A Proof of Theorem 1

Proof. We mainly use Hoeffding's inequality to prove Theorem 11. Notice that the Integral Probability Metrics (IPM) is defined as $d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right)=\sup _{h \in \mathcal{H}}\left|\mathcal{L}_{\mathcal{D}_{i}}(h)-\mathcal{L}_{\mathcal{D}_{j}}(h)\right|$. For $\forall h \in \mathcal{H}$ and client $C_{i}, \forall i \in\{1, \ldots, N\}$, we have

$$
\begin{aligned}
\left|\mathcal{L}_{\mathcal{D}_{i}}(h)-\hat{\mathcal{L}}_{\boldsymbol{\alpha}_{i}}(h)\right| & =\left|\mathcal{L}_{\mathcal{D}_{i}}(h)-\sum_{j=1}^{N} \alpha_{i j} \hat{\mathcal{L}}_{S_{j}}(h)\right| \\
& =\left|\sum_{j=1}^{N} \alpha_{i j} \mathcal{L}_{\mathcal{D}_{i}}(h)-\sum_{j=1}^{N} \alpha_{i j} \mathcal{L}_{\mathcal{D}_{j}}(h)+\sum_{j=1}^{N} \alpha_{i j} \mathcal{L}_{\mathcal{D}_{j}}(h)-\sum_{j=1}^{N} \alpha_{i j} \hat{\mathcal{L}}_{S_{j}}(h)\right| \\
& =\left|\sum_{j=1}^{N} \alpha_{i j} \mathcal{L}_{\mathcal{D}_{i}}(h)-\sum_{j=1}^{N} \alpha_{i j} \mathcal{L}_{\mathcal{D}_{j}}(h)\right|+\left|\sum_{j=1}^{N} \alpha_{i j} \mathcal{L}_{\mathcal{D}_{j}}(h)-\sum_{j=1}^{N} \alpha_{i j} \hat{\mathcal{L}}_{S_{j}}(h)\right| \\
& \leqslant \sum_{j=1}^{N} \alpha_{i j}\left|\mathcal{L}_{\mathcal{D}_{i}}(h)-\mathcal{L}_{\mathcal{D}_{j}}(h)\right|+\left|\sum_{j=1}^{N} \alpha_{i j} \mathcal{L}_{\mathcal{D}_{j}}(h)-\sum_{j=1}^{N} \alpha_{i j} \hat{\mathcal{L}}_{S_{j}}(h)\right| \\
& \leqslant \sum_{j=1}^{N} \alpha_{i j} d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right)+\left|\sum_{j=1}^{N} \alpha_{i j} \mathcal{L}_{\mathcal{D}_{j}}(h)-\sum_{j=1}^{N} \alpha_{i j} \hat{\mathcal{L}}_{S_{j}}(h)\right| .
\end{aligned}
$$

For the loss function l, let $\left\{X_{1}, \ldots, X_{m_{1}}\right\}$ be the random variables which take on values $\frac{\alpha_{i 1} M}{m_{1}} l(h(\boldsymbol{x}), y)$ for the m_{1} examples $(\boldsymbol{x}, y) \in S_{1}$ with respect to $h \in \mathcal{H}$. Random variables $\left\{X_{m_{1}+1}, \ldots, X_{M}\right\}$ are defined analogously. Then the weighted empirical risk $\sum_{j=1}^{N} \alpha_{i j} \hat{\mathcal{L}}_{S_{j}}(h)$ can be written as follows:

$$
\sum_{j=1}^{N} \alpha_{i j} \hat{\mathcal{L}}_{S_{j}}(h)=\sum_{t=1}^{N} \frac{\alpha_{i j}}{m_{t}} \sum_{j=1}^{m_{t}} l\left(h\left(\boldsymbol{x}_{j}^{t}\right), y_{j}^{t}\right)=\frac{1}{M} \sum_{j=1}^{M} X_{j} .
$$

By the linearity of expectations, we have

$$
\mathbb{E}\left[\sum_{j=1}^{N} \alpha_{i j} \hat{\mathcal{L}}_{S_{j}}(h)\right]=\sum_{j=1}^{N} \alpha_{i j} \mathcal{L}_{\mathcal{D}_{j}}(h) .
$$

Then the following result holds for every $h \in \mathcal{H}$ according to Hoeffding's inequality:

$$
\operatorname{Pr}\left[\left|\sum_{j=1}^{N} \alpha_{i j} \hat{\mathcal{L}}_{S_{j}}(h)-\sum_{j=1}^{N} \alpha_{i j} \mathcal{L}_{\mathcal{D}_{j}}(h)\right| \geqslant \epsilon\right] \leqslant 2 \exp \left(-\frac{2 M^{2} \epsilon^{2}}{\sum_{j=1}^{M} \operatorname{Range}^{2}\left(X_{j}\right)}\right)=2 \exp \left(-\frac{2 \epsilon^{2}}{\mu^{2} \sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}}\right) .
$$

By the definition of growth function $\Pi_{\mathcal{H}}(\cdot)$ and according to union bound, the following result holds for $\forall h \in \mathcal{H}$:

$$
\begin{aligned}
\operatorname{Pr}\left[\left|\sum_{j=1}^{N} \alpha_{i j} \hat{\mathcal{L}}_{S_{j}}(h)-\sum_{j=1}^{N} \alpha_{i j} \mathcal{L}_{\mathcal{D}_{j}}(h)\right| \geqslant \epsilon\right] & \leqslant 4 \Pi_{\mathcal{H}}(2 M) \exp \left(\frac{-2\left(\frac{1}{4} \epsilon\right)^{2}}{\mu^{2} \sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}}\right) \\
& \leqslant 4(2 M)^{d} \exp \left(\frac{-\frac{1}{8} \epsilon^{2}}{\mu^{2} \sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}}\right) .
\end{aligned}
$$

Substituting δ for the probability gives the following result:

$$
\epsilon=\mu \sqrt{\sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}} \sqrt{8\left(d \log (2 M)+\log \frac{4}{\delta}\right)}
$$

Note that $h_{i}^{\star}=\arg \min _{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}_{i}}(h)$ and $\hat{h}_{\boldsymbol{\alpha}_{i}}=\arg \min _{h \in \mathcal{H}} \hat{\mathcal{L}}_{\boldsymbol{\alpha}_{i}}(h)$. Given any $\delta \in(0,1)$, the following result holds with probability at least $1-\delta$:

$$
\begin{aligned}
\mathcal{L}_{\mathcal{D}_{i}}\left(\hat{h}_{\boldsymbol{\alpha}_{i}}\right) & \leqslant \hat{\mathcal{L}}_{\boldsymbol{\alpha}_{i}}\left(\hat{h}_{\boldsymbol{\alpha}_{i}}\right)+\mu \sqrt{\sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}} \sqrt{8\left(d \log (2 M)+\log \frac{8}{\delta}\right)}+\sum_{j=1}^{N} \alpha_{i j} d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right) \\
& \leqslant \hat{\mathcal{L}}_{\boldsymbol{\alpha}_{i}}\left(h_{i}^{\star}\right)+\mu \sqrt{\sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}} \sqrt{8\left(d \log (2 M)+\log \frac{8}{\delta}\right)}+\sum_{j=1}^{N} \alpha_{i j} d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right) \\
& \leqslant \mathcal{L}_{\mathcal{D}_{i}}\left(h_{i}^{\star}\right)+2 \mu \sqrt{\sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}} \sqrt{8\left(d \log (2 M)+\log \frac{8}{\delta}\right)}+2 \sum_{j=1}^{N} \alpha_{i j} d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right) .
\end{aligned}
$$

B Proof of Theorem 2

Proof. The learning bound in Theorem 1 suggests minimizing the following objective with respect to $\boldsymbol{\alpha}_{i}$ for client C_{i}.

$$
\begin{array}{ll}
\min _{\boldsymbol{\alpha}_{i}} & \lambda \sqrt{\sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}}+\sum_{j=1}^{N} \alpha_{i j} d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right) \tag{9}\\
\text { s.t. } & \alpha_{i j} \geqslant 0, \forall j \in\{1, \ldots, N\}, \sum_{j=1}^{N} \alpha_{i j}=1
\end{array}
$$

where $\lambda=\mu \sqrt{8\left(d \log (2 M)+\log \frac{8}{\delta}\right)}$. The Lagrangian function of Eq. 9 9 is

$$
\mathbb{L}\left(\boldsymbol{\alpha}_{i}, \boldsymbol{\eta}, \zeta\right)=\lambda \sqrt{\sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}}+\sum_{j=1}^{N} \alpha_{i j} d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right)-\boldsymbol{\alpha}_{i}^{\top} \boldsymbol{\eta}-\zeta\left(\mathbf{1}^{\top} \boldsymbol{\alpha}_{i}-1\right)
$$

To minimize the objective, the following Karush-Kuhn-Tucker (KKT) condition holds:

$$
\left\{\begin{array}{l}
\partial_{\boldsymbol{\alpha}_{i}} \mathbb{L}\left(\boldsymbol{\alpha}_{i}, \boldsymbol{\eta}, \zeta\right)=0 . \\
\boldsymbol{\alpha}_{i} \geqslant 0, \boldsymbol{\eta} \geqslant 0, \alpha_{i j} \eta_{j}=0, \forall j \in\{1, \ldots, N\} . \\
\mathbf{1}^{\top} \boldsymbol{\alpha}_{i}=1
\end{array}\right.
$$

Let the partial derivative equals to zero with respect to $\forall t \in\{1, \ldots, N\}$:

$$
\partial_{\boldsymbol{\alpha}_{i t}} \mathbb{L}\left(\boldsymbol{\alpha}_{i}, \boldsymbol{\eta}, \zeta\right)=d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{t}\right)-\eta_{t}-\zeta-\lambda \frac{\alpha_{i t}}{m_{t} \sqrt{\sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}}}=0
$$

Since $\alpha_{i j} \eta_{j}=0, \forall j \in\{1, \ldots, N\}$, we discuss the following two cases:
(1) If $\alpha_{i t}=0$, then $\eta_{t}=d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{t}\right)-\zeta \geqslant 0$;
(2) If $\alpha_{i t}>0$, then $\eta_{t}=0$. In this case,

$$
\alpha_{i t}=\frac{m_{t} \sqrt{\sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}}\left[\zeta-d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{t}\right)\right]}{\lambda}>0
$$

Denote $\mathcal{Q}_{i}=\left\{t \mid \alpha_{i t}>0\right\}$. Notice that

$$
\zeta-d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{q}\right) \begin{cases}>0, & q \in \mathcal{Q}_{i} \tag{10}\\ \leqslant 0, & q \notin \mathcal{Q}_{i}\end{cases}
$$

Thus we sort the clients according to $d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right)$. For convenience, we denote $\Xi_{i}^{j}=d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right)$ for client C_{i} where $j \in\{1, \ldots, N\}, \forall i \in\{1, \ldots, N\}$. Sort $\left\{\Xi_{i}^{1}, \ldots, \Xi_{i}^{N}\right\}$ in ascending order to get $\left\{\Xi_{i}^{\sigma(1)}, \ldots, \Xi_{i}^{\sigma(N)}\right\}$, i.e., $\Xi_{i}^{\sigma(1)} \leqslant \ldots \leqslant \Xi_{i}^{\sigma(N)}$, where $\sigma(\cdot):[N] \rightarrow[N]$ is a bijection which represents the initial index.
Notice that

$$
\sum_{q \in \mathcal{Q}_{i}} \frac{\alpha_{i q}^{2}}{m_{q}}=\frac{\sum_{q \in \mathcal{Q}_{i}} m_{q} \sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}\left[\zeta-d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{q}\right)\right]^{2}}{\lambda^{2}}
$$

and for indexes $q \in \mathcal{Q}_{i}$,

$$
\sum_{q \in \mathcal{Q}_{i}} \frac{\alpha_{i q}^{2}}{m_{q}}=\sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}
$$

Thus we get

$$
\begin{equation*}
\sum_{q \in \mathcal{Q}_{i}} m_{q}\left[\zeta-d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{q}\right)\right]^{2}=\lambda^{2} \tag{11}
\end{equation*}
$$

The discriminant of Eq. 11, should satisfy the following property:

$$
\begin{equation*}
\left(\sum_{q \leqslant q_{i}} m_{\sigma(q)} \Xi_{i}^{\sigma(q)}\right)^{2}-\left(\sum_{q \leqslant q_{i}} m_{\sigma(q)}\right)\left(\sum_{q \leqslant q_{i}} m_{\sigma(q)}\left(\Xi_{i}^{\sigma(q)}\right)^{2}-\lambda^{2}\right) \geqslant 0 \tag{12}
\end{equation*}
$$

where q_{i} is the largest index that makes Eq. (12) hold. Thus ζ is the larger solution of Eq. (11). In addition, ζ should satisfies Eq. 10. Thus

$$
q_{i}=\arg \max _{t}\left\{t \mid \zeta \geqslant \Xi_{i}^{\sigma(t)} \wedge\left(\sum_{q \leqslant t} m_{\sigma(q)} \Xi_{i}^{\sigma(q)}\right)^{2} \geqslant\left(\sum_{q \leqslant t} m_{\sigma(q)}\right)\left(\sum_{q \leqslant t} m_{\sigma(q)}\left(\Xi_{i}^{\sigma(q)}\right)^{2}-\lambda^{2}\right)\right\}
$$

Notice that $\mathbf{1}^{\top} \boldsymbol{\alpha}_{i}=1$, thus we have

$$
\sum_{q \in \mathcal{Q}_{i}} \alpha_{q}=\frac{\sum_{q \in \mathcal{Q}_{i}} m_{q} \sqrt{\sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}}\left[\zeta-d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{q}\right)\right]}{\lambda}=1
$$

Thus we obtain

$$
\sqrt{\sum_{j=1}^{N} \frac{\alpha_{i j}^{2}}{m_{j}}}=\frac{\lambda}{\sum_{q \in \mathcal{Q}_{i}} m_{q}\left[\zeta-d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{q}\right)\right]} .
$$

Thus we get the required result

$$
\alpha_{i j}^{\star}=\left[\frac{m_{j}\left(\zeta-\Xi_{i}^{j}\right)}{\sum_{q \leqslant q_{i}} m_{\sigma(q)}\left(\zeta-\Xi_{i}^{\sigma(q)}\right)}\right]_{+},
$$

where $[\cdot]_{+}=\max (\cdot, 0)$.

C Proof of Theorem 3 and Lemma 2

First we prove that maximizing Eq. (6) is equivalent to maximizing Eq. (7).
Lemma 4. Maximizing the objective $\sum_{i, j}\left(\frac{w_{i j}}{2 W}-\frac{d_{i} d_{j}}{4 W^{2}}\right) \boldsymbol{\nu}_{i} \cdot \boldsymbol{\nu}_{j}$ is equivalent to maximizing objective $\sum_{\mathcal{M}^{+}} \mathcal{M}_{i j} \boldsymbol{\nu}_{i} \cdot \boldsymbol{\nu}_{j}+\sum_{\mathcal{M}^{-}}-\mathcal{M}_{i j}\left(1-\boldsymbol{\nu}_{i} \cdot \boldsymbol{\nu}_{j}\right)$ where $\mathcal{M}=\frac{w_{i j}}{2 W}-\frac{d_{i} d_{j}}{4 W^{2}}$.

Proof. Note that $\sum_{i j} \mathcal{M}_{i j}=0$, thus $P=\sum_{\mathcal{M}^{+}} \mathcal{M}_{i j}=\sum_{\mathcal{M}^{-}}-\mathcal{M}_{i j}$ is a constant. Add constant P to the original objective, then the new objective is

$$
\begin{aligned}
\sum_{i, j}\left(\frac{w_{i j}}{2 W}-\frac{d_{i} d_{j}}{4 W^{2}}\right) \boldsymbol{\nu}_{i} \cdot \boldsymbol{\nu}_{j}+P & =\sum_{i, j} \mathcal{M}_{i j} \boldsymbol{\nu}_{i} \cdot \boldsymbol{\nu}_{j}+\sum_{\mathcal{M}^{-}}-\mathcal{M}_{i j} \\
& =\sum_{\mathcal{M}^{+}} \mathcal{M}_{i j} \boldsymbol{\nu}_{i} \cdot \boldsymbol{\nu}_{j}+\sum_{\mathcal{M}^{-}}-\mathcal{M}_{i j}\left(1-\boldsymbol{\nu}_{i} \cdot \boldsymbol{\nu}_{j}\right)
\end{aligned}
$$

Thus maximizing these two objective is equivalent.
Then we prove Lemma 2
Proof. Suppose $\mathcal{G}=\left\{G_{1}, \ldots, G_{K}\right\}$ is the group partition returned by Algorithm 1. Let $Q(\mathcal{G})$ be the modularity of \mathcal{G}. We have $Q(\mathcal{G})>\kappa \mathrm{OPT}_{Q(\mathcal{G})}-(1-\kappa)$ according to Lemma 1 . Recall that modularity is defined as $Q(\mathcal{G})=\frac{1}{W} \sum_{k}^{K} W_{i n}^{G_{k}}-\frac{1}{4 W^{2}} \sum_{k}^{K}\left(W_{v o l}^{G_{k}}\right)^{2}$. Note that $\sum_{k}^{K} W_{v o l}^{G_{k}}=2 W$. By Cauchy inequality,

$$
\frac{1}{4 W^{2}} \sum_{k}^{K}\left(W_{v o l}^{G_{k}}\right)^{2} \geqslant \frac{1}{4 W^{2}} \frac{1}{K}\left(\sum_{k}^{K} W_{v o l}^{G_{k}}\right)^{2}=\frac{1}{K}
$$

Thus we get

$$
\sum_{k}^{K} W_{i n}^{G_{k}} \geqslant W\left(Q(\mathcal{G})+\frac{1}{K}\right) \geqslant W\left(\kappa \mathrm{OPT}_{Q(\mathcal{G})}-(1-\kappa)+\frac{1}{K}\right)
$$

Since \mathbf{U} is defined as $\mathbf{U}=\mathbf{D}_{i n}^{-\frac{1}{2}} \mathbf{A} \mathbf{A}^{T} \mathbf{D}_{i n}^{-\frac{1}{2}}$, the weight of strong edge in \mathbf{U} satisfies $w_{i j} \leqslant 1$. According to the definition of weak edge, the weight of weak edge satisfies $w_{i j} \leqslant \frac{1}{N}$. Let $\mathcal{E}_{\text {in }}$ be the set of all intra-group edges. The total number of intra-group edges $\left|\mathcal{E}_{i n}\right|=\sum_{k=1}^{K} \frac{N_{k}\left(N_{k}-1\right)}{2}=$ $\frac{1}{2}\left(\sum_{k=1}^{K} N_{k}^{2}-N\right)$. We have that

$$
\begin{aligned}
\sum_{k}^{K} W_{i n}^{G_{k}} & =\sum_{e_{i j} \in Z_{i n}} w_{i j}+\sum_{e_{i j} \in \mathcal{E}_{i n} \backslash Z_{i n}} w_{i j} \\
& \leqslant \sum_{e_{i j} \in Z_{i n}} \frac{1}{N}+\sum_{e_{i j} \in \mathcal{E}_{i n} \backslash Z_{i n}}\left(\left|\mathcal{E}_{i n}\right|-\left|Z_{i n}\right|\right) .
\end{aligned}
$$

Thus we obtain

$$
\begin{aligned}
Z_{i n} & \leqslant \frac{N}{N-1}\left(\left|\mathcal{E}_{i n}\right|-\sum_{k}^{K} W_{i n}^{G_{k}}\right) \\
& \leqslant \frac{N}{2(N-1)}\left[\sum_{k=1}^{K} N_{k}^{2}-N-2 W\left(\kappa \mathrm{OPT}_{Q(\mathcal{G})}-(1-\kappa)+\frac{1}{K}\right)\right] \\
& \leqslant \frac{N}{2(N-1)}\left[\frac{N^{2}}{K}-N-2 W\left(\kappa \mathrm{OPT}_{Q(\mathcal{G})}+\kappa-1+\frac{1}{K}\right)\right] \\
& =\frac{N}{2(N-1)}\left[\frac{N^{2}-K N}{K}-2 W\left((\kappa+1) \mathrm{OPT}_{Q(\mathcal{G})}-\frac{K-1}{K}\right)\right]
\end{aligned}
$$

Assume there are x_{k} bad client in group G_{k}, which will yield $x_{k}\left(N_{k}-x_{k}\right)$ weak edge in group G_{k}. Thus we have

$$
Z_{i n} \geqslant \sum_{k=1}^{K} x_{k}\left(N_{k}-x_{k}\right) \geqslant x_{1}\left(N_{\min }-x_{1}\right)
$$

Since $N_{\text {min }} \geqslant \sqrt{2 Z_{\text {in }}}$, we have $x_{1} \leqslant \frac{N_{\text {min }}-\sqrt{N_{\text {min }}^{2}-4 Z_{i n}}}{2} \leqslant \frac{N_{1}}{2}$. Since $N_{\text {min }}=\min _{k} N_{k}$, one bad client in other groups will yield more weak edge than in $G_{\text {min }}^{2}$ corresponding to $N_{\text {min }}$. Thus $|\mathcal{B}| \leqslant \frac{N_{\text {min }}-\sqrt{N_{\text {min }}^{2}-4 Z_{i n}}}{2}$.

To prove Theorem 3 we first provide the following supporting lemma.
Lemma 5. Suppose two vectors $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{R}^{N}$ which satisfy $\sum_{i=1}^{N} \alpha_{i} \beta_{i} \geqslant \tau$ where $\tau \geqslant \frac{1}{N}$ is a constant, then

$$
\sum_{i=1}^{N}\left(\alpha_{i}-\beta_{i}\right)^{2} \leqslant(1-\tau)^{2} \frac{N}{N-1}
$$

Proof. We seek to maximize the distance between $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, which can be formalized as follows.

$$
\begin{align*}
\min _{\boldsymbol{\alpha}, \boldsymbol{\beta}} & \|\boldsymbol{\alpha}-\boldsymbol{\beta}\|_{2}^{2} \\
\text { s.t. } & \sum_{i=1}^{N} \alpha_{i}=1, \sum_{i=1}^{N} \beta_{i}=1, \tag{13}\\
& \sum_{i=1}^{N} \alpha_{i} \beta_{i} \geqslant \tau .
\end{align*}
$$

The Lagrangian function of Eq. [13] is

$$
\mathbb{L}\left(\boldsymbol{\alpha}, \boldsymbol{\beta}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=-\sum_{i=1}^{N}\left(\alpha_{i}-\beta_{i}\right)^{2}-\lambda_{1}\left(\sum_{i=1}^{N} \alpha_{i}-1\right)-\lambda_{2}\left(\sum_{i=1}^{N} \beta_{i}-1\right)-\lambda_{3}\left(\sum_{i=1}^{N} \alpha_{i} \beta_{i}-\tau\right)
$$

The following Karush-Kuhn-Tucker (KKT) condition holds.

$$
\left\{\begin{array}{l}
\partial_{\boldsymbol{\alpha}} \mathbb{L}\left(\boldsymbol{\alpha}, \boldsymbol{\beta}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=0, \partial_{\boldsymbol{\beta}} \mathbb{L}\left(\boldsymbol{\alpha}, \boldsymbol{\beta}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=0 \\
\sum_{i=1}^{N} \alpha_{i} \beta_{i} \geqslant \tau, \lambda_{3} \geqslant 0, \lambda_{3}\left(\sum_{i=1}^{N} \alpha_{i} \beta_{i}-\tau\right)=0 \\
\sum_{i=1}^{N} \alpha_{i}=1, \sum_{i=1}^{N} \beta_{i}=1
\end{array}\right.
$$

Let the partial derivative equals to zero with respect to $\alpha_{i}, \forall i \in\{1, \ldots, N\}$.

$$
\partial_{\alpha_{i}} \mathbb{L}\left(\boldsymbol{\alpha}, \boldsymbol{\beta}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=-2\left(\alpha_{i}-\beta_{i}\right)-\lambda_{1}-\lambda_{3} \beta_{i}=0
$$

Thus we get

$$
\alpha_{i}=\frac{\left(2-\lambda_{3}\right) \beta_{i}-\lambda_{1}}{2}
$$

Note that $\sum_{i=1}^{N} \alpha_{i}=1$ and $\sum_{i=1}^{N} \beta_{i}=1$.

$$
\sum_{i=1}^{N} \alpha_{i}=\sum_{i=1}^{N} \frac{\left(2-\lambda_{3}\right) \beta_{i}-\lambda_{1}}{2}=1-\frac{\lambda_{3}}{2}-\frac{\lambda_{1}}{2} N=1
$$

Thus $\lambda_{3}=-N \lambda_{1}$. Analogously, $\lambda_{3}=-N \lambda_{2}$. Set $\lambda_{1}=\lambda_{2}=-\lambda \neq 0$ and thus $\lambda_{3}=N \lambda \neq 0$. Substituting λ_{1} with $-\lambda$ and λ_{3} with $N \lambda$, we have

$$
\alpha_{i}=\frac{(2-N \lambda) \beta_{i}+\lambda}{2}
$$

Since $\lambda_{3}\left(\sum_{i=1}^{N} \alpha_{i} \beta_{i}-\tau\right)=0$, we have $\sum_{i=1}^{N} \alpha_{i} \beta_{i}=\tau$.

$$
\sum_{i=1}^{N} \alpha_{i} \beta_{i}=\sum_{i=1}^{N} \frac{(2-N \lambda) \beta_{i}^{2}+\lambda \beta_{i}}{2}=\frac{\lambda}{2}+\frac{2-N \lambda}{2} \sum_{i=1}^{N} \beta_{i}^{2}=\tau
$$

Denote $\sum_{i=1}^{N} \beta_{i}^{2}=x$, then

$$
\lambda=\frac{2 x-2 \tau}{N x-1}>0
$$

Thus $x>\tau \geqslant \frac{1}{N}$. Since $1 \geqslant \sum_{i=1}^{N} \beta_{i}^{2} \geqslant \frac{1}{N}\left(\sum_{i=1}^{N} \beta_{i}\right)^{2}=\frac{1}{N}$, thus $x \in[\tau, 1]$.
The distance is then

$$
\sum_{i=1}^{N}\left(\alpha_{i}-\beta_{i}\right)^{2}=\sum_{i=1}^{N}\left(\frac{\lambda-N \lambda \beta_{i}}{2}\right)^{2}=\frac{N(x-\tau)^{2}}{(N x-1)}
$$

Let $f(x)=\frac{(x-\tau)^{2}}{(N x-1)}$ with its derivative

$$
f^{\prime}(x)=\frac{N x^{2}-2 x+2 \tau-N \tau^{2}}{(N x-1)^{2}}
$$

Obviouly, $f^{\prime}(x) \geqslant 0$ when $x \in[\tau, 1]$. Thus $f(x)$ is monotonically increasing for $x \in[\tau, 1]$. Thus we get the required result

$$
\sum_{i=1}^{N}\left(\alpha_{i}-\beta_{i}\right)^{2} \leqslant N f(1)=(1-\tau)^{2} \frac{N}{N-1}
$$

We use the above lemma to prove Theorem 3

Proof. Since \mathbf{U} is defined as $\mathbf{U}_{i n}=\mathbf{D}_{i n}^{-\frac{1}{2}} \mathbf{A} \mathbf{A}^{T} \mathbf{D}_{i n}^{-\frac{1}{2}}$, its elements are expressed as $U_{i j}=$ $\frac{1}{\sqrt{d_{i}^{i n} d_{j}^{i n}}} \sum_{t=1}^{N} A_{i t} A_{j t}$. Note that $d_{i}^{i n}=\sum_{j=1}^{N} \alpha_{i j}^{\star}=1$ and $A_{i t}=\alpha_{i t}^{\star}$. Thus $U_{i j}=\sum_{t=1}^{N} \alpha_{i t}^{\star} \alpha_{j t}^{\star}$. Considering two good clients C_{i} and C_{j}. If $e_{i j}$ is a strong edge, i.e., $w_{i j} \geqslant \frac{1}{N}$, then $\left\|\boldsymbol{\alpha}_{i}^{\star}-\boldsymbol{\alpha}_{j}^{\star}\right\|_{2} \leqslant$ $(1-\tau) \sqrt{\frac{N}{N-1}}$ according to Lemma 5 Otherwise, C_{i} can reach C_{j} through a path whose length is less than η. According to the triangle inequality, $\left\|\boldsymbol{\alpha}_{i}^{\star}-\boldsymbol{\alpha}_{j}^{\star}\right\|_{2} \leqslant \eta(1-\tau) \sqrt{\frac{N}{N-1}}$.

Note that $f(x)=x^{2}$ is a convex function on $[0, \infty)$. According to Jensen inequality, $f\left(\frac{1}{N} \sum_{i=1}^{N}\left|x_{i}\right|\right) \leqslant \frac{1}{N} \sum_{i=1}^{N} f\left(\left|x_{i}\right|\right)$. Thus

$$
\left(\frac{1}{N} \sum_{i=1}^{N}\left|x_{i}\right|\right)^{2} \leqslant \frac{1}{N} \sum_{i=1}^{N}\left|x_{i}\right|^{2} \Rightarrow\|\boldsymbol{x}\|_{1}=\sum_{i=1}^{N}\left|x_{i}\right| \leqslant \sqrt{N \sum_{i=1}^{N}\left|x_{i}\right|^{2}}=\sqrt{N}\|\boldsymbol{x}\|_{2}
$$

Thus we get the required result

$$
\begin{aligned}
\operatorname{upp}\left(\hat{h}_{G_{k}}\right)-\operatorname{upp}\left(\hat{h}_{\boldsymbol{\alpha}_{i}^{\star}}\right) & =2 \sum_{j=1}^{N}\left(\alpha_{G_{k} j}-\alpha_{i j}^{\star}\right) d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right)+2 \lambda\left(\sqrt{\sum_{j=1}^{N} \frac{\alpha_{G_{k} j}^{2}}{m_{j}}}-\sqrt{\sum_{j=1}^{N} \frac{\alpha_{i j}^{\star 2}}{m_{j}}}\right) \\
& \leqslant 2\left|\sum_{j=1}^{N}\left(\alpha_{G_{k} j}-\alpha_{i j}^{\star}\right)\right|+2 \lambda \sqrt{\sum_{j=1}^{N} \frac{\left(\alpha_{G_{k} j}-\alpha_{i j}^{\star}\right)^{2}}{m_{j}}} \\
& \leqslant 2\left\|\boldsymbol{\alpha}_{G_{k}}-\boldsymbol{\alpha}_{i}^{\star}\right\|_{1}+2 \lambda\left\|\boldsymbol{\alpha}_{G_{k}}-\boldsymbol{\alpha}_{i}^{\star}\right\|_{2} \\
& \leqslant O\left(\eta(1-\tau) \sqrt{\frac{N}{N-1}}\right) .
\end{aligned}
$$

D Proof of Theorem 4 and Lemma 3

First we prove Lemma 3 .

Proof. When $\left\{\boldsymbol{\alpha}_{1}^{\star}, \ldots, \boldsymbol{\alpha}_{N}^{\star}\right\}$ satisfy the $(1+\gamma, \epsilon)$-approximation-stability property, let $\mathcal{P}^{\star}=$ $\left\{P_{1}^{\star}, \ldots, P_{K}^{\star}\right\}$ be the optimal group partition with the minimum $\Phi(\mathcal{P})$. The average distance in \mathcal{P}^{\star} is defined as $\bar{d}=\frac{1}{N} \operatorname{OPT}_{\Phi(\mathcal{P})}$. For any constant $t>2$, lemma 3 in Balcan et al. (2009) reveals that there are less than $6 \epsilon N$ clients with $d_{2}\left(\boldsymbol{\alpha}_{i}^{\star}\right)-d_{1}\left(\boldsymbol{\alpha}_{i}^{\star}\right) \leqslant \frac{\gamma \bar{d}}{2 \epsilon}$ and less than $\frac{t \epsilon N}{\gamma}$ clientss with $d_{1}\left(\boldsymbol{\alpha}_{i}^{\star}\right) \geqslant \frac{\gamma \bar{d}}{t \epsilon}$ in \mathcal{P}^{\star}. Recall that the critical distance in \mathcal{P}^{\star} is defined as $d^{\star}=\frac{\gamma \bar{d}}{t \epsilon}$. In Algorithm 2, we run a constant-factor K-median approximation algorithm on $\left\{\boldsymbol{\alpha}_{1}^{\star}, \ldots, \boldsymbol{\alpha}_{N}^{\star}\right\}$ to compute an estimate $\hat{d} \in[\bar{d}, \beta \bar{d}]$ where $\beta>1$ is a given constant. Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{K}\right\}$ be the group partition returned by the DIVIDE part in Algorithm 2 Note that the critical distance in \mathcal{P} is defined as $\hat{d}^{\star}=\frac{\gamma \hat{d}}{\beta t \epsilon} \leqslant \frac{\gamma \bar{d}}{t \epsilon}=d^{\star}$. We have that the set $\mathcal{B}=\left\{\boldsymbol{\alpha}_{i}^{\star} \in S \left\lvert\, d_{1}\left(\boldsymbol{\alpha}_{i}^{\star}\right) \geqslant \hat{d}^{\star} \vee d_{2}\left(\boldsymbol{\alpha}_{i}^{\star}\right)-d_{1}\left(\boldsymbol{\alpha}_{i}^{\star}\right) \leqslant \frac{t}{2} \hat{d}^{\star}\right.\right\}$ of bad clients in $\hat{\mathcal{P}}$ has size $|\mathcal{B}|<\left(6+\frac{t}{\gamma}\right) \beta \epsilon N$.

Then we prove Theorem 4

Proof. For good client C_{i} in group $P_{k}, d_{1}\left(\boldsymbol{\alpha}_{i}^{\star}\right) \leqslant \hat{d}^{\star}=\frac{\gamma \hat{d}}{\beta t \epsilon} \leqslant \frac{\gamma \bar{d}}{t \epsilon}$. According to the equivalence of norms in the normed vector spaces, we assume $d(\cdot, \cdot)=\|\cdot\|_{1}$. Notice the following inequality:

$$
\|\boldsymbol{x}\|_{2}=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}} \leq \sum_{i=1}^{N}\left(\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}=\sum_{i=1}^{N}\left|x_{i}\right|=\|\boldsymbol{x}\|_{1}
$$

Let $\boldsymbol{\alpha}_{P_{k}}$ be the average collaboration vector that Algorithm 2 uses to train model $h_{\boldsymbol{\alpha}_{P_{k}}}$ for group P_{k}. Then we get the required result

$$
\begin{aligned}
u p p\left(\hat{h}_{P_{k}}\right)-u p p\left(\hat{h}_{\boldsymbol{\alpha}_{i}^{\star}}\right) & =2 \sum_{j=1}^{N}\left(\alpha_{P_{k} j}-\alpha_{i j}^{\star}\right) d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right)+2 \lambda\left(\sqrt{\sum_{j=1}^{N} \frac{\alpha_{P_{k} j}^{2}}{m_{j}}}-\sqrt{\sum_{j=1}^{N} \frac{\alpha_{i j}^{\star 2}}{m_{j}}}\right) \\
& \leqslant 2\left|\sum_{j=1}^{N}\left(\alpha_{P_{k} j}-\alpha_{i j}^{\star}\right)\right|+2 \lambda \sqrt{\sum_{j=1}^{N} \frac{\left(\alpha_{P_{k} j}-\alpha_{i j}^{\star}\right)^{2}}{m_{j}}} \\
& \leqslant 2\left\|\boldsymbol{\alpha}_{P_{k}}-\boldsymbol{\alpha}_{i}^{\star}\right\|_{1}+2 \lambda\left\|\boldsymbol{\alpha}_{P_{k}}-\boldsymbol{\alpha}_{i}^{\star}\right\|_{2} \\
& \leqslant(2+2 \lambda)\left\|\boldsymbol{\alpha}_{P_{k}}-\boldsymbol{\alpha}_{i}^{\star}\right\|_{1} \\
& \leqslant O\left(\frac{\gamma \mathrm{OPT}_{\Phi(\mathcal{P})}}{\epsilon t N}\right) .
\end{aligned}
$$

E Proof of the relationships between two divergences

We begin by proving some useful lemmas.
Let $(\mathcal{X}, \mathcal{A})$ be a measurable space. Let P and Q be two probability measures on $(\mathcal{X}, \mathcal{A})$. Suppose that ν is a σ-finite measure on $(\mathcal{X}, \mathcal{A})$ satisfying $P \ll \nu$ and $Q \ll \nu$. Define $p=d P / d \nu$, and $q=d Q / d \nu$. The total variation distance between P and Q is defined as follows:

$$
V(P, Q)=\sup _{A \in \mathcal{A}}|P(A)-Q(A)|=\sup _{A \in \mathcal{A}}\left|\int_{A}(p-q) d \nu\right| .
$$

It is easy to prove that $V(P, Q)$ satisfies the axioms of distance and $0 \leq V(P, Q) \leq 1$. In this section, we will often write for brevity $\int(\ldots)$ instead of $\int(\ldots) d \nu$ for simplicity.
Lemma 6.

$$
V(P, Q)=\frac{1}{2} \int|p-q| d \nu=1-\int \min (p, q) d \nu
$$

Proof. Denote $A_{0}=\{x \in \mathcal{X}: q(x) \geq p(x)\}$. Then we get $\int|p-q| d \nu=2 \int_{A_{0}}(q-p) d \nu$ and

$$
V(P, Q) \geq Q\left(A_{0}\right)-P\left(A_{0}\right)=\frac{1}{2} \int|p-q| d \nu=1-\int \min (p, q) d \nu
$$

On the other hand, for all $A \in \mathcal{A}$ we have

$$
\begin{aligned}
\left|\int_{A}(q-p) d \nu\right| & =\left|\int_{A \cap A_{0}}(q-p) d \nu+\int_{A \cap A_{0}^{c}}(q-p) d \nu\right| \\
& \leq \max \left\{\int_{A_{0}}(q-p) d \nu, \int_{A_{0}^{c}}(p-q) d \nu\right\}=\frac{1}{2} \int|p-q| d \nu
\end{aligned}
$$

where A_{0}^{c} is the complement of A_{0}. Then $V(P, Q)=Q\left(A_{0}\right)-P\left(A_{0}\right)$ implies the required result.

Lemma 7.

$$
\int \min (p, q) d \nu \geq \frac{1}{2}\left(\int \sqrt{d P d Q}\right)^{2}
$$

Proof. By noticing that $\int \max (p, q)+\int \min (p, q)=2$, we obtain

$$
\begin{aligned}
\left(\int \sqrt{p q}\right)^{2} & =\left(\int \sqrt{\min (p, q) \max (p, q)}\right)^{2} \leq \int \min (p, q) \int \max (p, q) \\
& =\int \min (p, q)\left[2-\int \min (p, q)\right] \leq 2 \int \min (p, q)
\end{aligned}
$$

which proves the required inequality.

Lemma 8.

$$
\int \min (p, q) d \nu \geq \frac{1}{2} \exp \left(-d_{\mathrm{KL}}(P \| Q)\right)
$$

where $d_{\mathrm{KL}}(P \| Q)$ is the Kullback-Leibler $(K L)$ divergence.
Proof. It is sufficient to assume that $d_{\mathrm{KL}}(P \| Q)<+\infty$. Using the Jensen inequality we get

$$
\begin{aligned}
\left(\int \sqrt{p q}\right)^{2} & =\exp \left(2 \log \int_{p q>0} \sqrt{p q}\right)=\exp \left(2 \log \int_{p q>0} p \sqrt{\frac{q}{p}}\right) \\
& \geq \exp \left(2 \int_{p q>0} p \log \sqrt{\frac{q}{p}}\right)=\exp \left(d_{\mathrm{KL}}(P \| Q)\right) .
\end{aligned}
$$

By comparing this result with that in Lemma 7 we yield the required result.

Now we prove the result in our paper.
Proof. When the hypothesis space \mathcal{H} is the class of functions taking values in $[-1,1]$, the Integral Probability Metrics (IPM) $d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right)=\sup _{h \in \mathcal{H}}\left|\mathcal{L}_{\mathcal{D}_{i}}(h)-\mathcal{L}_{\mathcal{D}_{j}}(h)\right|$ can also be viewed as the total variation distance. According to Pinsker's inequality we have

$$
d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right) \leqslant \sqrt{\frac{d_{\mathrm{KL}}\left(\mathcal{D}_{i} \| \mathcal{D}_{j}\right)}{2}}
$$

where $d_{\mathrm{KL}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right)$ is the Kullback-Leibler (KL) divergence. We can get the following result by noticing that $d_{\mathrm{JS}}\left(\mathcal{D}_{i} \| \mathcal{D}_{j}\right)=\frac{1}{2} d_{\mathrm{KL}}\left(\mathcal{D}_{i} \| \mathcal{D}_{j}\right)+\frac{1}{2} d_{\mathrm{KL}}\left(\mathcal{D}_{j} \| \mathcal{D}_{i}\right)$ where $d_{\mathrm{JS}}\left(\mathcal{D}_{i} \| \mathcal{D}_{j}\right)$ is the Jensen-Shannon (JS) divergence

$$
2 d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right)^{2} \leqslant \frac{d_{\mathrm{KL}}\left(\mathcal{D}_{i} \| \mathcal{D}_{j}\right)}{2}+\frac{d_{\mathrm{KL}}\left(\mathcal{D}_{j} \| \mathcal{D}_{i}\right)}{2} \Longleftrightarrow d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right) \leqslant \sqrt{\frac{d_{\mathrm{JS}}\left(\mathcal{D}_{i} \| \mathcal{D}_{j}\right)}{2}} .
$$

By combining Lemma 6 and Lemma 8, we can easily obtain that

$$
d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right) \leq 1-\frac{1}{2} \exp \left(-d_{\mathrm{KL}}\left(\mathcal{D}_{i} \| \mathcal{D}_{j}\right)\right)
$$

Notice that

$$
\begin{gathered}
-\log \left(2-2 d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right)\right) \leqslant \frac{d_{\mathrm{KL}}\left(\mathcal{D}_{i} \| \mathcal{D}_{j}\right)}{2}+\frac{d_{\mathrm{KL}}\left(\mathcal{D}_{j} \| \mathcal{D}_{i}\right)}{2} \\
\Longleftrightarrow d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right) \leq 1-\frac{1}{2} \exp \left(-d_{\mathrm{JS}}\left(\mathcal{D}_{i} \| \mathcal{D}_{j}\right)\right)
\end{gathered}
$$

Thus we get the required result

$$
d_{\mathcal{H}}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right) \leqslant \min \left\{1-\frac{1}{2} e^{-d_{\mathrm{JS}}\left(\mathcal{D}_{i} \| \mathcal{D}_{j}\right)}, \sqrt{\frac{d_{\mathrm{JS}}\left(\mathcal{D}_{i} \| \mathcal{D}_{j}\right)}{2}}\right\}
$$

