
A Omitted Proofs

The proofs of these propositions are extended from Berlekamp (1968).
Proposition 1 (Volume Conservation Law). For any query context set Qk−1 and arbitrary query
trajectory pair (τ (1)k , τ

(2)
k ), the relation between BVolẐ(Qk−1) and BVolẐ(Qk) satisfies

BVolẐ(Qk−1) = BVolẐ(Q
(1)≻(2)
k ) + BVolẐ(Q

(2)≻(1)
k ). (5)

Proof. Note that both oracle’s preference feedback and z-conditioned preference prediction are binary
values. i.e., for a given preference query (τ

(1)
k , τ

(2)
k ), the prediction given by each task embedding z

is either correct or wrong. The mismatch count must be updated to one of the following cases:

• Case #1: E(z;Q(1)≻(2)
k ) = E(z;Qk−1) and E(z;Q(2)≻(1)

k ) = E(z;Qk−1) + 1;

• Case #2: E(z;Q(2)≻(1)
k ) = E(z;Qk−1) and E(z;Q(1)≻(2)

k ) = E(z;Qk−1) + 1.

It implies that

volz(Qk−1) =

KE−E(z;Qk−1)∑
ℓ=0

(
K − (k − 1)

ℓ

)

=

KE−E(z;Qk−1)∑
ℓ=0

((
K − k
ℓ

)
+

(
K − k
ℓ− 1

))

=

KE−E(z;Qk−1)∑
ℓ=0

(
K − k
ℓ

)
+

KE−(E(z;Qk−1)+1)∑
ℓ=0

(
K − k
ℓ

)

=

KE−E(z;Q(1)≻(2)
k )∑

ℓ=0

(
K − k
ℓ

)
+

KE−E(z;Q(2)≻(1)
k )∑

ℓ=0

(
K − k
ℓ

)
= volz(Q(1)≻(2)

k ) + volz(Q(2)≻(1)
k ).

By plugging into Eq. (3), we have

BVolẐ(Qk−1) =
∑
z∈Ẑ

volz(Qk−1)

=
∑
z∈Ẑ

(
volz(Q(1)≻(2)

k ) + volz(Q(2)≻(1)
k )

)
= BVolẐ(Q

(1)≻(2)
k ) + BVolẐ(Q

(2)≻(1)
k ).

Proposition 2 (Unit of Volume). Given a query context set Qk with BVolẐ(Qk) = 1, there exists
exactly one task embedding candidate z ∈ Ẑ satisfying E(z;Qk) ≤ KE .

Proof. Note that the values of BVolẐ(·) and volz(·) are non-negative integers. BVolẐ(Qk) = 1

implies there exists exactly one task embedding z ∈ Ẑ satisfying volz(Qk) = 1 =
(
0
0

)
, which further

implies E(z;Qk) = KE .
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B Experiment Setting and Implementation Details

B.1 Experiment Setting

We adopt the environment setting created by Rothfuss et al. (2019). This benchmark is a suite of
MuJoCo locomotion tasks, where the reward function are varied to create a multi-task setting. More
specifically, there are four ways to vary the task specification T :

• Fwd-Back: The task variable T varies the target direction within {forward/backward};
• Rand-Vel: The task variable T varies the target velocity within a bounded range;
• Rand-Dir: The task variable T varies the target direction within the 2D-plane;
• Rand-Goal: The task variable T varies the target location within a bounded area.

The training and testing tasks are randomly generated by a fixed random seed. i.e., the generation
of training/testing tasks do not vary across runs. During meta-training, the meta-RL algorithm
has the full access to the environmental interaction. The algorithms can obtain trajectories with
both transition and reward information. During meta-testing, the reward function would become
unavailable to the meta-RL agent. The agent can only query a preference oracle to extract information
about the task specification T . The preference oracle ΩT is simulated by comparing the ground-truth
trajectory return given by the MuJoCo simulator, i.e., the oracle can access to the ground-truth reward
function. We consider this asymmetric supervision setting since this paper only focus on the design
of adaptation protocol, and our proposed adaptation algorithm can be plugged in any meta-training
algorithm using latent embeddings.

In our experiments, all networks are trained using a single GPU and a single CPU core.

• GPU: GeForce GTX 1080 Ti;
• CPU: Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz.

In each run of experiment, 4M steps of training can be completed within 24 hours.

B.2 Implementation Details of ANOLE

The overall meta-training procedure of ANOLE is implemented upon PEARL (Rakelly et al., 2019)
with some modifications and incremental designs.

Probabilistic Embedding. Note that, different from most PEARL-based algorithms, ANOLE does
not include an inference network. Instead, we use a set of trainable variables to model the latent task
embedding of each training task. To expand the latent space and promote generalization, we assign
each training task Ti a multivariate GaussianN (µi, σi) with zero covariance, where µi, σ2

i ∈ Rd and
d denotes the dimension of latent space. More specifically, we set up 2dN trainable variables instead
of an inference network to model the latent space from training tasks {Ti}Ni=1. The same as PEARL,
we conduct a regularization loss to make the learned latent space compact:

LKL(µ, σ) =
1

N

N∑
i=1

DKL(N (µi, σ
2
i ) ∥ N (0d,1d)),

where N (0d,1d) denotes a d-dimensional standard multivariate Gaussian.

Policy Training. We adopt the same off-policy meta-RL framework as PEARL to train the policy.
We extend soft actor-critic (SAC; Haarnoja et al., 2018) with the latent task embedding z, i.e., the
policy and value functions are represented by πθ(a | s; z) and Qϕ(s, a; z) where θ and ϕ denote the
parameters. The objective function for actor and critic networks are presented as below:

Lactor(θ) = E
(Ti,s)∼D

[
DKL

(
πθ(·|s)

∥∥∥∥ exp(Qϕ(s, ·))∫
exp(Qϕ(s, a))da

)∣∣∣∣ z ∼ N (µi, σ
2
i )

]
,

Lcritic(ϕ) = E
(Ti,s,a,r,s′)∼D

[(
Qϕ(s, a; z)− r − γVϕtarget(s

′; z)
)2∣∣∣ z ∼ N (µi, σ

2
i )
]
.

This part of implementation, including network architecture and optimizers, is reused from the
open-source code of PEARL.
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Preference Predictor. We train a z-conditioned preference predictor fψ(·; z) on the meta-training
tasks by optimizing the preference loss function:

LPref(ψ) = E
[
DKL

(
I
[
τ (1) ≻ τ (2) | T

] ∥∥∥ fψ
(
τ (1) ≻ τ (2); z

))]
,

where ψ denotes the parameters of the preference predictor, DKL(·∥·) denotes the Kullback–Leibler
divergence, and I[τ (1) ≻ τ (2) | T ] is the ground-truth preference order specified by the task specifi-
cation T (e.g., specified by the reward function on training tasks). The trajectory pair ⟨τ (1), τ (2)⟩ is
drawn from the experience buffer, and z is the task embedding vector encoding T . Optimizing this
KL-based loss function is equivalent to optimizing binary cross entropy.

Following the implementation of preference-based RL (Christiano et al., 2017; Lee et al., 2021b), we
use Bradley-Terry model (Bradley and Terry, 1952) to establish a preference predictor:

fψ(τ
(1) ≻ τ (2); z) =

exp
(∑

t gψ(s
(1)
t , a

(1)
t ; z)

)
exp

(∑
t gψ(s

(1)
t , a

(1)
t ; z)

)
+ exp

(∑
t gψ(s

(2)
t , a

(2)
t ; z)

) , (7)

where gψ(s, a; z) is a network that outputs the ranking score of state-action pair (s, a). In implemen-
tation, τ (1) and τ (2) refer to two fixed-length trajectory segments instead of considering the complete
trajectory. A future work is adopting the random-sampling trick (Ren et al., 2022) for the extension
to long-horizon preference.

Batch-Constrained Embedding Sampling. A pre-processing step of our task inference algorithm
is sampling a candidate pool of task embeddings (see line 2 in Algorithm 1) for the subsequent
embedding selection. We restrict the support of this candidate pool to the task embedding distribution
conducted in meta-training. We call this procedure batch-constrained embedding sampling, since
it corresponds to the notion of batch-constrained policy (Fujimoto et al., 2019) in the literature of
offline reinforcement learning. This restriction ensures the induced policy πθ(a|s; z) is covered
by the training distribution, so that the meta-testing policies would not suffer from unpredictable
out-of-distribution generalization errors. More specifically, we sample a set of task embeddings from
the mixture distribution of training tasks, Ẑ ← {zj ∼ q(z)}Mj=1 where q(z) refers to the mixture of
training task variable:

q(z) =
1

N

N∑
i=1

N (z | µi, σ2
i ).

Candidate Pool Size. Note that the number of embedding candidates initialized in Ẑ may affect
the computation of Berlekamp’s volume. The size of candidate pool Ẑ, denoted by M , is determined
by the following formula:

M =

⌊
2K

volz(∅)

⌋
=

⌊
2K∑KE

ℓ=0

(
K
ℓ

)⌋ ,
where z is an arbitrary embedding candidate. This configuration of candidate pool size ensures that,
with ideal preference queries, Berlekamp’s volume BVolẐ(QK) can be reduced to 1 by K queries.
i.e., in the ideal situation, each preference query can halve the value of BVolẐ(Qk). Note that,
our algorithm does not require BVolẐ(QK) to be reduced to 1, since finding the task embedding
with minimum mismatch is always a plausible solution (see argminz∈Ẑ E(z;QK) at line 8 of
Algorithm 1).

Error-Tolerant Query Strategy. In our implementation, we use mini-batch sampling to approx-
imate the query generation protocol GENERATEQUERY(·) in Eq. (6). We sample a mini-batch of
trajectory pairs and find the best trajectory pair within the sampled mini-batch.

GENERATEQUERY(Ẑ,Qk−1) = argmin
(τ

(1)
k ,τ

(2)
k )∈B

(
max

{
BVolẐ(Q

(1)≻(2)
k ), BVolẐ(Q

(2)≻(1)
k )

})
,

where B denotes a mini-batch of trajectory pairs that are uniformly sampled from the experience
replay buffer. In our implementation, we sample 100 trajectory pairs for each mini-batch B.
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Hyper-Parameters. We summarize major hyper-parameters as the following table. We use this set
of hyper-parameters for all ANOLE’s experiments.

Hyper-Parameter Default Configuration

dimension of latent embedding d 5
discount factor γ 0.99

optimizer (all losses) Adam (Kingma and Ba, 2015)
learning rate 3 · 10−4

Adam-(β1, β2, ϵ) (0.9, 0.999, 10−8)

temperature α 1.0
Polyak-averaging coefficient 0.005

# gradient steps per environment step 1/5
# gradient steps per target update 1

# transitions in replay buffer (for each task T ) 106

# tasks in each mini-batch for training SAC 10
# transitions in each task-batch for training SAC 256

# trajectory segments in each mini-batch for training fψ 10
# transitions in each trajectory segment for training fψ 64

# preference queries K 10
# wrong feedbacks to tolerate KE 2

# trajectory pairs to approximate GENERATEQUERY 100

B.3 Implementation Details of PEARL-based Baselines

We slightly modify the implementation of PEARL to make it work for preference-based adaptation.

Preference-based Context Encoder. We modify PEARL’s context encoder to handle the preference-
based feedback. We use a LSTM-based context encoder that takes an ordered trajectory pair as inputs
to make up the task embedding z, i.e., the input trajectory pair has been sorted by oracle preference.
The architecture of LSTM-based encoder is implemented by the open-source code of PEARL. The
same as the original version of PEARL, the output of context encoder is a d-dimensional Gaussian. In
meta-training, the preference is labeled by the ground-truth rewards from the environment simulator,
i.e., comparing the sum of ground-truth rewards. During adaptation, the PEARL-based agent draws
random trajectory pairs from the experience buffer to query the preference oracle, and the oracle
feedback is used to update the posterior of task variable z. The posterior update rule is reused from
the open source code of PEARL.

Data Augmentation for Error-Tolerance. We implement a data augmentation method for
PEARL’s meta-training to pursue the error tolerance of preference-based inference network. To
mimic the error mode of noisy preference oracle, we impose random errors to the preference compar-
ison when training the preference-based context encoder. The error is uniformly flipped preference
feedback with probability 0.2. In this way, the preference-based context encoder is trained using the
same noisy preference signals as the meta-testing procedure so that the inference module is expected
to have some extent of error tolerance.

Hyper-Parameters. We do not modify any hyper-parameters of PEARL. Note that the open-source
implementation of PEARL specializes different hyper-parameter configurations for different envi-
ronments. In this paper, we conduct two environments, Walker2d-Rand-Vel and And-Rand-Dir,
without official hyper-parameter configuration since PEARL does not evaluate on them. To address
this issue, we transfer hyper-parameter configurations from similar tasks. For Walker2d-Rand-Vel,
we use the same configuration as HalfCheetah-Rand-Vel. For And-Rand-Dir, we use the same
configuration as And-Rand-Goal.
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C Ablation Studies on the Magnitude of Oracle Noise

We evaluate the performance of ANOLE and baselines under different magnitudes of oracle noises ϵ.
These results are generated by a same set of runs. i.e., each run of meta-training evaluates several
meta-testing configurations. When the oracle carries no error, the performance of ANOLE and greedy
binary search are almost the same. With the noise magnitude increasing, the gap between ANOLE
and baselines become larger.

C.1 Performance Evaluation without Noises (ϵ = 0.0)
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C.2 Performance Evaluation with Noise Magnitude ϵ = 0.1
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C.3 Performance Evaluation with Noise Magnitude ϵ = 0.2 (Default Setting)
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C.4 Performance Evaluation with Noise Magnitude ϵ = 0.3
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D Performance Evaluation at Each Adaptation Step

In addition to the full learning curves, we plot the performance of final policy in every adaptation
steps. Final policy refers to the last evaluation point presented in Figure 1. The experiments show
that PEARL-based baselines cannot effectively extract task information from preference-based binary
feedback.

D.1 Preference-based Few-shot Adaptation with Noise Magnitude ϵ = 0.2 (Default Setting)
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D.2 Preference-based Few-shot Adaptation without Noises (ϵ = 0.0)
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E ANOLE with An Alternative Meta-Training Module

We investigate the performance of ANOLE with an alternative meta-training module. We use
preference-based supervision to train the meta-policy. Following a classical paradigm of preference-
based RL (Christiano et al., 2017), we conduct a reward learning module to decompose the preference-
based binary feedback into per-step reward supervision. More specifically, we use the ranking score
gψ(s, a; z) defined in Eq. (7) as an auxiliary reward function, which is learned from preference com-
parisons. The experiments show that ANOLE with preference-based meta-training can significantly
outperform PEARL-based baselines using environmental rewards.

E.1 Performance Evaluation with Noise Magnitude ϵ = 0.2 (Default Setting)
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E.2 Performance Evaluation without Noises (ϵ = 0.0)
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F Performance Evaluation under Two Alternative Noise Modes

In addition to the uniform noise mode considered in the main paper, we conduct experiments with
two additional noise modes:

• Boltzman Mode. The oracle answers τ (1) ≻ τ (2) with the probability

exp
(
β · Return(τ (1))

)
exp

(
β · Return(τ (1))

)
+ exp

(
β · Return(τ (2))

) =
exp

(
β
∑
t r

(1)
t

)
exp

(
β
∑
t r

(1)
t

)
+ exp

(
β
∑
t r

(2)
t

)
where β denotes the temperature parameter. This error mode is commonly considered by
recent preference-based RL works (Lee et al., 2021a).

• Hack Mode. The oracle always gives wrong feedbacks for the first 20% queries and keeps
correct for the remaining 80%. This noise mode is designed to hack search-based query
strategies, since the first few queries are usually the most informative.

The experiments results are presented as follows. The learning curves tagged with label (β = ·)
correspond to the experiments with Boltzman noise mode. The learning curves in the last column
correspond to the experiments with “Hack” noise mode.
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ANOLE (ours) Greedy Binary Search Random Query

We note that, for these testing environments, Boltzman feedbacks are much more accurate than the
uniform-noise oracle considered in the paper. That is because the generated query trajectory pairs
can usually be clearly compared. The performance of ANOLE and greedy/random query strategies
are comparable since errors hardly occur. Regarding this result, we would like to emphasize that the
main purpose of ANOLE is to tolerate unintended errors of human users. More specifically, a robust
algorithm is expected to tolerate a few amounts of irrational errors.
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G Interface of Human-ANOLE Interaction

trajectory 1 trajectory 2 goal

(a) HalfCheetah-Fwd-Back

trajectory 1 trajectory 2 goal

(b) Ant-Fwd-Back

trajectory 1 trajectory 2 goal

(c) Ant-Rand-Dir

To facilitate human participation, we project the agent trajectory and the goal direction vector to a
2D coordinate system, i.e., extracting the agent location coordinate from the state representation.
The human participant watches the query trajectory pair and labels the preference according to the
assigned task goal vector. We implement this interface for three tasks: HalfCheetah-Fwd-Back,
Ant-Fwd-Back, Ant-Rand-Dir. Since the HalfCheetah agent can only move in a single dimension,
we fill in the x-axis of HalfCheetah-Fwd-Back interface by the timestep index.
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