F2)+(P2)+(P3) =) (k, d1, . . . , dk, P (U)) are identifiable from P (X) up to a permuta-
tion of U , and P (Z) is identifiable up to permutation, scaling, and/or translation.

(d) In any of (a), (b), or (c), if additionally (F4) holds and f is continuous, then f is also
identifiable from P (X) up to an affine transformation.

Without (P3), Kivva et al. [38] have shown that it is not possible to recover the high-dimensional
latent state U , however, we can still identify the continuous latent state Z, which is enough to generate
random samples from the model (1). In order to have fine-grained control over the individual variables
in U , however, it is necessary to assume (P3).
Remark 3.11. If (F4) is relaxed to (F3) f may not be identifiable up to an affine transformation, but
it is “essentially” identifiable in the following sense. Let S = {x : |f�1({x})| > 1}. On every
connected component of Rm \ f�1(S), f is identifiable up to an affine transformation (which may
depend on the connected component). Note, for f defined by a ReLU NN, points of S are atoms of
P (X).
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Figure 1: Selected examples of the negative log-likelihood for different runs. In each figure, one
parameter from a model (e.g. �j is a weight in the neural network defining f ) is selected, and the value
of the negative log-likelihood is visualized as a function of this parameter. Vertical lines indicate
the ground truth and (global) minimizer, which always coincide. Three particularly interesting,
nonconvex examples are shown here. See Appendix J.3.1 for details.

Remark 3.12. If the assumption (F2) that f is weakly injective is removed, then the claim of
Theorem 3.9 is not true anymore. Consider g(x) = f(x) = |x| and

P =
1

3
N(�2,�2) +

1

3
N(�1,�2) +

1

3
N(3,�2) and

P 0 =
1

3
N(�2,�2) +

1

3
N(1,�2) +

1

3
N(3,�2).

(4)

It is easy to verify that P cannot be transformed into P 0 by an affine transformation, but f]P and
g]P 0 are equally distributed.

Remark 3.13. In Theorems 3.9(a) and 3.10(a), the identifiability up to an affine transformation is the
best possible if no additional assumptions on Z are made (i.e. beyond (P1)). Indeed, for an arbitrary
invertible affine map h : Rm ! Rm, h(Z) has a GMM distribution, f �h�1 is an invertible piecewise
affine map, and (U,Z, f) and (U, h(Z), f � h�1) in model (3) generate the same distribution.

4 Experiments

There has been extensive work already to verify empirically that the model (1) under (P1)-(F1) is
identifiable. For example, [70] observe that deep generative models with clustered latent spaces
are empirically identifiable, and compared this directly to models that rely on side information,
and [18] show that meaningful latent variables can be learned consistently in a fully unsupervised
manner even when U has high-dimensional structure. Moreover, [18] indicate that high-dimensional
structure is important for improved performance. Beyond these, it is well-known that VAEs with
mixture priors such as VaDE [32] achieve competitive performance on many benchmark tasks;
see [16, 18, 33, 41, 41, 44, 71] for additional experiments and verification. Building upon the
established success of these methods, we augment these experiments as follows: 1) We use simple
examples to verify that the likelihood indeed has a unique minimizer at the ground truth parameters;
2) We train VaDE on (misspecified) simulated toy models; and 3) We measure stability (up to
affine transformations) of the learnt latent spaces on real data. To measure this, we report the Mean
Correlation Coefficient [36, Appendix A.2] metric, which is standard, and an L2-based alignment
metric (denoted by distA↵,L2). Definitions of these metrics and additional details on the experiments
can be found in Appendix J.

Maximum likelihood We simulated models satisfying (P1)-(F1) by randomly choosing weights
and biases for a single-layer ReLU network and randomly generating a GMM with J = 2 or 3
components. These models are simple enough that exact computation of the MLE along the likelihood
surface is feasible via numerical integration (Figure 1). In all our simulations (50 total), the ground
truth was the unique minimizer of the negative log-likelihood, as predicted by the theory. These
examples also illustrate a small-scale test of misspecification in the theoretical model: We include
cases where J is misspecified and f fails to satisfy (F4), but the MLE succeeds anyway.

Simulated data In our experiments on synthetic datasets we consider, to obtain an experimental
evidence of identifiability of model (3) we fit VaDE to observed data 5 times (see Figure 2). Let
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Figure 2: Recovered latent spaces for 5 runs of VaDE on pinwheel dataset with 3 clusters

Z(1), Z(2), . . . , Z(5) be the learned latent spaces. For every pair Z(i), Z(j) we evaluate the MCC and
distA↵,L2 loss. For instance, for the pinwheel dataset with three clusters as in Figure 2, the average
distA↵,L2(p1, p2) across 20 pairs Z(i), Z(j) is 0.113 with standard deviation 0.065. The average
weak MCC is 0.87 and the average strong MCC is 1.0. This shows strong evidence of recovery of the
latent space up to affine transformations.

Real data We measure stability of the learnt latent space by training MFCVAE [18] on MNIST 10
times with different initializations and then comparing the latent representations learnt. It becomes
computationally infeasible to compute distA↵,L2 therefore we report only MCC. The strong MCCs
are computed to be 0.7 (ReLU), 0.69 (LeakyReLU) and the weak MCCs are computed to be 0.91
(ReLU), 0.94 (LeakyReLU). These observations validate the observations first made in [70], who
ran extensive experiments on VaDE and iVAE on several large datasets including MNIST, SVHN
and CIFAR10. These strong correlations confirm our theory and are of particular importance to
practitioners for whom stability of learning is of the essence.

5 Conclusion

We have proved a general series of results describing a hierarchy of identifiability for deep generative
models that are currently used in practice. Our experiments confirm both on exact and approximate
simulations that identifiability indeed holds in practice. An obvious direction for future work is to
study finite-sample identifiability problems such as sample complexity and robustness (i.e. how
many samples are needed to ensure that the global minimizer of the likelihood is reliably close to the
ground truth?). Theoretical questions aside, developing a better understanding of the ELBO and its
effect on optimization is an important practical question. For example, an important limitation of the
current set of results is that they apply only to the likelihood, which is known to be nonconvex and
intractable to optimize (see Figure 1 for concrete examples). It is an important open question to use
these insights to develop better algorithms and optimization techniques that work on finite-samples
with misspecified models (i.e. real data).

More generally, although our assumptions map onto architectures and priors that are widely used
in practice, it is important to emphasize the relevant distinction between models and estimators.
That is, the architectures used in practice represent the estimators used, and may not reflect realistic
assumptions on the model itself (which is typically misspecified). For example, the piecewise affine
assumption may not accurately reflect valid assumptions about real-world problems. Given the lack
of purely unsupervised, nonparametric identifiability results in the literature, we view our results as
an important technical step towards understanding practical identifiability for deep generative models.
Thus, an important future direction is to replace our assumptions with more appropriate modeling
assumptions that are relevant for practical applications.
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