
A Proof of Theorem 1

Below we include the proof of Theorem 1, which generalizes the two measures of peer contagion,
ψfull info
t∗ and ψt∗ . It suffices to prove that the first estimand introduced in Section 3

ψfull info
t∗ :=

1

n

n∑
i=1

E[Yi|do(T = t∗), {Ci}i, Gn]

converges to a fixed real value ψ, in probability. Then, since ψ is bounded, by the Dominated
Convergence Theorem, it will immediately follow that the second estimand introduced in Section 3

ψt∗ := E[ψfull info
t∗ |do(T = t∗), Gn]

also converges, in probability, to the same real value ψ.

We now proceed to prove our main result for ψfull info
t∗ . We want to show that 1

n

∑n
i=1 E[Yi|do(T =

t∗), {Ci}i, Gn] → 0, as n → ∞, in probability. To simplify notation, we define the n-tuple of
random variables (X1, . . . , Xn), where each Xi = E[Yi|do(T = t∗), {Ci}i, Gn], respectively.
Furthermore, let Sn =

∑n
i=1Xi, the nth partial sum of the random variables {Xi}i. We want to

show that

lim
n→∞

P
[∣∣∣∣Sn

n
− E

[
Sn

n

]∣∣∣∣ > ε

]
= 0.

To prove this, we first note that, by Chebyshev’s inequality

P
[∣∣∣∣Sn

n
− E

[
Sn

n

]∣∣∣∣ > ε

]
≤

Var
(
Sn

n

)
ε2

. (A.1)

We further upper bound the term Var
(
Sn

n

)
, as follows

Var
(
Sn

n

)
=

Var(Sn)

n2

=

∑n
i=1

∑n
j=1 Cov(Xi, Xj)

n2

= E[Cov(Xi, Xj)],

where the expectation is taken over nodes i, j sampled uniformly at random. We now distinguish
two possible cases

i. Nodes i and j do not share a common neighbor. In that case, based on the assumed struc-
tural equation model (2.1), E[Yi|do(T = t∗), {Ci}i, Gn] is independent from E[Yj |do(T =
t∗), {Cj}j , Gn], therefore Xi is independent from Xj , and their covariance vanishes.

ii. Nodes i and j share common neighbors. In that case, note that, by the Cauchy-Schwarz
inequality

Cov(Xi, Xj) ≤
√

Var(Xi)Var(Xj) ≤ max{Var(Xi),Var(Xj)}.

Furthermore, notice that, by assumption (i) of Theorem 1, Var(Yi) ≤ M , ∀ i. By
Jensen’s inequality, and noting that the variance is a convex function, it follows that
Var(E[Yj |do(T = t∗), {Ci}i, Gn]) = Var(Xi) ≤ M as well. Hence, when i and j share
common neighbors, we have that

Cov(Xi, Xj) ≤M.
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From the two possible cases above, it follows that

Var
(
Sn

n

)
= E[Cov(Xi, Xj)] ≤ P({i and j share a neighbor}) ·M.

Then, by assumption (ii) of Theorem 1 it follows that the right-hand side of (A.1), Var
(
Sn

n

)
/ε2 → 0,

as n→∞. This shows that

lim
n→∞

P
[∣∣∣∣Sn

n
− E

[
Sn

n

]∣∣∣∣ > ε

]
= 0,

as desired.

B Proof of Theorem 2

Consider Figure 1 which illustrates how conditioning on Aij opens a backdoor path between Tj and
Yi, and how the embedding λi can be used to remove the effect of this conditioning.

More precisely,

E[Yi|do(T = t∗), Gn, λi] = E[Yi|do(V = v∗i ), Gn, λi]

(the treatment function Vi fully determines Yi by (2.1))

= E[Yi|do(V = v∗i ), λi]

(invoke condition (i))

= E[Yi|V = v∗i , λi]

(no open backdoor paths after removing conditioning on Gn),

as desired.

C Proof of Corollary 3

Starting from the definition of ψt∗ , we have the following chain of equalities

ψt∗ =
1

n

n∑
i=1

E[Yi | do(T = t∗), Gn]

=
1

n

n∑
i=1

E[E[Yi | λi,do(T = t∗), Gn]|do(T = t∗), Gn] (expand and marginalize over λi)

=
1

n

n∑
i=1

E[mGn
(v∗i , λi)|do(T = t∗), Gn] (invoke Theorem 2)

=
1

n

n∑
i=1

E[mGn
(v∗i , λi)|Gn] (do(T = t∗) does not affect λi),

as desired.

D Proof of Theorem 4

Recall, from Theorem 1, that limn→∞
1
n

∑n
i=1 E[Y |do(T = t∗), Ci, Gn] = ψ. This corollary

assumes the conditions of Theorem 1, therefore, in order to show

lim
n→∞

n∑
i=1

mGn
(v∗i , λi) = ψ,
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it suffices to prove that E[E[Y |do(T = t∗), Ci, Gn]] = E[mGn(v
∗
i , λi)], for each i, then invoke the

version of the Law of Large Numbers derived from Chebyshev’s inequality in Appendix A.

We first establish the necessary equality of expectations as follows

E[E[Yi|do(T = t∗), Ci, Gn]] = E[E[Yi|do(V = v∗), Ci, Gn]] (Vi determines Yi)

= E[E[Yi|do(V = v∗), λi, Gn]] (tower property; λi is Ci-measurable)

= E[mGn(v
∗
i , λi)] (invoking Theorem 2)

Now, by the argument in the proof of Theorem 1, the objects
∑n

i=1 E[Yi|do(T = t∗), Ci, Gn] and∑n
i=1mGn

(v∗i , λi), depend, in the limit, only on the expected values of the summands. Since these
expected values are equal, the limits are also equal.

E Simulation-variation in simulation results for the Pokec data

We expand the results presented in Table 1 and Table 2 to include error bars for each of the reported
average causal peer effect values due to the variation induced by the choice of random seed. Please
see Table 3 and Table 4. The tight error bands indicate the consistency of our simulation results,
however, one main drawback is that due to the relational, non-i.i.d. structure of our data, these
errors do not represent proper confidence bands, and hence should be interpreted with caution. In
order to obtain valid confidence intervals, and thereby be able to conduct valid statistical inference
in finite samples, one would require proper asymptotic normality results for the studied estimators
which would allow constructing confidence intervals at a desired significance level. This limitation
is a direction for future work.

Table 3: The embedding-based estimator ψ̂t∗ effectively adjusts for confounding and recovers the true
treatment effect. The ground truth value of peer contagion is 1. Zero, low, and high confounding levels
correspond to β1 = 0, 1, and 10, respectively. For ψ̂t∗ , the reported values represent the mean and standard
error over 100 different global random seeds, while the seed for the simulated treatment and outcome data
is kept constant. For the Unadjusted and Parametric estimators, the reported values represent the mean and
standard error of the respective regression coefficients of the aggregated treatment used when predicting Y .

district age join date
Conf. level Zero Low High Zero Low High Zero Low High
Unadjusted 0.99±

0.00
1.64±
0.00

7.40±
0.02

1.00±
0.00

1.39±
0.00

4.90±
0.03

0.99±
0.00

1.38±
0.00

4.81±
0.03

Parametric 0.99±
0.01

1.41±
0.01

5.28±
0.03

1.00±
0.01

1.33±
0.01

4.20±
0.04

0.98±
0.01

1.28±
0.01

4.00±
0.04

ψ̂t∗ 0.84±
0.01

0.96±
0.01

1.17±
0.01

0.94±
0.01

0.94±
0.01

1.11±
0.01

1.01±
0.01

1.03±
0.01

1.10±
0.01

F Additional experimental details

In this section we describe in more detail how the relational empirical risk minimization models
were trained in order to obtain the estimated values ψ̂t∗ for peer contagion reported in Table 1 and
Table 2. Both embedding-based models in Section 6.1 and Section 6.2 follow similar architectures.
First, for both models, we sample subgraphs of size 800 from the full Pokec network. The subsam-
pling scheme used is “biased-walk” which consists of a skipgram-based random-walk with unigram
negative sampling. We simulate the treatments and the outcomes according to the model equations
presented in Section 6.1 and Section 6.2, respectively, using a seed value of 0 in both cases. Then,
for both of the embedding-based models in our two simulation studies (i.e., continuous outcomes—
Section 6.1 and binary outcomes—Section 6.1), we jointly learn the embeddings λ̂ and the vertex
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Table 4: The embedding-based estimator ψ̂t∗ accurately recovers the true peer contagion effect of binary
treatments on other subsequent binary treatments. The ground truth peer contagion value is 0. For ψ̂t∗ ,
the reported values represent the mean and standard error over 100 different global random seeds, while
the seed for the simulated treatment and outcome data is kept constant. For the Unadjusted and Parametric
estimators, the reported values represent the mean and standard error of the respective regression coefficients
of the aggregated treatment used when predicting Y .

Peer influence on vaccination district age join date
Unadjusted 2.03± 0.02 0.12± 0.02 0.68± 0.02
Parametric 1.30± 0.04 1.03± 0.03 0.98± 0.03

ψ̂t∗ 0.09± 0.00 0.11± 0.00 0.22± 0.00

conditional outcomes m̂Gn
(v∗i , λi). We do this by training two simple Keras models consisting

of: 1. an embedding layer and a linear layer applied to the tensor of concatenated embeddings and
aggregated treatment values for the continuous outcome model; and 2. an embedding layer and a
dense layer with a sigmoid activation function applied to the tensor of concatenated embeddings and
aggregated treatment values for the binary outcome model. For both models, we use embeddings
of dimension 128. We optimize for the loss function in (5.2), using an ”outcome-specific” weight
q value of 0.005 for both models. This particular value of q is set to match that used in previous
work [Vei+19; VWB19]. Based on experimental performance, for the continuous outcome model
we use SGD as the optimizer (with learning rates ranging from 0.1 to 0.6 depending on the given
combination of hidden confounder and confounding level), while for the binary outcome model we
use Adam (with a learning rate of 0.001 for all different simulation scenarios - i.e. all three possible
hidden confounders). The values for the optimizer learning rates correspond to the lowest validation
loss values obtained when performing a 50/50 train/test split of the network data, fitting the models
on the train data, and evaluating their performance on the held-out data.

The models were trained using only CPUs, as training each individual model is relatively fast
(approximately 15 minutes on a CPU). Each experiment was run across 100 different global
random seeds (with values ranging from 1 to 100), with nine different networks trained for
the experiments in Section 6.1 (one for each possible combination of hidden confounder vari-
able {district, age, join date} and confounding level {zero, low, high}), and three different net-
works trained for the experiments in Section 6.2 (for each possible hidden confounder variable
{district, age, join date}). A total of 1200 networks were thus fit across all random seeds and exper-
imental setups.

G Supplementary experiments

G.1 Ablation studies

As discussed in Section 6.1, the continuous outcome results in Table 1 indicate that, when no un-
observed confounding is present, in some situations ψ̂t∗ performs slightly worse compared to the
baselines. This section investigates the performance of our method when the confounding level β1
is strictly positive, yet low, and smaller than the peer contagion effect β0 = 1. We conduct similar
experiments to those in Table 1, letting β1 vary in {0.25, 0.5, 0.75}. The results presented in Table 5
interestingly show that even for small, non-zero confounding level values, the embedding-based
method still achieves the best overall performance. This indicates that the slight lack of accuracy of
our proposed method in the no unobserved confounding case could potentially be an edge case.

Furthermore, we also study the impact of the noise level ε added to the response variable Y in (6.1).
Recall that for all experiments in Section 6, ε ∼ N(0, 1). To investigate the performance of the
embedding technique over various signal to noise ratios (SNR), we fix β0 = β1 = 1, take district as
the unobserved confounder, and perform experiments similar to those in Table 1, letting the standard
deviation of ε vary in {0.25, 2.5, 5}. These choices ensure signal to noise ratios which range from
both high to low values. As shown in Table 6, we notice that the embedding based estimator ψ̂t∗ is
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Table 5: The embedding-based estimator ψ̂t∗ outperforms baselines when the level of unobserved con-
founding β0 is strictly positive, yet very small.

district age join date
Conf. level 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
Unadjusted 1.20 1.48 1.20 1.27 1.34 1.62 1.28 1.28 1.57
Parametric 1.11 1.19 1.31 1.11 1.16 1.23 1.12 1.12 1.26

ψ̂t∗ 1.05 1.09 1.13 0.94 0.93 0.93 0.94 0.94 0.95

Table 6: The embedding-based estimator ψ̂t∗ outperforms baselines even under high levels of noise added
to the response variable Y .

district age join date
Noise level 0.25 2.5 5 0.25 2.5 5 0.25 2.5 5
Unadjusted 1.69 1.87 1.76 1.71 1.95 2.21 1.60 1.91 2.24
Parametric 1.43 1.36 1.56 1.32 1.35 1.40 1.31 1.34 1.34

ψ̂t∗ 0.95 0.94 0.93 0.93 0.93 0.93 0.95 0.95 0.95

Table 7: Experiments for Wikipedia network data. The embedding-based estimator ψ̂t∗ accurately estimates
the ground truth peer contagion value is 1.

category tag
Conf. level Zero Low High
Unadjusted 0.99 0.88 −0.05

ψ̂t∗ 0.95 0.94 0.91

able to most accurately learn the true signal β0 for both low and high values of noises. This is not
the case for the other two baselines. This further confirms the validity of the proposed method.

G.2 Experiments on Wikipedia hyperlink network data

In this subsection, we apply the proposed technique to a new dataset, namely a network of Wikipedia
articles (vertices) joined by hyperlinks (edges) [Yin+17]. Each article has a vector of labels which
represent its tagged categories. We subset the data and reduce it to a sub-network of 27361 arti-
cles connected by 43809 edges. These articles corresponding to three of the most popular cate-
gories in the original network (i.e., Olympic canoeists of Great Britain, 20th century Fox films, and
French astronomers), such that no two of these categories tag the same article.

For this data, we take the unique category attached to each article as the unobserved confounder
C and generate treatment T and outcome Y values in the same way as in (6.1). The ground truth
peer contagion effect is again set to β0 = 1. Similarly to the experiment in Section 6.1, we let the
unobserved confounding level β1 vary in {0, 1, 10}, corresponding to zero, low, and high confound-
ing, respectively, and compare the embedding-based estimator ψ̂t∗ against the naive unadjusted one.
The results in Table 7 show that our method has both superior overall performance over the naive
baseline and also accurately estimates the true peer contagion effect. This analysis shows the appli-
cability of the proposed method to new datasets with different network structures from that in the
Pokec data.
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