
Collaborative Learning by Detecting

Collaboration Partners

Shu Ding, Wei Wang
⇤

National Key Laboratory for Novel Software Technology
Nanjing University, Nanjing 210023, China
{dings, wangw}@lamda.nju.edu.cn

Abstract

Massive amounts of data are naturally dispersed over different clients in many
real-world applications, collaborative learning has been a promising paradigm
that allows to learn models through collaboration among the clients. However,
leveraging these dispersed data to learn good models is still challenging since
data over different clients are heterogeneous. Previous works mainly focus on
learning the centralized model for all clients or learning a personalized model for
each client. When there are numerous clients, the centralized model performs
badly on some clients, while learning a personalized model for each client costs
unaffordable computational resources. In this paper, we propose the collaborative
learning method to detect collaboration partners and adaptively learn K models
for numerous heterogeneous clients. We theoretically prove that the model learned
for each client is a good approximation of its personalized model. Experimental
results on real-world datasets verify the effectiveness of our method.

1 Introduction

In many real-world applications, massive amounts of data are naturally dispersed over numerous
clients and each client only has limited data. The model trained with local data on each client has poor
performance since local data are insufficient. Leveraging these dispersed data on these clients to build
well-generalized models is challenging. In recent years, collaborative learning has been a promising
paradigm that enables the clients to collaboratively learn the models (Blum et al., 2017). Blum et al.
(2017) formalized two settings of collaborative learning, i.e., personalized setting and centralized
setting. The personalized setting allows to return a model for each client, while the centralized setting
only allows to return one single model for all clients. They evaluated the efficiency of collaborative
learning with overhead, i.e., the ratio between the sample complexity of collaborative learning and its
non-collaborative counterpart, and proved that the overhead of personalized setting is O(lnN) and
the overhead of centralized setting is O(ln

2
N). Later, Nguyen & Zakynthinou (2018) and Chen et al.

(2018) proved that the overhead of centralized setting could be improved to O(lnN), which matches
its lower bound ⌦(lnN).

Generally, the data on different clients come from heterogeneous distributions. For example, in the
credit card fraud behavior detection task, the users’ revenue and expenditure behavior and credit
rating information are different among banks in regions with diverse socioeconomic characteristics.
To deal with heterogeneous data, Mohri et al. (2019) proposed Agnostic Federated Learning which
optimizes the performance of the model for the single worst client with the min-max optimization
scheme. Mansour et al. (2020) and Deng et al. (2020) advocated that combining local and global
models could improve the generalization ability. Nevertheless, the learned single model may perform
badly on clients whose distributions are different from the average distribution over all clients.

⇤Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

To achieve good performance, a personalized model should be learned for each client, but learning
these personalized models is impractical when the number of clients N is very large since this costs
unaffordable computational resources. Intuitively, it’s better to return K (1 6 K ⌧ N) appropriate
models by analyzing the collaboration relationships among N heterogeneous clients. We expect that
the performance of the returned model is comparable to that of each client’s optimal personalized
model. Based on this intuition, in this paper we propose the collaborative learning method to detect
collaboration partners for each client and adaptively learn K models for N heterogeneous clients.
We first estimate each client’s contribution based on the derived generalization bound, and then
partition the clients into K groups and return a model for each group. We also theoretically prove
that the model returned for each client is a good approximation of its optimal personalized model.
Experimental results on real-world datasets verify the effectiveness of our method.

2 Related Work

Blum et al. (2017) first theoretically studied collaborative learning and defined overhead as the ratio
between the sample complexity of collaborative learning and its non-collaborative counterpart. They
proved that the overhead of personalized setting is O(lnN) and the overhead of centralized setting is
O(ln

2
N). Later, Nguyen & Zakynthinou (2018) and Chen et al. (2018) proved that the overhead of

centralized setting could be improved to O(lnN) by using multiplicative weights methods, which
matches its lower bound ⌦(lnN). When there are an ⌘ fraction of malicious clients, Qiao (2018)
proposed an algorithm that achieves O(⌘N + lnN) overhead, which is proved to be the worst-case
optimal. Since the communication cost between clients and the central server is expensive, Blum
et al. (2021) developed algorithms by using distributed boosting to reduce the communication cost
without compromising the sample complexity.

To deal with data heterogeneity, Mohri et al. (2019) proposed Agnostic Federated Learning, which
optimizes the performance of the model for the single worst client with the min-max optimization
scheme. Mansour et al. (2020) proved that one single model generalizes badly on the clients whose
distributions vary from the average distribution. Mansour et al. (2020) and Deng et al. (2020)
advocated that the mixture of local and global models could improve the generalization ability. Li
et al. (2020) highlighted the detrimental effects of heterogeneity by observing that heterogeneity
leads to poor convergence rate. They proposed FedProx to tackle heterogeneity and provided
convergence guarantee. Wang et al. (2020b) proposed the normalized averaging method FedNova
to eliminate objective inconsistency while preserving fast convergence rate. Dinh et al. (2020)
proposed a personalized algorithm pFedMe by using Moreau envelops as regularized loss functions
and theoretically showed it could obtain quadratic speedup. Huang et al. (2020) proposed a novel
framework FEDAMP which allows each client to collaboratively train its own model without using
the global model and provided the convergence guarantee. These works mainly focus on learning
the global model which performs well on the average distribution. However, it may perform badly
on the clients whose distributions are different from the average distribution. In a concurrent work
(Even et al., 2022), the authors proposed methods to achieve the tradeoff between personalization and
coordination, which tackles the same problem in our paper from a different perspective.

Client selection has also been studied in some works. Considering that different groups of clients may
have different learning objectives, Ghosh et al. (2020) proposed IFCA which alternately estimates
the cluster identities of the clients and optimizes the models for each cluster. Fraboni et al. (2021)
introduced clustered sampling with better client representativity to reduced variance of the clients
stochastic aggregation weights and provided two cluster approaches based on sample size and model
similarity. Tuor et al. (2020) proposed a method for selecting relevant data for model training, where
they used the model trained on the benchmark dataset which is task-specific to evaluate the data
relevance. Cui et al. (2022) studied a rational collaboration scheme called collaboration equilibrium
where each client collaborates with certain members who maximally improve the model learning
and isolates the others who make little contribution. However, these works are heuristic and lack
theoretical support.

3 Preliminaries

Let X be the instance space and Y = {0, 1} is the label space. In the collaborative learning setting,
there are N clients {C1, . . . , CN} with distributions {D1, . . . ,DN}. In practice, client Ci only has

2

access to mi examples Si =
��

xi
1, y

i
1

�
, . . . ,

�
xi
mi

, y
i
mi

�
drawn from distribution Di, i = 1, . . . , N .

Let M =
PN

i=1 mi be the total number of examples. We consider the hypothesis space H with
VC dimension d. A hypothesis h 2 H is a mapping h : X ! Y . Let l be the loss function and
l(h(x), y) is the loss of hypothesis h 2 H on example (x, y). We assume that l is upper bounded by
a constant µ. For client Ci, denote LDi(h) as the expected risk of a hypothesis h 2 H with respect to
distribution Di and L̂Si(h) is the empirical risk of a hypothesis h 2 H with respect to sample Si :

LDi(h) = E
(x,y)⇠Di

[l(h(x), y)], L̂Si(h) =
1

mi

miX

j=1

[l(h(xi
j), y

i
j)].

For client Ci, its goal is to pursue the model h?
i that minimizes the expected risk on its local

distribution Di, i.e., h?
i = argminh2H LDi(h). Nevertheless, it is impractical to find h

?
i since

Ci only has access to limited mi examples. Thus the key incentive of clients Ci participating in
collaboration is the desire of seeking the model that could generalize well on its local distribution Di

with samples {S1, . . . , SN} from all the clients.

4 Our Work

In collaborative learning scenarios, the common strategy is to train the model over the weighted
union of all samples, i.e., S↵ =

PN
j=1 ↵jSj (McMahan et al., 2017; Mohri et al., 2019). Here ↵ =

(↵1, . . . ,↵N) 2 �
N where �

N is the N -simplex, i.e.,
PN

j=1 ↵j = 1 and ↵j > 0 for j = 1, . . . , N .
The weighted empirical risk L̂↵(h) associated to hypothesis h 2 H can be denoted as L̂↵(h) =PN

j=1 ↵jL̂Sj (h). In this way, the weighted empirical risk L̂↵i(h) for client Ci can be denoted
as L̂↵i(h) =

PN
j=1 ↵ijL̂Sj (h) with the corresponding collaboration vector ↵i = (↵i1, . . . ,↵iN).

The model for Ci can be learned by minimizing L̂↵i(h). Let ĥ↵i = argminh2H L̂↵i(h) be the
hypothesis that minimizes the weighted empirical risk L̂↵i(h). We provide the generalization bound
of ĥ↵i for client Ci in the following Theorem 1.
Theorem 1. Let H be the hypothesis space with VC-dimension d. Let h

?
i = argminh2H LDi(h)

be the hypothesis that minimizes the expected risk on Di and ĥ↵i = argminh2H L̂↵i(h) is the

hypothesis that minimizes the weighted empirical risk. For any given � 2 (0, 1) and 8i 2 {1, . . . , N},

the following bound holds with probability at least 1� �:

LDi(ĥ↵i)� LDi(h
?
i) 6 2

NX

j=1

↵ijdH(Di,Dj) + 2µ

vuut
NX

j=1

↵2
ij

mj

r
8(d log(2M) + log

8

�
). (1)

Here dH(Di,Dj) = suph2H

��LDi(h)� LDj (h)
�� is the Integral Probability Metrics (IPM) which

measures the divergence between distributions Di and Dj .

We leave the proof of Theorem 1 in Appendix A due to space limitation. Theorem 1 reveals that for
client Ci the gap between ĥ↵i and h

?
i depends on the weight ↵i, the number of examples mi and the

IPM divergence. It further suggests that the optimal model for client Ci can be obtained by choosing
appropriate ↵i to minimize the right-hand side of Eq.(1). The optimal ↵?

i = (↵
?
i1, . . . ,↵

?
iN) for

client Ci can be derived with the following Theorem 2.
Theorem 2. For client Ci, let ⌅

j
i = dH(Di,Dj) where j 2 {1, . . . , N}, 8i 2 {1, . . . , N}. Given VC

dimension d, total sample size M , constants µ and �, let � = µ

q
8(d log(2M) + log

8
�). For client

Ci, sort {⌅
1
i , . . . ,⌅

N
i } in ascending order to get {⌅

�(1)
i , . . . ,⌅

�(N)
i }, i.e., ⌅

�(1)
i 6 . . . 6 ⌅

�(N)
i ,

where �(j) 2 {1, . . . , N}. The optimal ↵?
i = {↵

?
i1, . . . ,↵

?
iN} for client Ci is given by

↵
?
ij =

"
mj(⇣ � ⌅

j
i)P

q6qi
m�(q)(⇣ � ⌅

�(q)
i)

#

+

. (2)

Here [·]+ = max(·, 0), ⇣ is the larger root of equation
P

q6qi
m�(q)

⇣
⇣ � ⌅

�(q)
i

⌘2
= �

2
, and qi =

argmax
t

n
t

���⇣ > ⌅
�(t)
i ^

⇣P
q6t m�(q)⌅

�(q)
i

⌘2
>
⇣P

q6t m�(q)

⌘⇣P
q6t m�(q)(⌅

�(q)
i)

2
� �

2
⌘o

.

3

We leave the proof of Theorem 2 in Appendix B. Theorem 2 can be interpreted as follows. The
optimal ↵?

i makes the balance between the divergence and the number of examples. If ↵?
ij > 0,

then Cj is beneficial to Ci in the collaboration process, i.e., Ci can utilize the data on Cj to relieve
the scarcity of its local data. ↵

?
ij represents the contribution that client Cj makes to Ci. We use

the directed graph A = (V,E) to represent the collaboration relationships among clients, where
|V | = N , node i denotes client Ci and the weight of edge from j to i is ↵?

ij . Here we provide an
example in Figure 1 to give a more concrete interpretation. If there exists an edge from node j to
node i, then Ci needs the data from Cj . In Figure 1, the contribution that C2 and C4 need from all
the clients are more similar than that of C4 and C5, i.e., the incoming edges of C2 and C4 are more
similar than that of C4 and C5. We could probably return the same model for C2 and C4 while it is
inappropriate to return the same model for C4 and C5.

1

2

3

4 5

6

7

8

Figure 1: Illustrative example of the directed graph A. Node i denotes client Ci and the weight of
edge from j to i is ↵?

ij .

We refer ĥ↵?
i

with respect to the optimal ↵?
i as the personalized model for client Ci. When the

number of clients N is large, learning a personalized model for each client is impractical since
this costs unaffordable computational resources. An alternate way is to learn K (1 6 K ⌧ N)
appropriate models which are expected to be comparable to the personalized models. Intuitively, if
client Ci and Cj have similar incoming edges, then we can return the same model for them since
they need similar contribution from other clients. In this way, Ci and Cj are called collaboration

partners. This motivates us to partition N clients into K groups based on the idea that collaboration

partners should be in the same group. If we set K = 2 in Figure 1, then the group structure is most
likely to be {C1, C2, C3, C4} and {C5, C6, C7, C8} as shown in Figure 1.

4.1 Collaboration with Modularity Maximization

To evaluate the incoming-edge similarity among clients, we construct matrix U which is defined as
U = D��

in AATD��
in , (3)

where A is the adjacency matrix of the directed graph A, Din is the diagonal matrix of in-degrees in
graph A and � is the discounting parameter. We set � =

1
2 as suggested in Satuluri & Parthasarathy

(2011). Large Uij represents large similarity between clients, which provides the possibility of
detecting the communities for the clients and partitioning collaboration partners into groups.

Modularity has been used as an objective function to evaluate the quality of group partitions by
measuring the density of intra-group edges as compared to inter-group edges (Newman & Girvan,
2004), which is formulated as follows:

Q(G) =
1

W

KX

k

W
Gk
in �

1

4W 2

KX

k

(W
Gk
vol)

2
. (4)

Here G = {G1, . . . , GK} is the group partition. W =
1
2

P
i

P
j wij is the sum of all edge weight.

W
Gk
in =

P
i,j2Gk

wij is the total edge weight within group Gk and W
Gk
vol =

P
i2Gk

P
j wij is the

total edge weight attached to nodes in group Gk. Higher modularity implies better group partitions and
modularity maximization has been widely used for detecting meaningful group partitions (Clauset
et al., 2004; Newman, 2006a,b). Although maximizing modualarity is NP-hard, approximation
guarantees can be obtained by introducing the technique of rounding semidefinite programs. We
rewrite Modularity as follows:

Q(G) =
1

2W

X

i,j

wij �

didj

2W

�
�(gi, gj), (5)

4

where di =
P

j wij is the degree of vertex i, and gi is the group membership of client Ci where
�(gi, gj) = 1 if gi = gj (i.e., client Ci, Cj belong to the same group) and 0 otherwise. Let ej 2 RK

be the unit vector with 1 in the j-th coordinate and 0 elsewhere. Let ⌫i be the variable that indicates
the group membership of client Ci, i.e., ⌫i = ej means Ci belongs to group Gj . Then the modularity
maximization problem can be formulated as the following vector programming:

max

X

i,j

(
wij

2W
�

didj

4W 2
)⌫i · ⌫j (6)

s.t. ⌫i 2 {e1, . . . , eK} , 8i 2 {1, . . . , N}.

Let M denote the modularity matrix with its elements Mij =
wij

2W �
didj

4W 2 . Denote M
+

=

{(i, j) | Mij > 0} and M
�
= {(i, j) | Mij < 0}. Noticing that

P
ij Mij = 0, the above vector

programming can be relaxed to the following SemiDefinite Program (SDP) by adding a constantP
M+ Mij to the objective and relaxing the constraints. The proof can be found in Appendix C.

max

X

M+

Mij⌫i · ⌫j +

X

M�

�Mij (1� ⌫i · ⌫j) (7)

s.t. ⌫i · ⌫i = 1, 8i 2 {1, . . . , N},

⌫i · ⌫j > 0, 8i 6= j,

⌫i 2 RK
, 8i 2 {1, . . . , N}.

Let OPTQ(G) be the maximum value of modularity defined on the similarity matrix U. Dinh et al.
(2015) provided the following result to guarantee the approximation property for the solution of the
SDP in Eq.(7). Lemma 1 implies that we could find reasonable group partitions by solving the SDP
in Eq.(7) for maximizing modularity on U.
Lemma 1. Given matrix U, let Q(G) be the modularity value of the group partition G obtained

by solving the SDP in Eq.(7) using the rounding techniques in Charikar et al. (2003). Then Q(G)

satisfies Q(G) > OPTQ(G) � (1�), where = 0.766 is the approximation factor.

After obtaining the group partitions, we train models for the groups according to their properties.
Since we assign the clients into K groups, there may exist some clients which have small similarity
with other clients in the same group. We should pay attention to these clients.

We call edge eij 2 U the weak edge if its weight satisfies wij <
1
N , else strong edge otherwise.

Given group partition G = {G1, . . . , GK}, let Zin be the number of weak edges within all groups
and Nk is the number of clients in group Gk where

PK
k=1 Nk = N . For client Ci in group Gk, we

call Ci the bad client if Ci is isolated after removing all the weak edges within group Gk. Generally,
we keep the largest part when a group is divided into several disjoint parts after removing all weak
edges within this group, and clients that do not belong to the largest part are bad clients. Otherwise,
we call it the good client. In Figure 1, C1, C2, C3, C4 are in the same group since they have relatively
similar incoming edges, and C5, C6, C7 are in the same group for the same reason. C8 is most likely
to be a bad client since it has less similar incoming edges with C5, C6, C7 in the same group.

To guarantee the performance of the learned models, we pick out the bad clients since they have
small similarity with other clients in the same group. We return ĥ↵Gk

for clients in group Gk which
is obtained by minimizing L̂↵Gk

(h) where ↵Gk =
1

|Gk\B|

P
Ci2Gk\B

↵?
i . We refer this method as

Adaptive Collaborative Learning with Modularity Maximization (ACLMM). The whole process
is summarized in Algorithm 1, where we use the rounding techniques introduced in Charikar et al.
(2003) to solve the SDP in Eq.(7) for modularity maximization to obtain the group partition. Let B
be the set of bad clients in the group partition returned by solving the SDP. We provide the following
Lemma 2 to bound the number of bad clients.
Lemma 2. Given the group partition G = {G1, . . . , GK} returned by Algorithm 1, assume Nk >
2
p
Zin, 8k 2 {1, . . . ,K}. Let Nmin = mink Nk, then |B| satisfies |B| 6 Nmin�

p
N2

min�4Zin

2 ,

where Zin 6 N
2(N�1)

h
N2

�KN
K � 2W

�
(+ 1)OPTQ(G) �

K�1
K

�i
and = 0.766 is a constant.

The proof of Lemma 2 can be found in Appendix C. Lemma 2 indicates that the number of weak
edges within all groups Zin depends on the maximum modularity OPTQ(G) and the number of

5

Algorithm 1 Adaptive Collaborative Learning with Modularity Maximization (ACLMM)
1: procedure TRAIN(K, A)
2: Compute similarity matrix U according to Eq.(3).
3: Obtain G = {G1, . . . , GK} with DIVIDE(K,U).
4: Pick out bad clients into set B.
5: Compute ↵Gk =

1
|Gk\B|

P
Ci2Gk\B

↵?
i for Gk.

6: Train model ĥ↵Gk
by minimizing L̂↵Gk

(h) and return ĥ↵Gk
to all clients Ci in group Gk.

7: end procedure

8: function DIVIDE(K,U)
9: Pick t random hyperplanes and use projection to divide the nodes into 2

t groups.
10: Take the better solution of t = 2 and t = 3 with respect to the SDP relaxation Eq.(7).
11: return Group partition G = {G1, . . . , GK}.
12: end function

groups K. If each group Gk is not too small, i.e., Nk > 2
p
Zin, 8k 2 {1, . . . ,K}, then the number

of bad clients |B| is upper bounded by the number of weak edges.

We further theoretically analyze the generalization bound of the models returned for the clients. Given
group partition G = {G1, . . . , GK} returned by solving the SDP, we remove all the weak edges
within all groups. For any good clients Ci and Cj in the same group, there always exits a shortest
path pij between them since good clients in the same group are connected through strong edges.
Let ⌘ denote the maximum pij between any good clients Ci and Cj in group Gk, 8k 2 {1, . . . ,K}.
Denote ⌧ = mineij2Ein wij where Ein is the set of strong edges within all groups. We provide
Theorem 3 to show that the model returned by Algorithm 1 for each good client is an approximation
of its personalized model.

Theorem 3. Let G = {G1, . . . , GK} be the group partition returned by solving the SDP. ĥ↵Gk
is the

model returned by Algorithm 1 for client Ci in group Gk. Let upp(ĥ↵Gk
) be the upper bound of the

expected risk of ĥ↵Gk
on Ci according to the right-hand side of Eq.(1) and upp(ĥ↵?

i
) is the upper

bound of the expected risk of the personalized model ĥ↵?
i

on Ci according to the right-hand side of

Eq.(1). The following result holds except for the bad clients in B:

upp(ĥ↵Gk
)� upp(ĥ↵?

i
) 6 O

⌘(1� ⌧)

r
N

N � 1

!
.

We leave the proof of Theorem 3 in Appendix C due to space limitation. Theorem 3 reveals that the
generalization gap between the model returned by Algorithm 1 for any good client and its personalized

model relies on the minimum weight of strong edges ⌧ within all groups and the maximum length of
the shortest paths between good clients in the same group ⌘. These are further determined by the
intrinsic properties of U with respect to modularity and the number of groups K.

4.2 Collaboration with Clustering

Suppose we have the prior knowledge about the collaboration partnerships among the clients, i.e.,
there exists a potential partition P

?
= {P

?
1 , . . . , P

?
K}. In this case, we try to develop the method with

tighter bound for the approximated models. We use �(P) to evaluate the quality of partitions which
is defined as �(P) =

PK
k=1

P
Ci2Pk

d (↵?
i , ↵̄k), where P = {P1, . . . , PK} is the group partition,

d(·, ·) is the distance measure and ↵̄k is the center of group Pk. If a partition P is of high quality,
then �(P) is small. Take Figure 2 for example where K = 2, the value �(P) of the graph A in
Figure 2 is smaller than that in Figure 1 since clients in the same group in Figure 2 have more similar
incoming edges. Thus the example in Figure 2 has better structures than that in Figure 1.

Let OPT�(P) = minP �(P) be the minimum value of �(P) over all group partitions and
P

?
= {P

?
1 , . . . , P

?
K} is the corresponding optimal group partition. The distance between two

group partitions P = {P1, . . . , PK} and P
0
= {P

0

1, . . . , P
0

K} is denoted as dist (P,P
0
) =

min�2SK
1
N

PK
k=1 I(Pk = P

0

�(k)), where SK is the set of permutations. Balcan et al. (2009)
proposed the (1 + �, ✏)-approximation-stability property to show that if a given group partition

6

P satisfies �(P) 6 (1 + �)OPT�(P), then we have dist(P,P
?
) 6 ✏. This provides a way to

find good group partitions by optimizing �(P). We assume that {↵?
1, . . . ,↵

?
N} satisfy the (1 + �,

✏)-approximation-stability property with respect to �(P).

1

2

3

4 5

6

7

8

Figure 2: An example of the directed graph A with potential structures.

In this case, there still exist some bad clients and we need to find them out. Let d1(↵?
i) =

mink d (↵?
i , ↵̄

?
k) be the distance of ↵?

i to its closest group center and d2(↵?
i) = minj 6=k d

�
↵?

i , ↵̄
?
j

�

is the distance of ↵?
i to its second-closest group center. Denote d̄ =

1
NOPT�(P) as the average

distance of all clients. Given any constant t where t > 2, let d? =
�d̄
✏t be the critical distance. We call

Ci the bad client if d1(↵?
i) > d

? or d2(↵?
i) � d1(↵?

i) 6 t
2d

?, else we call it the good client. It is
easy to understand that good clients are those tightly coupled to clients in the same group and loosely
coupled to clients in different groups.

To guarantee the performance of the learned models, we pick out the bad clients. We return ĥ↵Pk
for

clients in group Pk which is obtained by minimizing L̂↵Pk
(h) where ↵Pk =

1
|Pk\B|

P
Ci2Pk\B

↵?
i .

We refer this method as Adaptive Collaborative Learning with Clustering (ACLC). The whole process
is summarized in Algorithm 2, where � > 1 and t > 2 are given constants. We use the method in
Balcan et al. (2009) to obtain the group partition, where the constant-factor K-median approximation
algorithm is done as that in Arya et al. (2004). Let B be the set of bad clients. We provide the
following Lemma 3 to bound the number of bad clients |B| in the group partition P produced by
Algorithm 2.

Lemma 3. Assume that {↵?
1, . . . ,↵

?
N} satisfy the (1 + �, ✏)-approximation-stability property. Let

P = {P1, . . . , PK} be the group partition produced by Algorithm 2. Then the number of bad clients

|B| satisfies |B| < (6 +
t
�)�✏N , where t > 2 and � > 1 are given constants.

The proof of Lemma 3 can be found in Appendix D. Lemma 3 reveals that the number of bad clients
is related to � and ✏, which reveals the degree of difficulty in finding approximate group partitions.
We further theoretically analyze the generalization bound of the models returned for the clients in the
following Theorem 4, which shows that the model returned by Algorithm 2 for each good client is an
approximation of its personalized model.

Theorem 4. Assume that {↵?
1, . . . ,↵

?
N} satisfy the (1 + �, ✏)-approximation-stability property. Let

P = {P1, . . . , PK} be the group partition produced by Algorithm 2. ĥ↵Pk
is the model returned

by Algorithm 2 for client Ci in group Pk. Let upp(ĥ↵Pk
) be the upper bound of the expected risk

of ĥ↵Pk
on Ci according to the right-hand side of Eq.(1) and upp(ĥ↵?

i
) is the upper bound of the

expected risk of the personalized model ĥ↵?
i

on Ci according to the right-hand side of Eq.(1). Then

given any constants t > 2 and � > 1, the following result holds except for the bad clients in B:

upp(ĥ↵Pk
)� upp(ĥ↵?

i
) 6 O

✓
�OPT�(P)

✏tN

◆
.

We leave the proof of Theorem 4 in Appendix D due to space limitation. Theorem 4 reveals that the
generalization gap between the model returned by Algorithm 2 for any good client and its personalized
model relies on the potential structures of the clients’ collaboration relationships, i.e., the optimal
value of objective �(P). If the collaboration relationships have good structures, i.e., OPT�(P) is
small, then the returned model for any good client is close to its personalized model.

7

Algorithm 2 Adaptive Collaborative Learning with Clustering (ACLC)
1: procedure TRAIN(K, A, constants ✏, �, t,�)
2: Obtain P = {P1, . . . , PK} and d̂ with DIVIDE(K, A, ✏, �, t,�).
3: Compute the critical distance d̂

?
=

�d̂
�t✏ . Pick out bad clients into set B.

4: Compute ↵Pk =
1

|Pk\B|

P
Ci2Pk\B

↵?
i for Pk.

5: Train model ĥ↵Pk
by minimizing L̂↵Pk

(h) and return ĥ↵Pk
to all clients Ci in group Pk.

6: end procedure

7: function DIVIDE(K, A, ✏, �, t,�)
8: Run the constant-factor K-median approximation algorithm on {↵?

1, . . . ,↵
?
N} to compute

�(P).
9: Compute the value d̂ =

�(P)
N 6 �d̄.

10: Construct the threshold graph G which connects all pairs (Ci, Cj) with d(↵?
i ,↵

?
j) <

2�d̂
�t✏ .

11: for k = 1 to K � 1 do

12: Let vi be the node with the highest degree in G.
13: Select vi and its neighborhoods to get group Pk. Remove Pk from G.
14: end for

15: return P = {P1, . . . , PK} and d̂, where PK = {↵?
1, . . . ,↵

?
N} \

�
[
K�1
k=1 Pk

�
.

16: end function

5 Experiments

In the experiments, we use the following four datasets: (1) The MNIST dataset consists of 70K
handwritten digit images in 10 classes, which has a training set of 60K examples and a test set of
10K examples. (2) The CIFAR-10/100 dataset consists of 60K color images in 10/100 classes, with
6000/600 images per class. They have 50K training images and 10K test images. (3) The Federated
Extended MNIST (FEMNIST) dataset is built by partitioning the data in Extended MNIST based on
the writer of the digit/character. For MNIST, we use the same CNN model as that in McMahan et al.
(2017); for CIFAR-10, we use the CNN model which consists of 2 convolutional layers followed by
2 fully connected layers as that in Ghosh et al. (2020); for CIFAR-100, we use the ResNet-18 model
(He et al., 2016); for FEMNIST, we use the same CNN model as that in LEAF (Caldas et al., 2018).
In collaborative learning, using KL divergence to estimate the divergence between distributions is a
common practice (He et al., 2020; Yang, 2021). We use the right hand of Eq.8 to estimate the IPM
dH(Di,Dj) in the experiments since

dH(Di,Dj) 6 min

(
1�

1

2
e
�dJS(DikDj),

r
dJS(DikDj)

2

)
, (8)

where dJS(DikDj) is the Jensen-Shannon (JS) divergence (symmetrical KL divergence). The proof
can be found in Appendix E.

First, we partition MNIST into clients using the same method as that in McMahan et al. (2017) and
set client number N = 10 where each client has 3 classes, total number of samples M = 2000. We
partition CIFAR-10/100 using the Dirichlet partition as that in Yurochkin et al. (2019) and Wang
et al. (2020a). We set N = 20 and M = 5000 for CIFAR-10 and set N = 50 and M = 20000 for
CIFAR-100. For FEMNIST, we use the default partition proposed in LEAF and choose N = 20

clients randomly from the total 3550 clients (Caldas et al., 2018). We further set the number of groups
K = 3 for MNIST, K = 4 for CIFAR-10, K = 7 for CIFAR-100 and K = 4 for FEMNIST.

We divide N clients into K groups and return a model for each group according to Algorithm 1 on
the three datasets respectively, which is denoted as ACLMM. We use the centralized model as the
baseline, where only one single model is trained according to ↵ij =

mj

M , 8i 2 {1, . . . , N} as that in
McMahan et al. (2017). We also implement the personalized model, where each client will obtain the
personalized model according to their ↵?

i . Since the client number on CIFAR-100 is relatively large,
we only perform the personalized model on MNIST, CIFAR-10 and FEMNIST. The results on four
datasets are depicted in Figure 3. From Figure 3, we find that the model learned with our ACLMM
performs better than the centralized model and is comparable to the personalized model.

8

(a) MNIST (b) FEMNIST

(c) CIFAR-10 (d) CIFAR-100

Figure 3: Comparisons of ACLMM with Personalized and Centralized models.

In order to verify the collaboration partners detected by our ACLMM, we take CIFAR-10 for example
and visualize the group partition returned by ACLMM in Figure 4(a), where nodes with the same
color are in the same group and thicker edge means larger similarity between clients. We also
visualize the similarity matrix U as a color map in Figure 4(b), where the (i, j)-th block characterizes
the similarity between Ci and Cj (the lighter the color is, the smaller the similarity is). Obviously,
clients in the same group (having the same node color) in Figure 4(a) are those with large similarities
in Figure 4(b), which means they are collaboration partners.

(a) (b)

Figure 4: (a) The group partition of CIFAR-10 based on ACLMM. (b) The color map associated to
U of CIFAR-10.

Next, we construct the clients that have intrinsic structures on MNIST and CIFAR-10/100 in the
following way. For MNIST, we set N = 10 with K = 3. The first group contains 3 clients with
samples dominated by digit {0, 1, 2}. The second group contains 3 clients with samples dominated
by digit {3, 4, 5}. The third group contains 4 clients with samples dominated by digit {6, 7, 8, 9}.
The number of samples on the clients satisfies the Dirichlet distribution as that in Yurochkin et al.
(2019), and Wang et al. (2020a). We analogously set N = 20 with K = 4 for CIFAR-10 and set
N = 50 with K = 7 for CIFAR-100. We set the total number of sample M = 2000/5000/20000

for MNIST/CIFAR-10/CIFAR-100 respectively. Since the partition of FEMNIST have ambiguous
clustering structures (Ghosh et al., 2020), we did not run clustering experiments on FEMNIST.

9

(a) MNIST (b) CIFAR-10 (c) CIFAR-100

Figure 5: Comparisons of ACLC with Personalized and Centralized models.

We divide N clients into K groups and return a model for each group according to Algorithm 2 on
the three datasets respectively, which is denoted as ACLC. We also implement the centralized model
and the personalized model. We only perform the personalized model on MNIST and CIFAR-10.
The results on three datasets are depicted in Figure 5. From Figure 5 we can find that the model
learned with our ACLC performs much better than the centralized model and is comparable to the
personalized model. Furthermore, the gap between the model return by ACLC and the personalized
model is small, which shows that our bound in Theorem 4 is tight when the collaboration relationships
have intrinsic clustering structures.

6 Conclusion

In this paper, we propose the adaptive collaborative learning method to deal with heterogeneous data
on the clients, which can detect the collaboration partners from numerous heterogeneous clients and
adaptively learn K models for them. We also theoretically prove that the model learned with our
method for each client is a good approximation of its personalized model. Experimental results on
real-world datasets verify the effectiveness of our method.

Broader Impact

Our work provides the possibility of lowering computational burden while maintaining comparable
model performance in collaborative learning. We believe our work will be beneficial for collaborative
applications, and do not have any negative societal impacts.

Acknowledgment

We would like to thank Chiyu Cai for helpful discussions and anonymous reviewers for their valuable
comments. This work is supported by the National Key Research and Development Program of
China (2018AAA0101100), the National Science Foundation of China (61921006, 62276125), the
Fundamental Research Funds for the Central Universities (022114380013), the project of HUAWEI-
LAMDA Joint Laboratory of Artificial Intelligence, and the Collaborative Innovation Center of Novel
Software Technology and Industrialization.

References

Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., and Pandit, V. Local search heuristics
for k-median and facility location problems. SIAM Journal on Computing, 33(3):544–562, 2004.

Balcan, M., Blum, A., and Gupta, A. Approximate clustering without the approximation. In
Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1068–1077,
New York, NY, 2009.

Blum, A., Haghtalab, N., Procaccia, A. D., and Qiao, M. Collaborative PAC learning. In Advances in

Neural Information Processing Systems 30, pp. 2392–2401, Long Beach, CA, 2017.

10

Blum, A., Heinecke, S., and Reyzin, L. Communication-aware collaborative learning. In Proceedings

of the 35th AAAI Conference on Artificial Intelligence, pp. 6786–6793, 2021.

Caldas, S., Wu, P., Li, T., Konečný, J., McMahan, H. B., Smith, V., and Talwalkar, A. LEAF: A
benchmark for federated settings. 2018.

Charikar, M., Guruswami, V., and Wirth, A. Clustering with qualitative information. In Proceedings

of the 44th Symposium on Foundations of Computer Science, pp. 524–533, Cambridge, MA, 2003.

Chen, J., Zhang, Q., and Zhou, Y. Tight bounds for collaborative PAC learning via multiplicative
weights. In Advances in Neural Information Processing Systems 31, pp. 3602–3611, Montréal,
Canada, 2018.

Clauset, A., Newman, M. E., and Moore, C. Finding community structure in very large networks.
Physical review E, 70(6):066111, 2004.

Cui, S., Liang, J., Pan, W., Chen, K., Zhang, C., and Wang, F. Collaboration equilibrium in federated
learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining, pp. 241–251, Washington, DC, 2022.

Deng, Y., Kamani, M. M., and Mahdavi, M. Adaptive personalized federated learning.
arXiv:2003.13461, 2020.

Dinh, C. T., Tran, N. H., and Nguyen, T. D. Personalized federated learning with moreau envelopes.
In Advances in Neural Information Processing Systems 33, 2020.

Dinh, T. N., Li, X., and Thai, M. T. Network clustering via maximizing modularity: Approximation
algorithms and theoretical limits. In Proceedings of the 15th International Conference on Data

Mining, pp. 101–110, Atlantic City, NJ, 2015.

Even, M., Massoulié, L., and Scaman, K. On sample optimality in personalized collaborative and
federated learning. In Advances in Neural Information Processing Systems 36, 2022.

Fraboni, Y., Vidal, R., Kameni, L., and Lorenzi, M. Clustered sampling: Low-variance and improved
representativity for clients selection in federated learning. In Proceedings of the 38th International

Conference on Machine Learning, pp. 3407–3416, 2021.

Ghosh, A., Chung, J., Yin, D., and Ramchandran, K. An efficient framework for clustered federated
learning. In Advances in Neural Information Processing Systems 33, 2020.

He, C., Annavaram, M., and Avestimehr, S. Group knowledge transfer: Federated learning of large
cnns at the edge. In Advances in Neural Information Processing Systems 33, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, Las Vegas,
NV, 2016.

Huang, Y., Chu, L., Zhou, Z., Wang, L., Liu, J., Pei, J., and Zhang, Y. Personalized federated learning:
An attentive collaboration approach. arXiv:2007.03797, 2020.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. Federated optimization in
heterogeneous networks. In Proceedings of the 3rd Machine Learning and Systems, Austin, TX,
2020.

Mansour, Y., Mohri, M., Ro, J., and Suresh, A. T. Three approaches for personalization with
applications to federated learning. arXiv:2002.10619, 2020.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. Communication-efficient
learning of deep networks from decentralized data. In Proceedings of the 20th International

Conference on Artificial Intelligence and Statistics, pp. 1273–1282, Fort Lauderdale, FL, 2017.

Mohri, M., Sivek, G., and Suresh, A. T. Agnostic federated learning. In Proceedings of the 36th

International Conference on Machine Learning, pp. 4615–4625, Long Beach, California, 2019.

11

Newman, M. E. Finding community structure in networks using the eigenvectors of matrices. Physical

review E, 74(3):036104, 2006a.

Newman, M. E. and Girvan, M. Finding and evaluating community structure in networks. Physical

review E, 69(2):026113, 2004.

Newman, M. E. J. Modularity and community structure in networks. Proceedings of the National

Academy of Sciences, 103(23):8577–8582, 2006b.

Nguyen, H. L. and Zakynthinou, L. Improved algorithms for collaborative PAC learning. In Advances

in Neural Information Processing Systems 31, pp. 7642–7650, Montréal, Canada, 2018.

Qiao, M. Do outliers ruin collaboration? In Proceedings of the 35th International Conference on

Machine Learning, pp. 4177–4184, Stockholmsmässan, Stockholm, Sweden, 2018.

Satuluri, V. and Parthasarathy, S. Symmetrizations for clustering directed graphs. In Proceedings

of the 14th International Conference on Extending Database Technology, pp. 343–354, Uppsala,
Sweden, 2011.

Tuor, T., Wang, S., Ko, B., Liu, C., and Leung, K. K. Overcoming noisy and irrelevant data in
federated learning. In Proceedings of the 25th International Conference on Pattern Recognition,
pp. 5020–5027, Milan, Italy, 2020.

Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D. S., and Khazaeni, Y. Federated learning with
matched averaging. In Proceedings of the 8th International Conference on Learning Representa-

tions, Addis Ababa, Ethiopia, 2020a.

Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor, H. V. Tackling the objective inconsistency problem
in heterogeneous federated optimization. In Advances in Neural Information Processing Systems

33, 2020b.

Yang, H. H-FL: A hierarchical communication-efficient and privacy-protected architecture for feder-
ated learning. In Proceedings of the 30th International Joint Conference on Artificial Intelligence,
pp. 479–485, 2021.

Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K. H., Hoang, T. N., and Khazaeni, Y. Bayesian
nonparametric federated learning of neural networks. In Proceedings of the 36th International

Conference on Machine Learning, pp. 7252–7261, Long Beach, California, 2019.

12

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to includ e a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes]
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [No]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [No]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	Preliminaries
	Our Work
	Collaboration with Modularity Maximization
	Collaboration with Clustering

	Experiments
	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3 and Lemma 2
	Proof of Theorem 4 and Lemma 3
	Proof of the relationships between two divergences

