
Decentralized, Communication- and Coordination-free
Learning in Structured Matching Markets

Chinmay Maheshwari
EECS

University of California Berkeley
chinmay_maheshwari@berkeley.edu

Shankar Sastry
EECS

University of California Berkeley
sastry@eecs.berkeley.edu

Eric Mazumdar
CMS and Economics

Caltech
mazumdar@caltech.edu

Abstract

We study the problem of online learning in competitive settings in the context
of two-sided matching markets. In particular, one side of the market, the agents,
must learn about their preferences over the other side, the firms, through repeated
interaction while competing with other agents for successful matches. We propose
a class of decentralized, communication- and coordination-free algorithms that
agents can use to reach to their stable match in structured matching markets. In
contrast to prior works, the proposed algorithms make decisions based solely on an
agent’s own history of play and requires no foreknowledge of the firms’ preferences.
Our algorithms are constructed by splitting up the statistical problem of learning
one’s preferences, from noisy observations, from the problem of competing for
firms. We show that under realistic structural assumptions on the underlying
preferences of the agents and firms, the proposed algorithms incur a regret which
grows at most logarithmically in the time horizon. However, we note that in the
worst case, it may grow exponentially in the size of the market.

1 Introduction

Online decision-making under uncertainty is one of the central problems in modern machine learning,
reflecting the need for efficient and high performing algorithms for real-time learning in real-world
settings. Despite being such a well-researched area, there is a broad lack of understanding of how
to deploy online learning algorithms into settings in which they must compete with each other for
resources or information. Indeed, while classic problems of online learning deal with trading off
the exploration of possible choices and the exploitation of current knowledge (i.e., the exploration-
exploitation tradeoff Lattimore and Szepesvári (2020); Slivkins (2019)), the addition of competition
adds a new axis upon which algorithms must operate Mansour et al. (2017); Aridor et al. (2020)—
namely that of competing (perhaps unsuccessfully) for highly desired outcomes or settling for less
desired (but also less competitive) outcomes. Broadly, speaking, the dominant approach to dealing
with competition in machine learning remains to treat opponents as adversarialCesa-Bianchi and
Lugosi (2006), despite a long literature in economics and game theory Littman (1994); Fudenberg et al.
(1998) showing how agents who understand the competitive structure of problems can sometimes
vastly outperform solutions based upon worst-case modeling.

In this paper, we address the problem of online learning in competitive settings in the context of
two-sided matching markets. Two-sided matching markets match users on one side of the market

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

to those on the other to facilitate the exchange of goods or services. In such settings, each user on
one side of the market has an inherent preference ordering for the users on the other side of the
market. Since each user seeks to find their most desired match, this results in a game in which a
natural equilibrium is that of a stable matching wherein no two users would prefer switching from
their current match to each other given their preferences. In seminal work, Gale and Shapley (1962)
proposed a simple and effective algorithm— the Deferred Acceptance (DA) Algorithm— that users
on one side of the market can implement to find such a solution when every user knows their own
preferences. The algorithm has been widely used in examples ranging from kidney exchanges to
medical resident matching where preferences can be assigned or reported to a central authority which
does the matching. However, recent years have seen the emergence of a new kinds of online matching
markets like online labor markets (e.g. TaskRabbit, Upwork), online dating markets (e.g. Tinder,
Match.com), online crowdsourcing platforms (e.g. Amazon mechanical turk) where the users do not
know their preferences apriori, and can repeatedly interact with the market to improve their match
quality.

Motivated by these applications we consider a generalization of the problem studied in Gale and
Shapley (1962) wherein one side of the market— the agents— do not know their own preferences,
but are able to interact repeatedly with the market. In particular, we analyze a repeated game in
which, at each round, agents can request to match with a user or firm on the other side of the market.
If, at a given round, multiple agents request the same firm, the firm— assumed to be a myopic utility
maximizer— accepts the request of its most preferred agent (who receives a noisy measurement of
their utility of the match from which they can learn their preferences) and rejects the others (who
receive no information about their preferences). This setup has been studied in a line of recent works
on online matching markets Liu et al. (2020, 2021); Sankararaman et al. (2021); Basu et al. (2021).

Successful algorithms for this framework must simultaneously solve a statistical learning problem
(that of learning about their own preferences) and a competitive problem (ensuring that agents
get their most desired match despite the presence of other self-interested agents in the market).
Previous works for addressing this problem propose algorithms that are centralized Liu et al. (2020)
(whereby agents send their current beliefs over their preferences to a central platform which does the
matching), require coordination between agents (i.e., a choreographed set of strategies to minimize
rejections) Sankararaman et al. (2021); Basu et al. (2021), or require agents to fully observe the
market outcomes of other agents Liu et al. (2021). In contrast, the DA algorithm— which we take to
be the full-information benchmark to which we compare algorithms— is (i) fully decentralized, (ii)
coordination-free, and (iii) requires agents to make decisions only based upon their own history of
rejections and successful matchings. Designing learning algorithms that operate under conditions
(i)-(iii) ensures scalability and privacy in large-scale systems where it is unrealistic to assume that
agents can keep track of all other agents’ matchings. Thus in this work we focus on the question:
Does there exist decentralized and coordination-free algorithms that are based only on local
history of interactions and provably converges to stable matching?

Contributions. In this work we design algorithms for learning while matching in a class of
structured matching markets known as α−reducible matching markets1. This condition ensures that
there exists an unique stable matching and encompasses many realistic preference structures including
serial dictatorship and no crossing conditions Clark (2006). We show that the proposed algorithms
incur a stable regret with respect to the unique stable matching that grows at most logarithmically
in the time horizon. However, in the worst case it can grow exponentially in the number of agents
and firms, which we believe is an artifact of the proof technique. The particular contributions of this
paper are:

1. We present a general framework for the construction of decentralized, communication, and
coordination-free algorithms for learning while matching. In particular, we combine a index-based
stochastic bandit module (in particular the Upper Confidence Bounds algorithm and Thomp-
son Sampling) Auer (2002); Lattimore and Szepesvári (2020); Slivkins (2019) for solving the
statistical problem of learning an agent’s preferences with a path-length adversarial bandit mod-
ule Bubeck et al. (2019); Wei and Luo (2018) for dealing with the competitive problem. The
resulting algorithms make are fully decentralized, and communication and coordination-free since
they make use of only an agent’s history of collisions, matches, and rewards to choose which firm

1The results in this paper extend under the assumption of Sequential Preference Condition (SPC) on the
underlying market (ref. Remark 5).

2

to request at a given time. Furthermore the algorithms are “any-time” algorithms, in that they do
not require knowledge of time horizon and do not require any specific parameters of the bandit
instance beyond the sub-gaussian parameter of the noise.

2. We show that when the agents’ and firms’ preferences satisfy the α−reducibility condition and
every agent uses the algorithm, the regret accumulated by any agent a against the stable match
is O

(
Ca|A||F|log(T)

∆2

)
where A is the set of agents, F is the set of firms, ∆ is the minimum sub-

optimality gap of any agent in the market, and Ca is a constant that depends on the α−reducible
structure of the market. We note that in the worst case this constant may grow exponentially with
the size of the market.

Prior work. The particular intersection of MABs and two-sided matching markets that we analyze
has seen a flurry of recent works Liu et al. (2020, 2021); Basu et al. (2021); Sankararaman et al.
(2021). To the best of our knowledge, Das and Kamenica (2005), presented the first numerical
study on effectively using MAB algorithms to learn preferences in matching markets. However, it
was only recently that Liu et al. (2020) rigorously formulated the bandit learning problem in the
matching markets, and generalized the notion of regret from the MAB literature to matching markets
in terms of stable regret— i.e., the expected cumulative utility benchmarked against the expected
cumulative reward that would have been received if everyone in the market requested their match in a
certain stable match2. Moreover, they proposed a centralized UCB-based algorithm that facilitates
the matching between agents and firms given each agents’ current beliefs over their preferences and
history of play, while ensuring that O(|A||F| log(T)) regret for a UCB based algorithm, where A
is the number of agents, F is the number of Firms, and T is the time horizon of the problem. In
follow up work Liu et al. (2021) proposed a decentralized bandit learning algorithm that allows each
user to take its decision in a decentralized manner and still “converge” to stable matching while
incurring O(exp(|F|4) log2(T)) regret. However, the algorithm requires the knowledge of outcomes
at other firms at every round, leaving algorithms that are based solely on agents’ own history of play
as an open problem. Concurrently, Sankararaman et al. (2021) proposed an algorithm that works in
phases and makes use of communication between agents to coordinate agents’ actions. Under this
information structure the algorithm achieves O

(
|F|2|A|2 log(T)

)
regret. Moreover their guarantees

require that firms have homogeneous preference over the agents (also referred as serial dictatorship).
Follow-up work, Basu et al. (2021) improved the regret for serial dictatorship toO (|F||A| log(T)) by
proposing a new algorithm. Additionally, they also showed that if the assumption of serial dictatorship
is relaxed to a weaker structural condition then they obtain O(poly(|A|, |F|) log(T)) regret. Even
thought the proposed algorithm in Basu et al. (2021) has decentralization it is a phase based algorithm
where the agents act according to a coordinated protocol at some rounds. In this paper we propose a
simple, decentralized, communication and coordination free algorithm in which agents make use of
their own local information to learn while matching. Unlike previous works Liu et al. (2020, 2021);
Sankararaman et al. (2021); Basu et al. (2021) where the algorithms are constructed using a UCB
subroutine, we also show that our algorithmic design paradigm can be also based on Thompson
Sampling.

Organization The paper is organized as follows: In Section 2 we introduce the general problem
setup, introduce matching markets and discuss the structural assumptions on the preferences of agents
and firms. In Section 3 we present the algorithmic design paradigm along with a specific algorithm.
In Section 4 we present the main result about the regret bound along with a brief sketch of the proof.
We conclude the paper in Section 5 and also provide some future research directions. Due to space
limitations a detailed comparison to related works and the proofs of our results are relegated to the
Supplementary material.

2 Setting

We define a two-sided market M as collection of agents A and firms F . In the setting under
consideration, we assume that every agent a ∈ A has unknown preferences over firms f ∈ F which
are captured by utilities ua(f) ∈ R+. Moreover, no two firms give the same utility to a given agent,

2Note that the stable matching need not be unique in general. Thus the stable regret has to be always specified
with respect to which stable matching is being used. Typically, in literature two main stable matchings are
considered namely agent optimal stable matching and firm optimal stable matching.

3

i.e. ua(f) ̸= ua(f
′) if f ̸= f ′. We assume that every agent seeks to be matched to their most

preferred firm, and that firms have preferences over all the agents which are also captured by utilities
uf (a) for each a and f such that no two agents give same utility to firms i.e. uf (a) ̸= uf (a

′) .
Importantly, we assume that firms know their own preference orderings over agents and that there are
more firms than agents, i.e. |A| ≤ |F|. The interaction between agents and firms happens as follows:
In each time step t = 1, . . . , T every agent a ∈ A independently requests a firm fa(t) ∈ F . As the
agents request independently, it is possible that more than one agent requests the same firm f . For
f ∈ F , let Af (t) := {a ∈ A : fa(t) = f} denote the set of agents that request firm f at time step t.
At each time step t, we assume that the firm f accepts the request of their most preferred agent in
Af (t) denoted by af (t) := argmaxa∈Af (t)

uf (a), and rejects the request of all other agents. That
agent af (t) is said to be the agent who got matched with firm f at time t. Moreover every matched
agent receives a noisy measurement of their utility, denoted Ua,f such that Ua,f = ua(f) + ζa,f ,
where ζa,f is a zero-mean, one-sub-Gaussian random variable3. Meanwhile, all the agents that are
rejected are said to have collided on firm f , for which they receive no utility i.e. Ua,f (t) = 0.

We restrict that agents only receive the following information at any time step t:

1. Ya(t) = 1 (a is matched to fa(t)) , which captures if agent a gets matched at time t

2. if they get matched, the noisy measurement of their utility, Ua,f (t).

Remark 1. We note that in this setup an agent does not know anything about how other agents are
performing in the market. Agents do not observe any information about the matching and collisions
of other agents. We remark that this is the same information structure as that assumed by the DA
algorithm and is the key assumption that differentiates our work from prior work on this problem Liu
et al. (2020, 2021); Basu et al. (2021); Sankararaman et al. (2021).

In the following subsection, we recall some important results from matching market literature that
are crucial to further exposition.

2.1 Preliminaries on matching markets

To analyze the matching market defined in the previous section we recall key concepts from the
literature on matching markets. A matching M : A −→ F is an injective function such that M(a) = f
denotes that a and firm f are matched. We call a matching unstable if there is an agent-firm tuple
(a, f) ∈ A × F such that ua(M(a)) < ua(f) and uf (a) > uf (M−1(f)). In words, there is a pair
(a, f) who both prefer each other over their current match, such pair is called a blocking pair. A
matching is stable if it is not unstable. It is usually the case that a market may have multiple stable
matchings. However, for the purpose of this paper we focus on markets which are α−reducible, first
introduced in Alcalde (1994) and further analyzed in Clark (2006), that ensures there is a unique
stable matching. Before formally describing this property we introduce the notion of a submarket and
fixed pair.

A sub-market of M is a market M′ such that M′ = A′ ∪ F ′ where A′ ⊆ A, F ′ ⊆ F , and
|A′| ≤ |F ′|. Meanwhile, a pair (a, f) ∈ A× F is a fixed pair of marketM if ua(f) ≥ ua(f ′) for
all f ′ ∈ F and uf (a) ≥ uf (a′) for all a′ ∈ A. In words, a fixed pair is any agent-firm pair that prefer
each other over any other options in the market. We now define the notion of α−reducibility.

Definition 2 (α-reducibility). A marketM = A ∪ F is α-reducible if every sub-market of M has a
fixed pair.

One important class of markets which satisfy α−reducibility is that where one side of the market has
uniform preferences over the other side. We note that every sub-market of ofM has a unique stable
matching ifM is α-reducible Clark (2006). The preceding property of α−reducible markets will be
crucial to obtain regret guarantees for the proposed algorithm in this paper. Thus, we assume thatM
is α-reducible4.

Remark 3. An important property of α−reducibility assumption that is central to the subsequent
analysis is that it allows us to partition the market into various sub-markets by sequentially eliminating

3Here we assume that the random noise is appropriately bounded such that Ua,f ≥ 0 for all (a, f)
4We can also handle the scenarios where the underlying preferences satisfies SPC conditionClark (2006).

More discussion is provided in Remark 5.

4

fixed pairs. More formally, lets define A0 = F0 = ∅ and M0 = M. Now for i ≥ 1 lets
define inductively Ai ⊆ A\{∪ij=1Aj−1},Fi ⊆ F\{∪ij=1Fj−1} be the set of agents and set of
firms that constitute fixed pair in market Mi−1. That is, for every agent a ∈ Ai there exists a
unique f ∈ Fi such that (a, f) is a fixed pair of market Mi−1. The iteration evolves asMi :=
{A\{∪ij=0Aj}}∪{F\{∪ij=0Fj}}. Let K be the total number of such sub-markets {Mi}. Moreover
such decomposition of market is unique.

For any agent a ∈ A we denote by f∗a its match in the unique stable matching. Furthermore, let
Fa := {f ∈ F : ua(f) > ua(f

∗
a)} be the set of firms that agent a prefers over its stable match. We

call such firms super-optimal firms for a. Similarly, let Fa := {f ∈ F : ua(f) < ua(f
∗
a)} be the set

of firms which are less preferred than the stable match by agent a. We call such firms sub-optimal
firms for a. Note that we have following lemma which states a crucial property of super-optimal
firms for α−reducible markets.

Lemma 4. For any i ∈ [K] and agent a ∈ Ai the set of super-optimal firms are contained in ∪i−1
j=1Fj .

An immediate conclusion of Lemma 4 is that it creates a hierarchy in the market. That is, an agent
a ∈ Ai, for some i ∈ [K], is in a sense “higher ranked” than a agent a′ ∈ Aj for j > i as the
former’s stable match can be super-optimal for the latter. This sort of hierarchy naturally manifests
itself in the learning process where learning of agent a creates externality for agent a′.

Before we formally present the algorithm, we make the following remark about the preference
structure for which the results in this article hold.

Remark 5. The notion of α-reducibility is weaker than the no crossing condition and serial dic-
tatorship Clark (2006). These conditions have been introduced in the effort to characterize the
existence and uniqueness of a stable matching. We note that α-reducibility is a stricter condition
than Sequential Preference Condition (SPC) Clark (2006). However, the results presented in this
work extend directly under the assumption of SPC. This is because all of the results are derived based
on the decomposition stated in Remark 3 which can be also obtained from the definition of SPC
Clark (2006); Karpov (2019). However, as pointed out by Clark (2006), given any population P of
agents alpha-reducibility is necessary and sufficient condition for unique stable matching regardless
of subpopulation sampled from P . However, this property does not hold for SPC.

For ease of reference, all key notations used in paper are presented in a table in the Supplementary
material.

3 Algorithms

In this section we present a novel algorithm design principle for agents to learn about the preferences
while ensuring that they perform competitively against the match that they could have achieved if
they knew their preferences and used the DA algorithm. Throughout this section, we assume that
every agent a ∈ A uses these algorithms in order to decide which firm to choose at any time t. The
proposed algorithms—by design— make use of only the feedback information outlined in (1)-(2)
in Section 1, and have no implicit or explicit communication and coordination strategies like e.g.,
phase based strategies with coordinated actions Basu et al. (2021) or partial observation of actions
of other agents Liu et al. (2021) etc. Thus, the algorithms operate in the same regime as the DA
algorithm, but without the assumption that agents know their preferences. Key to our approach, is
the blending stochastic bandit (SB) algorithms with an adversarial bandit (AB) algorithms. In the
subsequent exposition we will formally describe our approach and show its desirable properties in
terms of regret and convergence.

Before doing so, however, we comment on the difficulties of the problem at hand, and what makes
the analysis of these algorithms highly non-trivial. The key challenge in designing algorithms for
matching while learning is understanding when to stop requesting super-optimal firms (i.e. firms that
they prefer more than their stable match) without any foreknowledge of the market structure. The
crux of this problem is having an agent learn that certain firms are unattainable due to competition
despite the non-stationarity in the environment stemming from fact that other agents are learning
simultaneously and not knowing who they collide with and who is successfully getting matched at
each round. Furthermore, due to a lack of communication or coordination, agents cannot learn about
which firms are super-optimal without risking many collisions.

5

A sketch of the algorithm is described in words in Algorithm 1, and the exact algorithm for the
setting in which agents use the UCB algorithm as a subroutine is presented in Algorithm 2. A
corresponding version of algorithm with Thompson sampling based stochastic subroutine is presented
in Supplemental material. As per Algorithm 2, each agent is equipped with a stochastic bandit (SB)

Algorithm 1: High-level algorithmic description
Each agent a ∈ A at every time t ∈ [T]:
1. Keeps an ordering of firms as per an index-based stochastic bandit subroutine
2. Agent a goes over the firms as per the ordering one by one
3. Using an adversarial bandit subroutine decides whether to request the firm or to prune it

(a) If a firm is requested then agent either gets matched or gets collided
(b) If pruned then then the agent moves to next firm as per the ordering in Step 1.

4. Updates the stochastic and adversarial bandit subroutine based on the feedback received

subroutine. At every time step t ∈ [T], the SB subroutine of every agent a maintains ordering of firms
in decreasing order of preferences according to an index (e.g. UCB). We denote this index of firm f
as maintained by agent a as UCBa,f (t). Next, at that time step, every agent considers each firm one
by one in decreasing order of UCBa,f (t). For any firm f considered by agent a at time t, the agent
makes a decision to either request f or to prune5 it (that is, to reject that firm). In particular, agent
a requests firm f with probability pa,f (t). Let Pa,f (t) ∼ Bernoulli(pa,f (t)). If a firm is pruned
(i.e. Pa,f (t) = 0) then the next best firm from the sorted list is chosen and the process continues
until a firm is requested (i.e. Pa,f (t) = 1). However, if all of the firms are pruned then at that time
instant the agent simply requests the firm argmaxf UCBa,f (t). Once an agent decides which firm to
request, it obtains a noisy utility if it gets successfully matched. This feedback is used by the agent to
update its UCB-index. Based on whether an agent a decides to prune or request a particular firm f , it
updates pa,f using an AB subroutine. The details about this are stated in Section6 3.2 We note that all
firms are not considered by agent a at every time t. Once an agent decides to request a firm f , it does
not consider firms in the set {f ′ ∈ F : UCBa,f ′(t) < UCBa,f (t)}. Formally, for any agent-firm
tuple (a, f) ∈ A×F let the event that the agent a considers the firm f at time t, to decide whether to
request it or prune it, be denoted by E(c)

a,f (t) = 1 (Pa,f ′(t) = 0, ∀ f ′ : UCBa,f (t) ≤ UCBa,f ′(t)).

If a firm f is considered by agent a then the event when agent a requests f is denoted by E(r)
a,f (t) =

1

(
Pa,f (t) = 1, E(c)

a,f (t) = 1
)

.

In Section 3.1 we describe the UCB computation method for the SB subroutine. Finally, in Section
3.2, we illustrate how the matchings and collisions are used to update the probability pa,f (t) as per
an AB subroutine.

3.1 Stochastic Bandit Subroutine

The stochastic bandit subroutine is used to efficiently deal with inherent uncertainty in the payoff
obtained upon successful matching. In this section we develop the theory for the setting in which
agents use a UCB based SB subroutine. Similar results for Thompson Sampling are supplied in the
supplementary material.

To begin, we denote the number of times agent a gets successfully matched with firm f till time t
as Ma,f (t). Similarly, the number of times agent a gets collided with firm f till time t be Ca,f (t).
Given this notation, the UCB Auer (2002) estimate of agent a for every f at time t is given by

UCBa,f (t) = µ̂a,f (t− 1) +

√
2 log(1 + M̄a log

2(M̄a))

Ma,f (t)
,

5Note that by pruning here we do not mean permanent pruning, it is used to describe that a particular firm is
not consider at that time step

6The corresponding algorithmic subroutine AB_Subroutine is presented in the Supplementary material.

6

Algorithm 2: UCB based Decentralized Matching Algorithm (UCB-DMA)
Initialize : µ̂a,f = 0,Ma,f = 0, pa,f = 0.5, xa,f = 0.5, La,f = 0, ∀a ∈ A, f ∈ F

1 for t = 1, . . . , T do
2 for f ∈ F do
3 Set UCBa,f = µ̂a,f +

√
2 log(1+(M̄a) log2(M̄a))

Ma,f
, where M̄a =

∑
f∈F Ma,f

4 end
5 Set ArgUCBa = ArgDescendingSort({UCBa,f}f∈F) and i = 1
6 while i ≤ |F| do
7 Set f = ArgUCB[i]

a and sample Pa,f ∼ Bernoulli(pa,f)
8 if Pa,f = 0 then
9 Update (xa,f , pa,f , La,f)←− AB_Subroutine(Pa,f , xa,f , pa,f , La,f , Ya)

10 end
11 if Pa,f = 1 then
12 Request firm f and receive (Ua, Ya)

13 Update µ̂a,f ←− Ya µ̂a,fMa,f+Ua

Ma,f+1 + (1− Ya)µ̂a,f , Ma,f ←−Ma,f + Ya,
14 Update (xa,f , pa,f , La,f)←− AB_Subroutine(Pa,f , xa,f , pa,f , La,f , Ya)
15 break while;
16 end
17 i←− i+ 1
18 end
19 if i = |F|+ 1 then
20 Request firm ArgUCB[1]

a and receive (Ua, Ya)

21 Update µ̂a,f ←− Ya µ̂a,fMa,f+Ua

Ma,f+1 + (1− Ya)µ̂a,f , Ma,f ←−Ma,f + Ya

22 end
23 end

where M̄a(t) =
∑
f∈F Ma,f (t) and µ̂a,f (t − 1) , are the total number of successful matches for

agent a and the empirical average of the payoffs received from successfully matching to firm f until
time t respectively. The UCB estimate is composed of two parts: (i) the empirical mean which
captures the exploitation aspect; and (ii) exploration bonus that decreases as Ma,f (t) increases. We
remark that it does not depend on the number of collisions Ca,f (t).

3.2 Adversarial Bandit Subroutine

A key component of the proposed methodology is to use an adversarial bandit subroutine to deal with
the competitive aspect of the problem. In particular, the AB subroutine updates the request probability
(pa,f)f∈F such that agent stops requesting firm on which the collisions are high (but ensures that it
does not miss out on the firm if it is achievable). Intuitively, by construction, the adversarial bandit
algorithm learns to prune firms on which collisions would happen frequently, and request firms where
it is possible to successfully match very often. We show this by analyzing its regret and showing that
high regret is incurred if the algorithm either prunes too often when successfully matching is possible
or requesting a firm that is unachievable due to the frequent presence of higher ranked agents. By
bounding the regret of the AB subroutine we immediately get a bound on the number of collisions.

We now describe the update scheme for pa,f (t) for any (a, f) at any time t ∈ [T]. In this work we
consider an optimistic mirror descent based AB subroutine specialized from Bubeck et al. (2019).
Interestingly such AB algorithms have data dependent regret bounds Wei and Luo (2018); Bubeck
et al. (2019) unlike other AB algorithms like Exp3 Lattimore and Szepesvári (2020); Slivkins (2019).
Since the competition in the matching market is not actually adversarial such data-dependent regret
bounds enables us characterize the competition more effectively in the analysis than just treating

7

competition as adversarial7. We note that the proof techniques developed here can also be used to
analyze an Exp3 based AB subroutine but the regret bounds of such an approach will not be as sharp.

For a given agent a, our algorithm associates a separate AB subroutine to every firm f ∈ F . Each
AB algorithm has two arms which correspond to the action of requesting the firm f or pruning it,
each of which incurs different losses depending. In particular, if Pa,f (t) = 0 then it receives a fixed
loss of 0; if Pa,f (t) = 1 the loss received is +1 or −1 if it collides or matches respectively. If we
denote the loss received by the AB subroutine associated with (a, f) at time t by La,f (t), we note
that La,f (t) = Pa,f (t) (1− 2Ya(t)). Note that Ya(t) is unknown to any agent before requesting any
firm as it also depends on the requests made by other agents.

We note that the request probability pa,f is not updated at every time t, but only when E(c)
a,f (t) = 1

(i.e., if all firms with a higher UCB index have been pruned). As such the adversarial bandit algorithms
can be seen as operating on a random timescale τa,f (T) = {t ∈ [T] : E(c)

a,f (t) = 1} which are
the time steps on which agent a considers firm f . We note that for any t ̸∈ τa,f (T) we have
pa,f (t+ 1) = pa,f (t).

For the specific AB algorithm we analyze (which is a version of optimistic mirror descent with a
log-barrier regularizer first analyzed in Wei and Luo (2018)), the simple setup of the losses leads
to a closed form update for the probability of requesting or pruning a firm. In particular, for every
(a, f) ∈ A × F and t ∈ τa,f (T), the optimistic mirror descent AB subroutine creates an unbiased
estimate of the loss due to pruning and requesting as L̂(prune)

a,f (t) and L̂(pull)
a,f (t) respectively. In

particular, if Pa,f (t) = 1

L̂(prune)
a,f (t) =

1 + La,f (t− 1)

2
, L̂(pull)

a,f (t) =
1− 2Ya(t)− La,f (t− 1)

2pa,f (t)
+

1 + La,f (t− 1)

2
.

On the other hand, if Pa,f (t) = 0 then

L̂(prune)
a,f (t) =

−La,f (t− 1)

2(1− pa,f (t))
+

1 + La,f (t− 1)

2
, L̂(pull)

a,f (t) =
1 + La,f (t− 1)

2

The term 1+La,f (t−1)
2 is an optimistic prediction of the losses based on the last round of interac-

tion Bubeck et al. (2019). Given these estimators the probability of requesting a firm is updated
as:

pa,f (t+ 1) = (1− Λa,f (t))xa,f (t) + Λa,f (t)Pa,f (t),

where:
xa,f (t) =

(
2 + ξ(t)−

√
4 + ξ(t)2

)
(2ξ(t))−1

for ξ(t) = η
(
L̂(pull)
a,f (t)− L̂(prune)

a,f (t)
)
+ 1

xa,f (t−1) −
1

1−xa,f (t−1) , is the result of a step of mirror de-

scent with the log-barrier regularizer, and Λa,f (t) =
λ(1−La,f (t))

2+λ(1−La,f (t))
, for λ > 0, promotes exploration.

The algorithmic description of this process is stated in the Supplementary material.

4 Regret bounds for decentralized matching algorithms

To capture the performance of the algorithm we use the natural notion of stable regret as introduced
in Liu et al. (2020). More formally, the stable regret accrued by any agent a ∈ A is

E[Ra(T)] = E

[
T∑
t=1

ua,f∗
a
−

T∑
t=1

ua,fa(t)

]
≤
∑
f∈Fa

∆a(f)E[Ma,f (T)] + ua(f
∗
a)
∑
f∈F

E[Ca,f (T)],

(4.1)
where ∆a(f) = ua(f

∗
a) − ua(f) is the gap between the mean that agent a gets upon successfully

matching with its stable match as compared firm f . If there are no collisions, then this regret
definition is same as that used in stochastic bandits literature (Lattimore and Szepesvári (2020)). In
the following theorem, we present the regret of any agent using Algorithm 2:

7We review the required background on optimistic mirror descent based AB algorithms in the Supplementary
material along with a result which captures the corresponding data-dependent regret bounds in the setting of
matching markets.

8

Theorem 6. Suppose every agent a ∈ A uses Algorithm 2. Then for any i ∈ [K] :
i∑

j=1

∑
a∈Aj

E[Ra(T)] = O
(
Ci|F||A|log(T)

(
1 +

1

∆2

))
where ∆ = mina,f ∆a,f and Ci = iθi for some positive scalar θ > 1. Note that C1 < C2 < ... <
CK .

We see that the regret of any agent a ∈ A is logarithmic in horizon T , which matches the lower bound
for single player stochastic bandit algorithms Lai and Robbins (1985). As such, perhaps surprisingly,
we observe that in α-reducible markets, it is possible for agents to learn while competing without
incurring drastically worse regret in the long run. It is interesting to note that the learning of agent
depends on its position in the market as per preferences (Remark 3). An agent low in the hierarchy
incurs more regret during the learning process due to the agents higher up in the hierarchy driven
mainly by the larger number of collisions incurred while waiting for agents higher in the hierarchy
to stop exploring. We note that in the worst case the constant Ci can grow exponentially in the
number of agents in the market. We note that this is a consequence of the proof technique and not
fundamental limitation of the algorithmic design paradigm as we show in the supplementary material
through numerical studies. We leave this as a future work to establish tighter regret bounds in terms
of number of agents. In the supplementary material we also show that in Algorithm 2 if we use a SB
subroutine based on Thompson Sampling then a similar regret guarantee can be obtained. We now
present a sketch of the proof of Theorem 6.

Sketch of the proof. Before presenting the sketch, we first define few notations that would make
the exposition clear. Let Ma,Fa

(T) =
∑
f∈Fa

Ma,f (T),Ma,Fa
(T) =

∑
f∈Fa

Ma,f (T). Moreover,
for any a ∈ A define Ha,f∗

a
(t) = {∃a′ ∈ A s.t. uf∗

a
(a′) ≥ uf∗

a
(a), fa′(t) = f} which is an event

that characterizes if any other more preferred agent has requested the stable match of agent a at time
t. Against the preceding backdrop, we now present the following crucial lemma:
Lemma 7. Suppose every agent uses Algorithm 2

(L1) For any i ∈ [K], the cumulative regret can be decomposed as
i∑

j=1

∑
a∈Aj

E[Ra(T)] = O
(k∑
i=1

∑
a∈Ai

(E[Ma,Fa
(T)] +

∑
f∈F

f ̸={f∗
a}

E[Ca,f (T)] + E[
T∑
t=1

Ha,f∗
a
(t)])

)
;

(L2) For any i ∈ [K], the expected matches with suboptimal firm satisfies

i∑
j=1

∑
a∈Aj

E[Ma,Fa
(T)] = O

 i∑
j=1

∑
a∈Aj

(
|Fa| log(T)

(
1 +

1

∆2

)
+ E

[
T∑
t=1

Ha,f∗
a
(t)

])
(L3) The expected number of collisions between for any agent a ∈ A satisfies∑

f∈F

E[Ca,f (T)] = O

(
|F| log(T) + E

[
Ma,Fa

(T) +Ma,Fa
(T) +

T∑
t=1

1
(
Ha,f∗

a
(t)
)])

;

(L4) For any i ∈ [K] we have

i∑
j=1

∑
a∈Aj

E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

= O

Ci
 i∑
j=1

|Aj |

 log(T)

(
1 +

1

∆2

) ,

where Ci is a constant dependent on marketMi such that C1 < C2 < ... < CK .

(L5) For any i ∈ [K] we have

i∑
j=1

∑
a∈Aj

∑
f∈Fa

E[Ma,f (T)] ≤ O

Ci
 i∑
j=1

|Aj |

 |F| log(T)(1 + 1

∆2

)
9

Theorem 6 is proved using (L1)-(L5) from Lemma 7. Note that (L1) follows from (4.1) and
the definition of Ha,f∗

a
(t). From (L1) we see that to bound the regret we need to consider three

components: (i) expected number of matchings with suboptimal firms, (ii) expected number of
collisions with any firm other than stable match, (iii) the potential collisions at the stable match8.
(L2) bounds the expected number of matchings with suboptimal firms. Note that the total matchings
between agent a and firm f is Ma,f (T) =

∑T
t=1 1 (Ya(t) = 1, fa(t) = f). Thus, we present the

following lemma which plays a key role in the proof of (L2):
Lemma 8. The event that agent a chooses the firm f ∈ Fa and successfully matches at time t ∈ [T]
satisfies

{Ya(t) = 1, fa(t) = f} ⊂
{
Ya(t) = 1,UCBa,f∗

a
(t) ≤ UCBa,f (t)

}
∪ {E(r)

a,f (t) = 1, E(r)
a,f∗

a
(t) = 0}

Lemma 8 separates the challenge associated with uncertainty and that of competition. Note that
the first event on the right hand side is the one which is standard to the analysis of UCB algorithm
(Lattimore and Szepesvári (2020)). Meanwhile, the other event corresponds to the case when the
stable firm is pruned by agent a in order to avoid potential collisions. To bound latter event we use
the regret bounds for the adversarial bandit subroutine (refer to Appendix).

To bound (L3) we use the path length based regret bounds Bubeck et al. (2019); Wei and Luo (2018)
for the adversarial bandit subroutine. Meanwhile to bound (L4) we use the α−reduciblity assumption
and (L2). In particular, the α−reduciblity assumption induces a hierarchy in the market as per
Remark 3. This decomposition reduces the bound in (L4) to appropriate accounting of number
of matches with suboptimal firms via an induction argument. Finally, (L5) follows again due to
hierarchy induced by α−reducibility and using (L2)-(L4).

5 Conclusions

We consider a problem of bandit learning in two-sided matching markets comprising of agents
and firms. We consider the setting where agents have unknown preferences over the firms. In this
paper, we present simple design principle for decentralized, communication and coordination free
algorithm for learning in two-sided matching markets. The primary challenge in learning in two-sided
matching market is to balance exploration, exploitation and collision avoidance. We embed the
aforementioned properties in the algorithm by a novel idea of blending a stochastic bandit subroutine
with an adversarial bandit subroutine. The stochastic bandit subroutine is required for balancing the
exploration-exploitation trade-off while the adversarial bandit subroutine limits the collisions. As an
instance of this design principle, we present an algorithm which has the stochastic bandit subroutine
based on UCB and the adversarial bandit subroutine based on Optimistic Mirror Descent algorithm.
We show that if the preferences of agents satisfy certain structure known as α-reducibility (or SPC
condition), then these algorithms incur a regret which is logarithmic in the time horizon. However, in
the worst case, the regret may grow exponentially in the size of the market. We believe that this is an
artifact of proof technique and not the limitation of algorithmic design.

There are several directions in which this work can be extended in future. First, it would be an
interesting avenue of future research to improve the dependence of regret bound on size of the market.
We believe the worst case exponential dependence on number of agents is an artifact of the current
proof technique. Second, it would be also interesting to relax the imposed structure on matching
markets. Specifically, it would be interesting to extend the results to the setting when the underlying
preferences satisfy α−condition Karpov (2019) which is a necessary and sufficient condition for
uniqueness of stable matching. Lastly, it would be also an interesting direction of research to develop
decentralized algorithms when both sides of the market are simultaneously learning. The scenario
where firms are also learning their preferences in non-trivial extension of this work as the firms may
incorrectly prefer suboptimal firms which may in turn lead to wrong feedback to agents.

Acknowledgments and Disclosure of Funding

Research is supported in part by NSF grant DMS 2013985 “THEORINet: Transferable, Hierarchical,
Expressive, Optimal, Robust and Interpretable Networks” and C3.ai Digital Transformation Institute.

8by potential collision at stable match we mean total number of collision that would have been faced by an
agent at its stable firm had it always requested the stable firm

10

References
Agrawal, S. and Goyal, N. (2012). Analysis of thompson sampling for the multi-armed bandit problem.

In Conference on learning theory, pages 39–1. JMLR Workshop and Conference Proceedings.

Alcalde, J. (1994). Exchange-proofness or divorce-proofness? stability in one-sided matching
markets. Review of Economic Design, 1:275–287.

Aridor, G., Mansour, Y., Slivkins, A., and Wu, Z. S. (2020). Competing bandits: The perils of
exploration under competition. arXiv preprint arXiv:2007.10144.

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422.

Basu, S., Sankararaman, K. A., and Sankararaman, A. (2021). Beyond log-squared regret for
decentralized bandits in matching markets. arXiv preprint arXiv:2103.07501.

Bubeck, S., Budzinski, T., and Sellke, M. (2020). Cooperative and stochastic multi-player multi-armed
bandit: Optimal regret with neither communication nor collisions. CoRR, abs/2011.03896.

Bubeck, S., Li, Y., Luo, H., and Wei, C.-Y. (2019). Improved path-length regret bounds for bandits.
In Conference On Learning Theory, pages 508–528. PMLR.

Buccapatnam, S., Tan, J., and Zhang, L. (2015). Information sharing in distributed stochastic bandits.
In 2015 IEEE Conference on Computer Communications (INFOCOM), pages 2605–2613. IEEE.

Cen, S. H. and Shah, D. (2021). Regret, stability, and fairness in matching markets with bandit
learners. arXiv preprint arXiv:2102.06246.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learning, and games. Cambridge university
press.

Chakraborty, M., Chua, K. Y. P., Das, S., and Juba, B. (2017). Coordinated versus decentralized
exploration in multi-agent multi-armed bandits. In IJCAI, pages 164–170.

Clark, S. (2006). The uniqueness of stable matchings. Contributions to Theoretical Economics,
6:1283–1283.

Das, S. and Kamenica, E. (2005). Two-sided bandits and the dating market. In IJCAI, volume 5,
page 19. Citeseer.

Fudenberg, D., Drew, F., Levine, D. K., and Levine, D. K. (1998). The theory of learning in games,
volume 2. MIT press.

Gale, D. and Shapley, L. S. (1962). College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15.

Jagadeesan, M., Wei, A., Wang, Y., Jordan, M., and Steinhardt, J. (2021). Learning equilibria in
matching markets from bandit feedback. Advances in Neural Information Processing Systems, 34.

Johari, R., Kamble, V., and Kanoria, Y. (2016). Matching while learning. arXiv preprint
arXiv:1603.04549.

Kalathil, D., Nayyar, N., and Jain, R. (2014). Decentralized learning for multiplayer multiarmed
bandits. IEEE Transactions on Information Theory, 60(4):2331–2345.

Karpov, A. (2019). A necessary and sufficient condition for uniqueness consistency in the stable
marriage matching problem. Economics Letters, 178:63–65.

Kong, F., Yin, J., and Li, S. (2022). Thompson sampling for bandit learning in matching markets.
arXiv preprint arXiv:2204.12048.

Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22.

Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press.

11

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pages 157–163. Elsevier.

Liu, K. and Zhao, Q. (2010). Distributed learning in multi-armed bandit with multiple players. IEEE
transactions on signal processing, 58(11):5667–5681.

Liu, L. T., Mania, H., and Jordan, M. (2020). Competing bandits in matching markets. In International
Conference on Artificial Intelligence and Statistics, pages 1618–1628. PMLR.

Liu, L. T., Ruan, F., Mania, H., and Jordan, M. I. (2021). Bandit learning in decentralized matching
markets. Journal of Machine Learning Research, 22(211):1–34.

Lugosi, G. and Mehrabian, A. (2021). Multiplayer bandits without observing collision information.
Mathematics of Operations Research.

Mansour, Y., Slivkins, A., and Wu, Z. S. (2017). Competing bandits: Learning under competition.
arXiv preprint arXiv:1702.08533.

Rosenski, J., Shamir, O., and Szlak, L. (2016). Multi-player bandits–a musical chairs approach. In
International Conference on Machine Learning, pages 155–163. PMLR.

Russo, D., Roy, B. V., Kazerouni, A., and Osband, I. (2017). A tutorial on thompson sampling.
abs/1707.02038.

Sankararaman, A., Basu, S., and Sankararaman, K. A. (2021). Dominate or delete: Decentralized
competing bandits in serial dictatorship. In International Conference on Artificial Intelligence and
Statistics, pages 1252–1260. PMLR.

Sankararaman, A., Ganesh, A., and Shakkottai, S. (2019). Social learning in multi agent multi armed
bandits. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 3(3):1–35.

Slivkins, A. (2019). Introduction to multi-armed bandits. arXiv preprint arXiv:1904.07272.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294.

Wei, C.-Y. and Luo, H. (2018). More adaptive algorithms for adversarial bandits. In Conference On
Learning Theory, pages 1263–1291. PMLR.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] The complete proofs

of the results are included in the supplementary material. Also a sketch of the proof is
provided in the main text.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

12

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

Supplemental Materials for “Decentralized Communication and
Coordination-Free Learning in Matching Markets”

The supplemental material is organized as follows: In Section A, we present an extended review of
existing literature. In Section B, we review the relevant results in the area of adaptive adversarial
bandits. In Section C, we present the proofs of the main lemmas stated in the main paper. In
Section D, we present the proof of the Theorem 6. In Section E, we present some technical lemmas,
along with their proofs, which are crucial to the proofs in Section C and Section D. In Section F
we present the results when instead of UCB based stochastic module we use Thompson sampling
based stochastic module in Algorithm 2 (refer Algorithm 5). In Section G, we present the results
of numerical experiments conducted using Algorithm 2 and Algorithm 5. Finally, in Section H, we
present a table with main notations used in this work.

A Related Work

Sequential decision-making under uncertainty has been extensively studied in machine learning under
the guise of multi-armed bandit (MAB) problems. In general, MAB problems can be split into two
distinct flavors, which differ in the type of feedback agents receive. Crucially, in both problems the
key is trading off exploration of actions and exploiting ones current knowledge.

In the first class of MAB problems, the stochastic MAB, playing an action results in an unbiased
estimate of the utility of playing that action. Solutions to the problem can be split among two
dominant algorithmic paradigms. The first, based on principle of optimism in the face of uncertainty
encompasses the well known upper confidence bounds (UCB) algorithm Lattimore and Szepesvári
(2020); Lai and Robbins (1985) and its variants, while the second, based on Thompson sampling
takes a Bayesian approach Russo et al. (2017); Thompson (1933) Each of these approaches are
known to have optimal performance measured in terms of regret: the expected cumulative utility
generated from the algorithm’s chosen actions compared to the expected utility that could have been
generated from always choosing the best possible action (i.e., the best action that one would choose
with full information) Lattimore and Szepesvári (2020); Agrawal and Goyal (2012). In particular,
these algorithms are known to incur logarithmic regret, i.e., regret that grows at most logarithmically
over time— which is known to be optimal for this class of problems up to constant factors. In our
paper we present an algorithmic framework for learning in matching markets that works with either
class of algorithm, and further incurs logarithmic regret even while dealing with competition.

The second class of multi-armed bandit problems, coming from the literature on learning in games,
seeks algorithms that can perform against arbitrary feedback sequences Cesa-Bianchi and Lugosi
(2006). Solutions to this class of problems, known as adversarial bandit algorithms, are an active
research topic. While it is well known that using simple strategies like multiplicative weights can
guarantee regret against the best fixed action in hindsight on the order of

√
T against worst-case

adversaries Cesa-Bianchi and Lugosi (2006), designing algorithms that can improve upon this when
adversaries are not worst case remains an open research problem. In this paper we leverage advances
on the development of path-length adversarial regret algorithms that address this problem and
guarantee regret that directly depends on the amount of variation an adversary presents Bubeck et al.
(2019); Wei and Luo (2018).

We briefly remark that there exists several lines of research on multi-agent bandits. One of them is
on multi-agent bandits with collisions (with applications primarily in the area of spectrum sharing
in wireless networksLiu and Zhao (2010); Kalathil et al. (2014); Rosenski et al. (2016); Lugosi
and Mehrabian (2021); Bubeck et al. (2020)). In such models the arms do not have preferences
and if more than one agents collide at any arm then no one receives any utility or attains maximum
possible loss. However, these models differ from us since we consider that both sides of markets have
preference over one another and when there is a collision only one agents gets matched. Another
line of research deals with the problem of collaboratively learning an instance of multi-armed bandit
Buccapatnam et al. (2015); Chakraborty et al. (2017); Sankararaman et al. (2019) where agents can
communicate. Note that in these settings there is no competition that is more than one agents apply at
same arm at same time.

14

The particular intersection of MABs and two-sided matching markets that we analyze has seen a
flurry of recent works Liu et al. (2020, 2021); Basu et al. (2021); Sankararaman et al. (2021). To the
best of our knowledge, Das and Kamenica (2005), presented the first numerical study on effectively
using MAB algorithms to learn preferences in matching markets. However, it was only recently that
Liu et al. (2020) rigorously formulated the bandit learning problem in the matching markets, and
generalized the notion of regret from the MAB literature to matching markets in terms of stable
regret— i.e., the expected cumulative utility benchmarked against the expected cumulative reward
that would have been received if everyone in the market requested their match in a certain stable
match9. Moreover, they proposed a centralized UCB-based algorithm that facilitates the matching
between agents and firms given each agents’ current beliefs over their preferences and history of
play, while ensuring that O(|A||F| log(T)) regret for a UCB based algorithm, where A is the set of
agents, F is the set of firms, and T is the time horizon of the problem. In follow up work Liu et al.
(2021) proposed a decentralized bandit learning algorithm based on UCB that allows each user to
take its decision in a decentralized manner and still “converge” to stable matching while incurring
O(exp(|F|4) log2(T)) regret. More recently Kong et al. (2022) proposed a thompson sampling
based variant of Liu et al. (2021). However, these algorithms requires the knowledge of outcomes at
other firms at every round, leaving algorithms that are based solely on agents’ own history of play
as an open problem. Concurrently, Sankararaman et al. (2021) proposed an algorithm that works in
phases and makes use of communication between agents to coordinate agents’ actions. Under this
information structure the algorithm achieves O

(
|F|2|A|2 log(T)

)
regret. Moreover their guarantees

require that firms have homogeneous preference over the agents (also referred as serial dictatorship).
Follow-up work, Basu et al. (2021) improved the regret for serial dictatorship to O (|F||A| log(T))
by proposing a new algorithm. Additionally, they also showed that if the assumption of serial
dictatorship is relaxed to a weaker structural condition then they obtain O(poly(|A|, |F|) log(T))
regret. Even though the proposed algorithm in Basu et al. (2021) has decentralization it is a phase
based algorithm, the agents act according to a coordinated protocol at some rounds. In this paper we
propose a simple, decentralized, communication and coordination free algorithm in which agents
make use of their own local information to learn while matching. Unlike previous works Liu et al.
(2020, 2021); Sankararaman et al. (2021); Basu et al. (2021) where the algorithms are constructed
using a UCB subroutine, we also show that our algorithmic design paradigm can be also seamlessly
extended to Thompson sampling variant.

We would also like to remark about another line of research at the intersection of multiarmed bandits
and matching markets Jagadeesan et al. (2021); Johari et al. (2016); Cen and Shah (2021) which
consider the problem of learning preferences from the perspective of a platform.

B Adaptive Adversarial Algorithms

In this work we deploy the optimistic mirror descent based adversarial bandit module. We adapt
algorithms from Bubeck et al. (2019), who improve the algorithm originally proposed in Wei and Luo
(2018). In this section we recap the results from Bubeck et al. (2019). For the sake of completeness we
restate the problem formulation and algorithm here. Towards the end we will specialize their results
in the setting of this paper and state an useful result which presents the regret of such algorithms,
in the context of the bandit structure described in Sec 3.2, in terms of the number of matchings and
collisions.

B.1 Problem formulation from Bubeck et al. (2019)

In this section we review algorithm described in Bubeck et al. (2019) which is an improvement over
the one described in Wei and Luo (2018). Consider a multi-armed bandit problem that proceeds in
τ time steps with A ≤ τ fixed actions. In each round t, the algorithm selects one arm i(t) ∈ [A]
and simultaneously an adversary decides the loss vector ℓ(t) = (ℓi(t))i∈[A] ∈ [−1, 1]A. Note that
the adversary can be an adaptive one in that it can base its actions on the past rounds of algorithm’s
actions. The goal of the algorithm is to minimize the gap between total accumulated loss and the loss

9Note that the stable matching need not be unique in general. Thus the stable regret has to be always specified
with respect to which stable matching is being used. Typically, in literature two main stable matchings are
considered namely agent optimal stable matching and firm optimal stable matching.

15

of best fixed arm in hindsight:

Regret(adv)(τ) = max
i⋆∈[A]

E

[
τ∑
t=1

ℓi(t)(t)−
τ∑
t=1

ℓi⋆(t)

]
.

The algorithm is based on the optimistic mirror descend framework. At any time t, the algorithm
samples an arm i(t) ∈ [A] with probability p(t) ∈ ∆([A]). The algorithm only receives the loss for
the action taken and not other actions. Therfore, upon receiving the loss ℓi(t)(t) the algorithm creates
an unbiased estimator of losses for other actions. The estimator is

L̂i(t) =
ℓi(t)− L(t− 1)

2pi(t)
1 (i(t) = i) +

1 + L(t− 1)

2
, ∀ i

The unbiased loss estimate L̂(t) is used to update the an auxiliary probability distribution x(t+ 1) ∈
∆([A]) through an optimistic mirror descend update with learning rate η. The optimistic mirror
descend update is constructed from the Bregman divergence10 associated with a log-barrier regularizer
RA ∋ x 7→ ψ(x) = 1

η

∑A
i=1 ln

1
xi

as follows

x(t+ 1) = arg min
z∈∆([A])

⟨z, L̂(t)⟩+Dψ(z, x(t)).

The distribution x(t + 1) is used to update the arm sampling distribution p(t + 1) after mixing a
small bias towards most recently picked arm as follows

p(t+ 1) = (1− λ(t+ 1))x(t+ 1) + λ(t+ 1)ei(t)

where eit ∈ RA is an element of standard basis in RA with i(t) element as 1 and all others as zero
and λ(t+ 1) = λ(1−L(t))

2+λ(1−L(t)) for some λ > 0.

Algorithm 3: Optimistic Mirror Descend based Adversarial Bandit Algorithm

Parameters :η, λ ∈ (0, 1), p(1), x(1) = Unif([A]), ψ(x) = 1
η

∑A
i=1 ln

1
xi

1 for t = 1, 2, .., τ do
2 Play i(t) ∼ p(t) and observe L(t) = ℓi(t)(t)

3 Construct an unbiased estimator L̂i(t) =
ℓi(t)−L(t−1)

2pi(t)
1 (i(t) = i) + 1+L(t−1)

2 for all i ∈ [A]

4 Update x(t+ 1) = argminz∈∆([A])⟨z, L̂(t)⟩+Dψ(z, x(t))

5 p(t+ 1) = (1− λ(t+ 1))x(t+ 1) + λ(t+ 1)ei(t) where λ(t+ 1) = λ(1−L(t))
2+λ(1−L(t))

6 end

Against the preceding backdrop, we restate Theorem 2 from Bubeck et al. (2019) below:

Theorem 9. Algorithm 3 with η ≤ 1
50 , λ = 8η ensures that

Regret(adv)(τ) = O
(
A ln(T)

η

)
+ 8ηE [V (T)]

where V (T) :=
∑T
t=2 |ℓi(t−1)(t)− ℓi(t−1)(t− 1)| is commonly referred as “path-length”.

Remark 10. Note that Theorem 2 in Bubeck et al. (2019) requires11. But in fact the proof goes
through for η ≤ 1/50. η ≤ 1/162 and λ = 8η. This is because in Bubeck et al. (2019) for the proof
of Theorem 2, they directly lift (Wei and Luo, 2018, Theorem 7) where η ≤ 1/162 which is not tuned
efficiently.

10Bregman divergence between two point x, y with respect to a convex regularizer ψ is given as Dψ(x, y) =
ψ(x)− ψ(y)− ⟨∇ψ(y), x− y⟩.

11Moreover, it is an algebraic exercise to establish that η < 1
24

and λ = 1−12η−c·
√
1−24η

24
also works for

some c ∈ (0, 1). But we don’t go in this direction to retain simplicity of algorithmic description.

16

B.2 Adaptive Adversarial Module

In this section we describe AB_Subroutine in Algorithm 2 which is based on the algorithm presented
in Sec B.1.

For any (a, f) ∈ A × F , the adversarial bandit module associated with (a, f) (as described in
Algorithm 4) is a version of Algorithm 3 for case when there are two actions: request the firm f or
prune the firm f . In addition, the loss incurred due to pruning the firm f is always 0 while the loss
incurred due to pulling an firm f depends on whether the agent a got matched with it or collided with
it. In this special case of two actions, the optimistic mirror descent update (line 4 in Algorithm 3) can
be obtained in closed form (see Lemma 12). Note that the adversarial bandit module associated with
any agent-firm tuple (a, f) is only used when t ∈ τa,f (T) ⊂ [T].

Lemma 11. Given a scalar η ≤ 1
50 , for any agent-firm pair (a, f) ∈ A × F , the regret of the

adversarial bandit algorithm is bounded as

E[Regret(adv)
a,f (τa,f (T))] ≤ O

(
log(T)

η

)
+32ηE

[
min

{
M⋆
a,f (T), C

⋆
a,f (T),Ma,f (T) + Ca,f (T)

}]
,

where M⋆
a,f (T) =

∑T
t=1 1

(
Hc
a,f (t)

)
and C⋆a,f (T) =

∑T
t=1 1 (Ha,f (t)).

Proof. To prove this lemma we only need to bound the path length Va,f (T) in Theorem 9. We claim
that the path length Va,f (T) ≤ min{C⋆a,f (T),M⋆

a,f (T)}. Recall τa,f (T) = {t ∈ T : E(c)
a,f (t) = 1}.

For the remaining proof for any t ∈ τa,f (T) by t− 1 we mean max{t < t : t ∈ τa,f (T)}. For any
t ∈ τa,f (T), let’s denote the loss due to pruning at time t by ℓ(prune)a,f (t) and similarly let the loss due

to pulling at time t by ℓ(pull)a,f (t). Note that by construction, the loss due to the pruning operation is

deterministic and zero. That is, for any t ∈ τa,f (T), ℓ(prune)a,f (t) = 0 and ℓ(pull)a,f (t) = 1 − 2Ya(t).
Furthermore, note that

Va,f (T) ≤
∑

t∈τa,f (T)

|ℓ(pull)a,f (t)− ℓ(pull)a,f (t− 1)|

≤
(a)

2
∑

t∈τa,f (T)

1
(
Ha,f (t− 1), Hc

a,f (t)
)
+ 1

(
Hc
a,f (t− 1), Ha,f (t)

)
≤ 4min

{
T∑
t=1

1
(
Hc
a,f (t)

)
,

T∑
t=1

1 (Ha,f (t))

}
= 4min

{
M⋆
a,f (T), C

⋆
a,f (T)

}

where the factor of 2 in is by the fact that a path length change in going from matching to potential
collision or collision to potential matching is 2. The remaining inequalities follow from algebra.

17

Furthermore, we have

Va,f (T) =
∑

t∈τa,f (T)

1 (Pa,f (t) = 1, Pa,f (t− 1) = 1) |ℓ(pull)a,f (t)− ℓ(pull)a,f (t− 1)|

+
∑

t∈τa,f (T)

1 (Pa,f (t) = 0, Pa,f (t− 1) = 1) |ℓ(pull)a,f (t)− ℓ(pull)a,f (t− 1)|

≤
∑

t∈τa,f (T)

1 (Pa,f (t) = 1, Pa,f (t− 1) = 1) |ℓ(pull)a,f (t)− ℓ(pull)a,f (t− 1)|

+ 2
∑

t∈τa,f (T)

1 (Pa,f (t) = 0, Pa,f (t− 1) = 1)

=
∑

t∈τa,f (T)

1 (Pa,f (t) = 1, Pa,f (t− 1) = 1) |ℓ(pull)a,f (t)− ℓ(pull)a,f (t− 1)|

+ 2

T∑
t=2

1 (Pa,f (t) = 0, Pa,f (t− 1) = 1)

= 2
∑

t∈τa,f (T)

1 (Pa,f (t) = 1, Pa,f (t− 1) = 1, Ya(t) = 0, Ya(t− 1) = 1)

+ 2
∑

t∈τa,f (T)

1 (Pa,f (t) = 1, Pa,f (t− 1) = 1, Ya(t) = 1, Ya(t− 1) = 0)

+ 2
∑

t∈τa,f (T)

1 (Pa,f (t) = 0, Pa,f (t− 1) = 1)

≤ 2

 ∑
t∈τa,f (T)

1 (Pa,f (t) = 1, Ya(t) = 0) + 1 (Pa,f (t− 1) = 1, Ya(t− 1) = 1)


+ 2

∑
t∈τa,f (T)

1 (Pa,f (t) = 0, Pa,f (t− 1) = 1)

≤ 4 (Ma,f (T) + Ca,f (T))

B.2.1 AB_Subroutine

Algorithm 4: AB_Subroutine
Input : Pa,f , xa,f , pa,f , La,f , Ya
Parameters : η ≤ 1

50 , λ = 8η
1 if Pa,f = 0 then
2 Set L̂(prune)

a,f =
−La,f

2(1−pa,f)
+

La,f+1
2 , L̂(pull)

a,f =
1+La,f

2

3 Update La,f ←− 0
4 end
5 if Pa,f = 1 then
6 Set L̂(prune)

a,f =
1+La,f

2 , L̂(pull)
a,f =

1−2Ya−La,f

2pa,f
+

1+La,f

2

7 Update La,f ←− 1− 2Ya
8 end
9 Set ξ = η

(
L̂(pull)
a,f − L̂

(prune)
a,f

)
+ 1

xa,f
− 1

1−xa,f

10 Update xa,f ←−
2+ξ−

√
4+ξ2

2ξ and set Λa,f =
λ(1−La,f)

2+λ(1−La,f)
Update

pa,f ←− (1− Λa,f)xa,f + Λa,fPa,f
Output : La,f , xa,f , pa,f

18

−20 −16 −12 −8 −4 0 4 8 12 16 20
0

0.5

1

ξ

x
+

Figure 1: Update function of pulling probability based on line 10 in Algorithm 4

B.3 Technical Lemma

Lemma 12. For any L ∈ R2 and X ∈ ∆(R2) the updateX+ = argminZ∈∆(R2)⟨Z,L⟩+Dψ(Z,X)
can be analytically solved to be X+ = [x+, 1− x+] where

x+ =
2 + ξ −

√
4 + ξ2

2ξ
(B.1)

where ξ = η(L1 − L2) +
1
X1
− 1

X2
. For better interpretation we provide the graph for update (B.1)

in the Figure 1.

Proof. For any X,Z ∈ ∆(R2) we represent X = [x, 1 − x] and Z = [z, 1 − z] for x, z ∈ [0, 1].
Under this notation we can write Dψ(Z,X) = 1

η

(
log
(
x
z

)
+ log

(
1−x
1−z

)
+ z−x

x + x−z
1−x

)
. Thus the

optimization problem becomes
x+ = arg min

z∈[0,1]
⟨z, L⟩+Dψ(z,X)

= arg min
z∈[0,1]

zL1 + (1− z)L2 +
1

η

(
log
(x
z

)
+ log

(
1− x
1− z

)
+
z − x
x

+
x− z
1− x

)
= arg min

z∈[0,1]
zL1 + (1− z)L2 +

1

η

(
− log (z)− log (1− z) + z

x
− z

1− x

)
Let f(z) = zL1 + (1 − z)L2 +

1
η

(
− log (z)− log (1− z) + z

x −
z

1−x

)
. Note that f(0) = +∞,

and f(1) = +∞ so the minimizer of f(z) lies stricly inside [0, 1]. Therefore ∇f(x+) = 0. We
compute

∇f(z) = L1 − L2 +
1

η(1− z)
− 1

ηz
+

1

ηx
− 1

η(1− x)
= L1 − L2 +

2z − 1

ηz(1− z)
+

1

ηx
− 1

η(1− x)

Imposing the condition∇f(x+) = 0 implies that

ξx2+ − (2 + ξ)x+ + 1 = 0

where ξ = η(L1 − L2) +
1
x −

1
1−x . Thus there are two possibilities

x+ =
2 + ξ +

√
4 + ξ2

2ξ
, or x+ =

2 + ξ −
√
4 + ξ2

2ξ
,

However the first possibility implies that x+ > 1, thus the only solution which lies in (0, 1) is the
latter. This completes the proof.

C Proofs of main Lemmas

We introduce the following notation for every a ∈ A, f ∈ F
Ha,f (t) = 1 (∃a′ ∈ A : fa′(t) = f, uf (a

′) > uf (a)) ,

which characterizes an event some agent more preferred than a by firm f has requested firm f . We
now present the proofs of Lemmas in main paper in the following subsections.

19

C.1 Proof of Lemma 8

Proof of Lemma 8 follows directly from the following Lemma.

Lemma 13. The event that agent a chooses a firm f ∈ F at time t ∈ [T] satisfies

{Ya(t) = 1, fa(t) = f} ⊂
{
Ya(t) = 1,UCBa,f∗

a
(t) ≤ UCBa,f (t)

}⋃{
E(r)
a,f (t) = 1, E(r)

a,f∗
a
(t) = 0

}
.

(C.1)

Proof. For any agent a fix some f . Recall that fa(t) = f implies that agent a has chosen to pull
arm f . Based on design of Algorithm 2 there are two possibilities: either all the firms with higher
UCB than firm f got pruned and the firm f was requested; or all of the firms in F got pruned and
the firm f got selected as it was having highest UCB. Thus,

{fa(t) = f} =
{
E(r)
a,f (t) = 1

}⋃{
E(r)
a,f (t) = 0 ∀ f ∈ F ,UCBa,f ≥ UCBa,f ′ ∀ f ′ ∈ F

}
=
(i)

{
E(r)
a,f (t) = 1,UCBa,f∗

a
(t) ≥ UCBa,f (t)

}⋃{
E(r)
a,f (t) = 1,UCBa,f∗

a
(t) ≤ UCBa,f (t)

}
⋃{

E(r)
a,f (t) = 0 ∀ f ∈ F ,UCBa,f ≥ UCBa,f ′ ∀ f ′ ∈ F

}
⊂
(ii)

{
E(r)
a,f (t) = 1,UCBa,f∗

a
(t) ≥ UCBa,f (t)

}⋃{
E(r)
a,f (t) = 1,UCBa,f∗

a
(t) ≤ UCBa,f (t)

}
⋃{

UCBa,f∗
a
(t) ≤ UCBa,f (t)

}
⊂
(iii)

{
E(r)
a,f (t) = 1, E(r)

a,f∗
a
(t) = 0,UCBa,f∗

a
(t) ≥ UCBa,f (t)

}
⋃{

E(r)
a,f (t) = 1,UCBa,f∗

a
(t) ≤ UCBa,f (t)

}⋃{
UCBa,f∗

a
(t) ≤ UCBa,f (t)

}
⊂
(iv)

{
E(r)
a,f (t) = 1, E(r)

a,f∗
a
(t) = 0,UCBa,f∗

a
(t) ≥ UCBa,f (t)

}⋃{
UCBa,f∗

a
(t) ≤ UCBa,f (t)

}
⊂
(v)

{
E(r)
a,f (t) = 1, E(r)

a,f∗
a
(t) = 0

}⋃{
UCBa,f∗

a
(t) ≤ UCBa,f (t)

}
where in (i) we introduced two complementary events {UCBa,f∗

a
(t) ≥ UCBa,f (t)} and

{UCBa,f∗
a
(t) ≤ UCBa,f (t)}. Note that (ii) holds due to the fact that {UCBa,fa(t) ≥ UCBa,f ∀ f ∈

F} implies {UCBa,fa(t) ≥ UCBa,f∗
a
}. Furthermore, (iii) holds due to the fact that a firm with lower

UCB will be pulled only if all the firms with higher UCB are pruned. Finally, (iv), (v) holds by
dropping appropriate events.

The result follows by noting that

1 (Ya(t) = 1, fa(t) = f)

⊂
({
E(r)
a,f (t) = 1, E(r)

a,f∗
a
(t) = 0

}⋃{
UCBa,f∗

a
(t) ≤ UCBa,f (t)

})⋂
1 (Ya(t) = 1)

⊂
{
Ya(t) = 1,UCBa,f∗

a
(t) ≤ UCBa,f (t)

}⋃{
E(r)
a,f (t) = 1, E(r)

a,f∗
a
(t) = 0

}

Remark 14. The results in Lemma 13 holds even if we replace UCB subroutine in Algorithm 2 with
any other index based stochastic bandit subroutine, e.g. Thompson sampling.

C.2 Proof of Lemma 7

We present the proof of each result (L1)-(L5) in Lemma 7 individually in the following subsubsections.
Before that we define an important notation as follows:

Ha,f (t) = 1 (∃ a′ ∈ A : fa′(t) = f, uf (a
′) ≥ uf (a)) (C.2)

20

C.2.1 Proof of (L1) in Lemma 7

From (4.1) we get

k∑
i=1

∑
a∈Ai

Ra ≤ ∆̄

k∑
i=1

∑
a∈Ai

∑
f∈Fa

E[Ma,f (T)] + u

k∑
i=1

∑
a∈Ai

∑
f∈F\{f∗

a}

E[Ca,f (T)]

+ ū

k∑
i=1

∑
a∈Ai

E[Ca,f∗
a
(T)],

≤ C̄
(k∑
i=1

∑
a∈Ai

∑
f∈Fa

E[Ma,f (T)] +

k∑
i=1

∑
a∈Ai

∑
f∈F\{f∗

a}

E[Ca,f (T)]

+

k∑
i=1

∑
a∈Ai

E[
T∑
t=1

Ha,f∗
a
(t)]

)
where ∆̄ = maxa,f ∆a(f) and ū = maxa ua(f

∗
a). This completes the proof

C.2.2 Proof of (L2) in Lemma 7

Proof of (L2) in Lemma 7 follows immediately from the following result.

Lemma 15. For any agent a ∈ A using Algorithm 2 the expected number of matches with any
set F̃ ⊂ Fa can be bounded as

E[Ma,F̃ (T)] ≤ O

(
|F̃ |
(
log(T) +

log(T)

∆2

)
+ E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)])

where ∆ = mina,f ∆a(f).

Proof. Note that we call an agent a matches with firm f at time t if Ya(t) = 1 and fa(t) =
f . Therefore the total number of matchings between a and f till time T is Ma,f (T) =∑T
t=1 1 (Ya(t) = 1, fa(t) = f). Therefore from Lemma 8 the following holds for every f ∈ F̃ :

Ma,F̃ (T) =
∑
f∈F̃

T∑
t=1

1 (Ya(t) = 1, fa(t) = f)

≤
∑
f∈F̃

T∑
t=1

(
1
(
Ya(t) = 1, fa(t) = f,UCBa,f (t) ≥ UCBa,f∗

a
(t)
)
+ 1

(
E(r)
a,f (t) = 1, E(r)

a,f∗
a
= 0
))

≤
∑
f∈F̃

T∑
t=1

1
(
Ya(t) = 1, fa(t) = f,UCBa,f (t) ≥ UCBa,f∗

a
(t)
)

+

T∑
t=1

∑
f∈F̃

1

(
E(r)
a,f (t) = 1, E(r)

a,f∗
a
= 0
)

≤
∑
f∈F̃

T∑
t=1

1
(
Ya(t) = 1, fa(t) = f,UCBa,f (t) ≥ UCBa,f∗

a
(t)
)

︸ ︷︷ ︸
Term A

+

T∑
t=1

1

(
E(r)
a,f∗

a
= 0
)

︸ ︷︷ ︸
Term B

For any fixed firm f ∈ F̃ we now bound Term A. For that purpose, define an event

Za,f (t) := {UCBa,f (t) ≥ ua(f∗a)− ϵ} =

{
µ̂a,f (t− 1) +

√
2 log(Ba(t))

Ma,f (t− 1)
≥ ua(f∗a)− ϵ

}
,

21

where Ba(t) := 1 + M̄a(t) log
2
(
M̄a(t)

)
≤ 1 + t log2(t) =: B̄(t),12.

Using this notation, we have

Term A =

T∑
t=1

1(Ya(t) = 1, fa(t) = f,UCBa,f (t) ≥ UCBa,f∗
a
(t),Za,f (t))︸ ︷︷ ︸

Term C

+

T∑
t=1

1(Ya(t) = 1, fa(t) = f,UCBa,f (t) ≥ UCBa,f∗
a
(t),Zc

a,f (t))︸ ︷︷ ︸
Term D

We shall first bound E[Term C] below:

Term C =

T∑
t=1

1(Ya(t) = 1, fa(t) = f,UCBa,f (t) ≥ UCBa,f∗
a
(t),Za,f (t))

≤
T∑
t=1

1(Ya(t) = 1, fa(t) = f,Za,f (t))

=

T∑
t=1

1

(
Ya(t) = 1, fa(t) = f, µ̂a,f (t− 1) +

√
2 log(Ba(t))

Ma,f (t− 1)
≥ ua(f∗a)− ϵ

)

≤
T∑
t=1

1

(
Ya(t) = 1, fa(t) = f, µ̂a,f (t− 1) +

√
2 log(Ba(T))

Ma,f (t− 1)
≥ ua(f∗a)− ϵ

)

=

T∑
t=1

t−1∑
s=0

1

(
Ya(t) = 1, fa(t) = f, µ̂

(s)
a,f +

√
2 log(Ba(T))

s
≥ ua(f∗a)− ϵ,Ma,f (t− 1) = s

)

≤
T−1∑
s=0

T∑
t=s+1

1

(
fa(t) = f, µ̂

(s)
a,f +

√
2 log(Ba(T))

s
≥ ua(f∗a)− ϵ,Ma,f (t− 1) = s,Ma,f (t) = s+ 1

)

≤
T−1∑
s=0

1

(
µ̂
(s)
a,f +

√
2 log(Ba(T))

s
≥ ua(f∗a)− ϵ

)

≤
T−1∑
s=0

1

(
µ̂
(s)
a,f − ua(f) +

√
2 log(B̄(T))

s
≥ ua(f∗a)− ua(f)︸ ︷︷ ︸

∆a(f)

−ϵ
)
,

where µ(s)
a,f is defined to be the empirical utility that agent a obtains on s independent successful pulls

of arm f . Using Lemma 19 to further bound E[Term C] we get

E[Term C] ≤ 1 +
2

(∆a(f)− ϵ)2

(
log(B̄(T) +

√
π log(B̄(T)) + 1)

)

12The inequality holds due to the fact that M̄a(t) ≤ t and monotonicity of the mapping x 7→ 1 + x log2(x).

22

Next, we bound E[Term D] below:

E[Term D] = E

[
T∑
t=1

1(Ya(t) = 1, fa(t) = f,UCBa,f (t) ≥ UCBa,f∗
a
(t),UCBa,f (t) ≤ ua(f∗a)− ϵ

]

≤ E

[
T∑
t=1

1

(
Ya(t) = 1, µ̂a,f∗

a
(t− 1) +

√
2 log(Ba(t))

Ma,f∗
a
(t− 1)

≤ ua(f∗a)− ϵ

)]

≤
T∑
t=1

T−1∑
s=0

Pr

(
µ̂
(s)
a,f∗

a
+

√
2 log(B̄(t))

s
≤ ua(f∗a)− ϵ

)

≤
T∑
t=1

T−1∑
s=0

exp

−
s

(√
2 log(B̄(t))

s + ϵ

)2

2


≤

T∑
t=1

1

B̄(t)

T∑
s=1

exp

(
−sϵ

2

2

)

≤ ϵ2

2

T−1∑
t=0

1

B̄(t)

which can further be bounded as E[Term D] ≤ 5
ϵ2 in (Lattimore and Szepesvári, 2020, Exercise 8.1).

For simplicity we choose ϵ = ∆a(f)/2 which ensures that E[Term A] ≤ O
(

log(T)

(∆a(f))
2

)
Now let’s turn our attention to Term B which characterizes the number of times agent a has pruned
the stable match. Using Lemma 21 we have

E[Term B] ≤ O

(
E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

+O(log(T))

)

Thus the Term A is bounded by number of there can be potential collisions at the stable firm. This
concludes the proof of this lemma.

C.2.3 Proof of (L3) in Lemma 7

In this part, we prove a result which is more general than (L3) in Lemma 7.

Lemma 16. Expected number of collisions faced by agent a on the set of firms F† ⊆ F\{f∗a}

∑
f∈F†

E[Ca,f (T)] ≤ O

(
|F†| log(T) + E[Ma,F†

a
(T)] + E[Ma,F̄†

a
(T)] + E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)])

,

(C.3)

where F†
a = Fa ∩ F† and F̄†

a = Fa ∩ F†. Additionally

E
[
Ca,f∗

a
(T)
]
≤ E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

(C.4)

23

Proof. To compute the number of collisions, we compute the following for a ∈ A and f ∈ F\{f∗a}∑
f∈F†

Ca,f (T) =
∑
f∈F†

T∑
t=1

1 (fa(t) = f,Ha,f (t))

=
∑
f∈F†

T∑
t=1

1

(
E(r)
a,f (t) = 1, E(c)

a,f (t) = 1, Ha,f (t)
)

+
∑
f∈F†

T∑
t=1

1

(
E(r)
a,f ′(t) = 0 ∀ f ′ ∈ F , fa(t) = f,Ha,f (t)

)

≤
∑
f∈F†

T∑
t=1

1

(
E(r)
a,f (t) = 1, E(c)

a,f (t) = 1, Ha,f (t)
)
+
∑
f∈F†

T∑
t=1

1

(
E(r)
a,f∗

a
(t) = 0, fa(t) = f

)
,

≤
∑
f∈F†

T∑
t=1

1

(
E(r)
a,f (t) = 1, E(c)

a,f (t) = 1, Ha,f (t)
)
+

T∑
t=1

1

(
E(r)
a,f∗

a
(t) = 0

)
,

where the first inequality holds because {E(r)
a,f ′(t) = 0 ∀ f ′ ∈ F} implies that {E(r)

a,f∗
a
(t) = 0}.

Using (E.1) we have: for all a ∈ A, f ∈ F and ϖ ∈ (0, 32η) ⊂ (0, 1)

∑
f∈F†

E[Ca,f (T)] ≤
∑
f∈F†

(
(1 +ϖ)E[Ma,f (T)] +O(log(T)) +ϖE[Ca,f (T)] + E

[
T∑
t=1

1

(
E(r)
a,f∗

a
= 0
)])

≤ O

|F†| log(T) +
∑
f∈F†

E[Ma,f (T)]

+ E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

+ϖ
∑
f∈F†

E[Ca,f (T)]

where the last inequality is due to Lemma 21. In summary,

∑
f∈F†

E[Ca,f (T)] ≤ O

|F|O(log(T)) + ∑
f∈F†

(E[Ma,f (T)])

+ E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

≤ O

(
|F†| log(T) + E[Ma,F†

a
(T)] + E[Ma,F̄†

a
(T)] + E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)])

This completes the proof of (C.3). We now prove (C.4). We note that

E
[
Ca,f∗

a
(T)
]
= E

[
T∑
t=1

1
(
fa(t) = f,Ha,f∗

a
(t)
)]

≤ E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]
.

This completes the proof.

C.2.4 Proof of (L4) in Lemma 7

We restate (L4) from Lemma 7 below:

Lemma 17. For any i ∈ [K] we have

i∑
j=1

∑
a∈Aj

E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

= O

Ci|F|
 i∑
j=1

|Aj |

 log(T)

(
1 +

1

∆2

) ,

where Ci is a constant dependent on marketMi such that C1 < C2 < ... < CK .

24

Proof. For any k ∈ [K] define Sk =
∑k
i=1

∑
a∈Ai

E[
∑T
t=1 1

(
Ha,f∗

a
(t)
)
] and Z(T,∆) =

|F| log(T)
(
1 + 1

∆2

)
. Define f(θ; ℓ) =

∑ℓ
j=1 θ

j and f(θ; 0) = 1 and g(θ; ℓ) =
∑ℓ−1
j=0 θ

j . Moreover,

letHi =
∑
a∈Ai

E[
∑T
t=1 1

(
Ha,f∗

a
(t)
)
]. Consequently Sk =

∑k
i=1Hi

We claim that

SK ≤ SK−ℓ + f(θ; ℓ)HK−ℓ +

ℓ∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−1

j=1 Aj

E
[
Ma′,f∗

a
(T)
]
+ Z(T,∆)

ℓ∑
r=1

f(θ; r)|AK−r|

(C.5)

We prove this via induction. We first show that this holds for ℓ = 1. Indeed note that

SK = SK−1 +HK = SK−1 +
∑
a∈AK

E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

≤
(a)

SK−1 +
∑
a∈AK

∑
a′∈∪K−2

j=1 Aj

E
[
Ma′,f∗

a
(T)
]
+
∑
a∈AK

∑
a′∈AK−1

E
[
Ma′,f∗

a
(T)
]

=
(b)
SK−1 +

∑
a∈AK

∑
a′∈∪K−2

j=1 Aj

E
[
Ma′,f∗

a
(T)
]
+

∑
a′∈AK−1

∑
f∈FK

E [Ma′,f (T)]

≤
(c)
SK−1 +

∑
a∈AK

∑
a′∈∪K−2

j=1 Aj

E
[
Ma′,f∗

a
(T)
]
+

∑
a′∈AK−1

E
[
Ma′,Fa′ (T)

]

≤
(d)

SK−1 + θ
∑

a′∈AK−1

E

[
T∑
t=1

1

(
Ha′,f∗

a′ (t)
)]

+
∑
a∈AK

∑
a′∈∪K−2

j=1 Aj

E
[
Ma′,f∗

a
(T)
]
+ θ|AK−1|Z(T,∆)

=SK−1 + θHK−1 +
∑
a∈AK

∑
a′∈∪K−2

j=1 Aj

E
[
Ma′,f∗

a
(T)
]
+ θ|AK−1|Z(T,∆)

where the (a) holds due to α−reducible structure which says that any agent in AK will only get
collided at stable arm if some agent from ∪k−1

j=1Aj has also requested the stable firm. Next, (b) holds
due to the fact that for any agent a ∈ Ak, the corresponding stable match f∗a ∈ Fk(see Remark 3).
Next, (c) follows because for agents in AK−1, the set of suboptimal firms is super set of FK . This is
again a property of α−reducible structure. Finally (d) follows from (L2) in Lemma 7 where θ is the
corresponding constant from big-oh notation.

Suppose the bound in (C.5) holds for ℓ = L for some integer ℓ ∈ {2, 3, ...,K}. Then we show it also
holds for ℓ+ 1. That is,

SK ≤
(a)

SK−ℓ + f(θ; ℓ)HK−ℓ +

ℓ∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−1

j=1 Aj

E
[
Ma′,f∗

a
(T)
]
+ Z(T,∆)

ℓ∑
r=1

f(θ; r)|AK−r|

=
(b)
SK−ℓ−1 + g(θ; ℓ+ 1)HK−ℓ +

ℓ∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−1

j=1 Aj

E
[
Ma′,f∗

a
(T)
]

+ Z(T,∆)

ℓ∑
r=1

f(θ; r)|AK−r|

≤
(c)
SK−ℓ−1 + g(θ; ℓ+ 1)

HK−ℓ +

ℓ∑
p=1

∑
a∈AK−p+1

∑
a′∈AK−ℓ−1

E
[
Ma′,f∗

a
(T)
]

+

ℓ∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T)
]
+ Z(T,∆)

ℓ∑
r=1

f(θ; r)|AK−r|

25

≤
(d)

SK−ℓ−1 + g(θ; ℓ+ 1)

K−ℓ−1∑
p=1

∑
a′∈Ap

∑
a∈AK−ℓ

E[Ma′,f∗
a
] +

ℓ∑
p=1

∑
a∈AK−p+1

∑
a′∈AK−ℓ−1

E
[
Ma′,f∗

a
(T)
]

+

ℓ∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T)
]
+ Z(T,∆)

ℓ∑
r=1

f(θ; r)|AK−r|

=
(e)
SK−ℓ−1 + g(θ; ℓ+ 1)

K−ℓ−2∑
p=1

∑
a′∈Ap

∑
a∈AK−ℓ

E[Ma′,f∗
a
] +

ℓ+1∑
p=1

∑
a∈AK−p+1

∑
a′∈AK−ℓ−1

E
[
Ma′,f∗

a
(T)
]

+

ℓ∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T)
]
+ Z(T,∆)

ℓ∑
r=1

f(θ; r)|AK−r|

≤
(f)

SK−ℓ−1 + g(θ; ℓ+ 1)

K−ℓ−2∑
p=1

∑
a′∈Ap

∑
a∈AK−ℓ

E[Ma′,f∗
a
] +

∑
a′∈AK−ℓ−1

E
[
Ma′,Fa′ (T)

]
+

ℓ∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T)
]
+ Z(T,∆)

ℓ∑
r=1

f(θ; r)|AK−r|

=
(g)

SK−ℓ−1 + g(θ; ℓ+ 1)

 ∑
a′∈AK−ℓ−1

E
[
Ma′,Fa′ (T)

]
+

ℓ+1∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T)
]
+ Z(T,∆)

ℓ∑
r=1

f(θ; r)|AK−r|

≤
(h)

SK−ℓ−1 + g(θ; ℓ+ 1) (θ|F|Z(T,∆)|AK−ℓ−1|+ θHK−ℓ−1)

+

ℓ+1∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T)
]
+ Z(T,∆)

ℓ∑
r=1

f(θ; r)|AK−r|

=
(i)
SK−ℓ−1 + f(θ; ℓ+ 1)HK−ℓ−1 +

ℓ+1∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T)
]

+ Z(T,∆)

ℓ+1∑
r=1

f(θ; r)|AK−r|

where (a) holds by induction hypothesis, (b) holds by definition of Sk and f(θ; ℓ), g(θ; ℓ), (c) holds
by moving some terms around and noting that g(θ; ·) is increasing. Next, (d) holds by α−reducbility
and definition of Hk (same analysis as in base case of induction). Next, (e) holds by splitting the
terms. Next, (f) holds by α−reducilibility definition. Next (g) holds by combining similar terms.
Next (h) holds by (L2) in Lemma 7. Next, (i) holds due to combining similar terms.

Thus we conclude that induction claim (C.5) holds true. We know that S1 = 0 therefore from (C.5)
we obtain

Sk ≤ Z(T,∆)

K−1∑
r=1

f(θ; r)|AK−r| (C.6)

≤

K−1∑
j=1

|Aj |

KθK−1Z(T,∆). (C.7)

26

The term Ck = kθk−1 in the statement. This completes the proof.

C.2.5 Proof of (L5) in Lemma 7

So only thing to bound is matching with superoptimal firms.

Lemma 18. For any k ∈ [K] we have

k∑
j=1

∑
a∈Aj

∑
f∈Fa

E[Ma,f (T)] ≤ O

Ci
k−1∑
j=1

|Aj |

 |F| log(T)(1 + 1

∆2

) ,

where Ci is a constant dependent on marketMi such that C1 < C2 < ... < CK .

Proof. For any k ∈ [K], define S̃k =
∑k
i=1

∑
a∈Ai

E[Ma,Fa
(T)] and Z(T,∆) =

|F | log(T)
(
1 + 1/∆2

)
. Define f(θ; ℓ) =

∑ℓ
j=1 θ

j and f(θ; 0) = 1 and g(θ; ℓ) =
∑ℓ−1
j=0 θ

j . More-

over, letHi =
∑
a∈Ai

E[
∑T
t=1 1

(
Ha,f∗

a
(t)
)
]. Let Mi =

∑
a∈Ai

E[Ma,Fa
(T)] then S̃k =

∑k
i=1 Mi.

We claim that

S̃k ≤ O

θ̃k−1

k−1∑
j=1

|Aj |

 |F|Z(T,∆)

 (C.8)

where θ̃ is a constant greater than 1. Note that the bound holds for k = 1 as there is not super-optimal
firms for those agents. Let (C.8) holds till some integer K − 1 then we show that it holds for K as
well. Indeed,

We claim that

S̃K ≤ S̃K−ℓ + f(θ̃; ℓ)MK−ℓ +

ℓ∑
p=1

g(θ̃; p)
∑

a∈AK−p+1

∑
f∈∪j≤K−ℓ−1Fj

E [Ma,f] +

ℓ∑
p=1

f(θ̃, p)HK−p

+ Z(T,∆)

ℓ∑
p=1

f(θ̃, p)|AK−p| (C.9)

We prove (C.8) by induction. First, consider the case ℓ = 1

S̃K =

K∑
i=1

∑
a∈Ai

E[Ma,Fa
(T)]

=
(a)

S̃K−1 +
∑
a∈AK

E[Ma,Fa
(T)]

≤
(b)
S̃K−1 +

∑
a∈AK

∑
f∈∪j≤K−2Fj

E[Ma,f (T)] +
∑
a∈AK

∑
f∈FK−1

E[Ma,f (T)]

=
(c)
S̃K−1 +

∑
a∈AK

∑
f∈∪j≤K−2Fj

E[Ma,f (T)] +
∑

a′∈AK−1

∑
a∈AK

E[Ma,f∗
a′ (T)]

≤
(d)

S̃K−1 + θ̃
∑

a′∈AK−1

E[Ma′,Fa′
(T)] +

∑
a∈AK

∑
a′∈∪j≤K−2Aj

E[Ma,f∗
a′ (T)] +

∑
a′∈AK−1

θ̃
(
Ha′,f∗

a′ + Z(T,∆)
)

=
(e)
S̃K−1 + θ̃MK−1 +

∑
a∈AK

∑
f∈∪j≤K−2Fj

E[Ma,f (T)] + θ̃HK−1 + Z(T,∆)θ̃|AK−1|

where (a) holds by definition, (b) holds by using α−reducilbe structure which ensures that set
of superoptimal firms of any agent will lie in markets before it. Next, (c) holds by property of
alpha-reducible markets which ensures that for firm f ∈ FK−1 there exists agent a′ ∈ AK−1 such

27

that f = f∗a′ . Next, (d) holds by Lemma 22. Next (e) holds by rearrangement of terms. Next, we
show that if (C.8) holds for some ℓ then it holds for ℓ+ 1 as well. That is,

S̃K ≤
(a)

S̃K−ℓ + f(θ̃; ℓ)MK−ℓ +

ℓ∑
p=1

g(θ̃; p)
∑

a∈AK−p+1

∑
f∈∪j≤K−ℓ−1Fj

E [Ma,f] +

ℓ∑
p=1

f(θ̃, p)HK−p

+ Z(T,∆)

ℓ∑
p=1

f(θ̃, p)|AK−p|

=
(b)
S̃K−ℓ−1 + g(θ̃; ℓ+ 1)MK−ℓ +

ℓ∑
p=1

g(θ̃; p)
∑

a∈AK−p+1

∑
f∈∪j≤K−ℓ−1Fj

E [Ma,f] +

ℓ∑
p=1

f(θ̃, p)HK−p

+ Z(T,∆)

ℓ∑
p=1

f(θ̃, p)|AK−p|

=
(c)
S̃K−ℓ−1 + g(θ̃; ℓ+ 1)

 ∑
a∈AK−ℓ

∑
f∈∪j≤K−ℓ−2Fj

E [Ma,f] +
∑

a∈AK−ℓ

∑
f∈FK−ℓ−1

E [Ma,f (T)]


+

ℓ∑
p=1

g(θ̃; p)
∑

a∈AK−p+1

∑
f∈∪j≤K−ℓ−1Fj

E [Ma,f] +

ℓ∑
p=1

f(θ̃, p)HK−p + Z(T,∆)

ℓ∑
p=1

f(θ̃, p)|AK−p|

≤
(d)

S̃K−ℓ−1 + g(θ̃; ℓ+ 1)

ℓ+1∑
p=1

∑
a∈AK−p+1

∑
f∈FK−ℓ−1

E [Ma,f (T)]


+

ℓ+1∑
p=1

g(θ̃; p)
∑

a∈AK−p+1

∑
f∈∪j≤K−ℓ−2Fj

E [Ma,f] +

ℓ∑
p=1

f(θ̃, p)HK−p + Z(T,∆)

ℓ∑
p=1

f(θ̃, p)|AK−p|

=
(e)
S̃K−ℓ−1 + g(θ̃; ℓ+ 1)

 ∑
a′∈AK−ℓ−1

ℓ+1∑
p=1

∑
a∈AK−p+1

E
[
Ma,f∗

a′ (T)
]

+

ℓ+1∑
p=1

g(θ̃; p)
∑

a∈AK−p+1

∑
f∈∪j≤K−ℓ−2Fj

E [Ma,f] +

ℓ∑
p=1

f(θ̃, p)HK−p + Z(T,∆)

ℓ∑
p=1

f(θ̃, p)|AK−p|

≤
(f)

S̃K−ℓ−1 + g(θ̃; ℓ+ 1)
(
θ̃HK−ℓ−1 + θ̃MK−ℓ−1 + θ̃Z(T,∆)|AK−ℓ−1|

)
+

ℓ+1∑
p=1

g(θ̃; p)
∑

a∈AK−p+1

∑
f∈∪j≤K−ℓ−2Fj

E [Ma,f] +

ℓ∑
p=1

f(θ̃, p)HK−p + Z(T,∆)

ℓ∑
p=1

f(θ̃, p)|AK−p|

=
(g)

S̃K−ℓ−1 + f(θ̃; ℓ+ 1)MK−ℓ−1+

+

ℓ+1∑
p=1

g(θ̃; p)
∑

a∈AK−p+1

∑
f∈∪j≤K−ℓ−2Fj

E [Ma,f] +

ℓ+1∑
p=1

f(θ̃, p)HK−p + Z(T,∆)

ℓ+1∑
p=1

f(θ̃, p)|AK−p|

where (a) is by induction hypothesis, (b) is by decomposing S̃K−ℓ, (c) is by using definition of
MK−ℓ, (d) is by rearrangement of terms and using the fact that g(θ̃, ·) is increasing, (e) is by
rearrangement of terms and using the fact that for any f ∈ Fk for some k there exists a′ ∈ Ak such
that f = f∗a′ . Next, (f) is by Lemma 22. Next, (g) is by combining similar terms. This concludes
the induction proof.

28

We know that S̃1 = M1 = 0 because of α−reducible structure which ensures that these firms do not
have superoptimal firms. Thus in (C.8) if take ℓ = K − 1 then we get

S̃K ≤
K−1∑
p=1

f(θ̃, p)HK−p + Z(T,∆)

K−1∑
p=1

f(θ̃, p)|AK−p|

≤
K−1∑
p=1

p∑
j=1

θ̃jHK−p + Z(T,∆)

K−1∑
p=1

f(θ̃, p)|AK−p|

≤
K−1∑
j=1

θ̃j
K−1∑
p=j

HK−p + Z(T,∆)

K−1∑
p=1

f(θ̃, p)|AK−p|

=
(a)

K−1∑
j=1

θ̃jSK−j + Z(T,∆)

K−1∑
j=1

|Aj |

Kθ̃K−1

≤
(b)
Z(T,∆)

K−1∑
j=1

|Aj |

K−1∑
j=1

θ̃j(K − j)θK−j−1 + Z(T,∆)

K−1∑
j=1

|Aj |

Kθ̃K−1

where SK−j in (a) is from proof of (L4) in Lemma 7 and (b) is by (C.6). Define C̃k = kθ̃k−1 +∑k−1
j=1 θ̃

j(k − j)θk−j−1. Thus we see that

S̃K ≤ |F| log(T)
(
1 +

1

∆2

)K−1∑
j=1

|Aj |

 C̃K

D Proof of Theorem 6

We now look at the joint regret for any k ∈ [K]. Define Z(T,∆) = |F | log(T)
(
1 + 1

∆2

)
k∑
i=1

∑
a∈Ai

Ra =
(a)
O
(k∑
i=1

∑
a∈Ai

E[Ma,Fa
(T)] +

k∑
i=1

∑
a∈Ai

∑
f∈F\{f∗

a}

E[Ca,f (T)] +
k∑
i=1

∑
a∈Ai

E[
T∑
t=1

Ha,f∗
a
(t)]

)

=
(b)
O

(
k∑
i=1

∑
a∈Ai

E[Ma,Fa
(T)] +

k∑
i=1

∑
a∈Ai

E[Ma,Fa
(T)] +

k∑
i=1

∑
a∈Ai

E[
T∑
t=1

Ha,f∗
a
(t)]

)

+O

(
|F|

k∑
i=1

|Ai| log(T)

)

=
(c)
O

(
k∑
i=1

∑
a∈Ai

E[Ma,Fa
(T)] +

k∑
i=1

∑
a∈Ai

E[
T∑
t=1

Ha,f∗
a
(t)]

)
+O(

k∑
i=1

∑
a∈Ai

|Fa|Z(T,∆))

+O

(
|F |

k∑
i=1

|Ai| log(T)

)

=
(d)
O(C̃k

(
k∑
p=1

|Ap|

)
Z(T,∆)) +O(

(
k∑
p=1

|Ap|

)
CkZ(T,∆)) +O(

k∑
p=1

∑
a∈Ap

|Fa|Z(T,∆))

+O

(
|F |

k∑
p=1

|Ap| log(T)

)

=
(e)
O

(
(Ck + C̃k)|F|

(
k∑
p=1

|Ap|

))
log(T)

(
1 +

1

∆2

)

29

where (a) holds due to (L1) in Lemma 7, (b) holds due to (L3) in Lemma 7, (c) is due to (L2) in
Lemma 7. Next, (d) is due to (L4)-(L5) in Lemma 7. Finally, (e) follows by combining terms.

E Technical lemmas

In this section we present some technical lemmas which are helpful in the proofs in next section.
Lemma 19. (Lemma 8.2,Lattimore and Szepesvári (2020)) Let X1, X2, . . . , XT be a sequence of
independent 1-subgaussian random variable, and µ̂(t) := 1

t

∑t
s=1Xs, ϵ > 0, a > 0 and

κ :=

n∑
t=1

1

(
µ̂t +

√
2a

t
≥ ϵ

)
, κ′ := u+

T∑
t=⌈u⌉

1

(
µ̂t +

√
2a

t
≥ ϵ

)

where u = 2a
ϵ2 . Then

E[κ] ≤ E[κ′] ≤ 1 +
2

ϵ2
(a+

√
πa+ 1)

Lemma 20. Suppose we use the AB subroutine Algorithm 4 with η ≤ 1/50 then the following two
inequalities hold:

E

[
T∑
t=1

1

(
E(r)
a,f (t) = 1, E(c)

a,f (t) = 1, Ha,f (t)
)]
≤ (1 +ϖ)E[Ma,f (T)] +O(log(T)) +ϖE[Ca,f (T)],

(E.1)
where 0 < ϖ ≤ 32η < 1and

E

[
T∑
t=1

1

(
E(r)
a,f (t) = 0, E(c)

a,f (t) = 1, Hc
a,f (t)

)]
≤ O

(
log(T) + E

[
T∑
t=1

1 (Ha,f (t))

]
+ E[C⋆a,f (T)]

)
.

(E.2)

Proof. To simplify the presentation of proof, let’s define

L(adv)
a,f (T) :=

T∑
t=1

(
1

(
E(r)
a,f (t) = 1, E(c)

a,f (t) = 1, Ha,f (t)
)
− 1

(
E(r)
a,f (t) = 1, E(c)

a,f (t) = 1, Hc
a,f (t)

))
The regret bound for adversarial bandit algorithm from Lemma 11 under η ≤ 1/50 implies

E
[
L(adv)
a,f (T)

]
≤ O(log(T)) +ϖE

[
min

{
M⋆
a,f (T), C

⋆
a,f (T),Ma,f (T) + Ca,f (T)

}]
E
[
L(adv)
a,f (T)− ℓa,f (T)

]
≤ O(log(T)) +ϖE

[
min

{
M⋆
a,f (T), C

⋆
a,f (T),Ma,f (T) + Ca,f (T)

}]
(E.3)

where ϖ ≤ 32η and

ℓa,f (T) =

T∑
t=1

(
1

(
E(c)
a,f (t) = 1, Ha,f (t)

)
− 1

(
E(c)
a,f (t) = 1, Hc

a,f (t)
))

which denotes the total loss received by the adversarial bandit subroutine associated with (a, f)
in time T if it never take pruning action. Therefore, in (E.3) LHS in first inequality is the regret
associated with always pruning. While LHS in second inequality is the regret associated with never
pruning.

In the following proof we shall analyze each of the equations in (E.3) separately.

1. The first inequality in (E.3) implies

E

[
T∑
t=1

(
1

(
E(r)
a,f (t) = 1, E(c)

a,f (t) = 1, Ha,f (t)
)
− 1

(
E(r)
a,f (t) = 1, E(c)

a,f (t) = 1, Hc
a,f (t)

))]
≤ O(log(T)) +ϖ (E[Ma,f (T) + Ca,f (T)]) .

30

This in turn leads to

E

[
T∑
t=1

(
1

(
E(r)
a,f (t) = 1, E(c)

a,f (t) = 1, Ha,f (t)
))]

≤ E
[
1

(
E(r)
a,f (t) = 1, E(c)

a,f (t) = 1, Hc
a,f (t)

)]
+O(log(T)) + 1

2
(E[Ma,f (T) + Ca,f (T)])

≤ (1 +ϖ)E[Ma,f (T)] +O(log(T)) +ϖE[Ca,f (T)]

2. Using the definition of ℓa,f (T) in the second inequality in (E.3) we obtain

E

[
T∑
t=1

(
−1
(
E(r)
a,f (t) = 0, E(c)

a,f (t) = 1, Ha,f (t)
)
+ 1

(
E(r)
a,f (t) = 0, E(c)

a,f (t) = 1, Hc
a,f (t)

))]
≤ O(log(T) + E[min{M⋆

a,f (T), C
⋆
a,f (T)}])

which implies

E

[
T∑
t=1

1

(
E(r)
a,f (t) = 0, E(c)

a,f (t) = 1, Hc
a,f (t)

)]
≤ O

(
E

[
T∑
t=1

1

(
E(r)
a,f (t) = 0, E(c)

a,f (t) = 1, Ha,f (t)
)]

+O(log(T)) + E[min{M⋆
a,f (T), C

⋆
a,f (T)}]

)
≤ O

(
E

[
T∑
t=1

1 (Ha,f (t))

]
+ log(T) + E[min{M⋆

a,f (T), C
⋆
a,f (T)}]

)

This concludes the proof.

Lemma 21 (Pruning stable match). For any a ∈ A,

E

[
T∑
t=1

1

(
E(r)
a,f∗

a
(t) = 0, E(c)

a,f∗
a
(t) = 1

)]
︸ ︷︷ ︸

E[Term I]

≤ O

(
E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

+ log(T)

)

Proof. We note that

E[Term I] ≤ E

[
T∑
t=1

1

(
E(r)
a,f∗

a
(t) = 0, E(c)

a,f∗
a
(t) = 1, Ha,f∗

a
(t)
)
+

T∑
t=1

1

(
E(r)
a,f∗

a
(t) = 0, E(c)

a,f∗
a
(t) = 1, Hc

a,f∗
a
(t)
)]

≤ O

(
E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

+O(log(T)) + E[C⋆a,f∗
a
(T)]

)

≤ O

(
E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

+O(log(T))

)
where the first inequality is due to (E.2) and the last inequality holds due to Lemma 16.

Lemma 22. For any a ∈ A and a′ ∈ A\{a} we have

∑
a′∈A

E[Ma′,f∗
a
(T)] ≤ O

(
E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

+ |F|Z(T,∆) + E[Ma,Fa
(T)]

)

Proof. For any agent a ∈ A we know that at every time step it either gets matched with some firm or
gets collided. This implies∑

f ′∈F

E[Ca,f ′(T)] +
∑

f ′∈F\{f∗
a}

E[Ma,f ′(T)] + E[Ma,f∗
a
(T)] = T. (E.4)

31

Furthermore, in T steps the firm f∗a can get matched with some agents or remain unmatched. This
implies ∑

a′∈A\{a}

E[Ma′,f∗
a
(T)] + E[Ma,f∗

a
(T)] ≤ T. (E.5)

Combining (E.4), (E.5) and Lemma 16 we see that∑
a′∈A

E[Ma′,f∗
a
(T)] ≤

∑
f ′∈F

E[Ca,f ′(T)] +
∑

f ′∈F\{f∗
a}

E[Ma,f ′(T)]

≤ O

(
E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

+ |F| log(T)

)
+O

(
E[Ma,Fa

(T)] + E[Ma,Fa
(T)]

)
.

Note that from Lemma 15 we have∑
a′∈A

E[Ma′,f∗
a
(T)] ≤ O

(
E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

+ |F| log(T) + |Fa|Z(T,∆) + E[Ma,Fa
(T)]

)

≤ O

(
E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)]

+ |F|Z(T,∆) + E[Ma,Fa
(T)]

)

This completes the proof.

F Thompson Sampling based Decentralized Matching Algorithm

F.1 Algorithmic Description

In this section we present a variant of Algorithm 2 but with Thompson sampling based stochastic
bandit subroutine. For simplicity, we consider the scenario where the noise in reward is sampled from
a normal distribution. To compute the Thompson sampling index each agent a maintains an empirical
average of utility generated from any firm f till time t which is µ̂a,f (t− 1). At time step t any agent
a ∈ A will maintain an index of every firm f ∈ F by sampling it from a normal distribution with
mean µ̂a,f (t− 1) and variance 1∑

f∈F Ma,f
(refer line 3 in Algorithm 5).

F.2 Bounds for Algorithm 5

We first present the regret bound for Algorithm 5.
Theorem 23. Suppose every agent a ∈ A uses Algorithm 5. Then for any i ∈ [K] :

i∑
j=1

∑
a∈Aj

E[Ra(T)] = O
(
Ci|F||A|

(
1

∆2
log

(
1

∆

)
+

log(T)

∆2
+ log(T)

))
where ∆ = mina,f ∆a,f and Ci is a constant dependent on marketMi and C1 < C2 < ... < CK .

The only difference between proof of Theorem 6 and Theorem 23 is the bound on expected number
of matchings with suboptimal firms. We now present the analogue of (L2) of Lemma 7 below We
now present the lemma before which bounds the number of times agents using Algorithm 5 will get
matched to a suboptimal firm:
Lemma 24. For any i ∈ [K], the expected matches with suboptimal firm satisfies

i∑
j=1

∑
a∈Aj

E[Ma,Fa
(T)] = O

 i∑
j=1

∑
a∈Aj

(
|Fa|

(
1

∆2
log

(
1

∆

)
+

log(T)

∆2
+ log(T)

)
+ E

[
T∑
t=1

Ha,f∗
a
(t)

])
where ∆ = mina,f ∆a(f)

32

Algorithm 5: Thompson Sampling based Decentralized Matching Algorithm (TS-DMA)
Initialize : µ̂a,f = 0,Ma,f = 0, pa,f = 0.5, xa,f = 0.5, La,f = 0,∀a ∈ A, f ∈ F

1 for t = 1, . . . , T do
2 for f ∈ F do
3 Sample Ta,f ∼ N

(
µ̂a,f ,

1
M̄a

)
, where M̄a =

∑
f∈F Ma,f

4 end
5 Set Ta = ArgDescendingSort({Ta,f}f∈F), i = 1
6 while i ≤ n do
7 Set f = T [i]

a

8 Sample Pa,f ∼ Bernoulli(pa,f)
9 if Pa,f = 0 then

10 Update (xa,f , pa,f , La,f) −→ AB_Subroutine(Pa,f , xa,f , pa,f , La,f , Ya)
11 end
12 if Pa,f = 1 then
13 Query firm f
14 Receive (Ua, Ya)

15 Update µ̂a,f −→ Ya
µ̂a,fMa,f+Ua

Ma,f+1 + (1− Ya)µ̂a,f and Ma,f −→Ma,f + Ya,
16 Update (xa,f , pa,f , La,f) −→ AB_Subroutine(Pa,f , xa,f , pa,f , La,f , Ya)
17 break while;
18 end
19 i −→ i+ 1
20 end
21 if i = |F|+ 1 then
22 Query a firm T [1]

a

23 Receive (Ua, Ya)

24 Update µ̂a,f −→ Ya
µ̂a,fMa,f+Ua

Ma,f+1 + (1− Ya)µ̂a,f
25 Update Ma,f −→Ma,f + Ya, and M̄a −→ M̄a + Ya
26 end
27 end

Proof. Note that we call an agent a matches with firm f at time t if Ya(t) = 1 and fa(t) =
f . Therefore the total number of matchings between a and f till time T is Ma,f (T) =∑T
t=1 1 (Ya(t) = 1, fa(t) = f). Therefore from Lemma 8 the following holds for every f ∈ F̃ :

Ma,F̃ (T) =
∑
f∈F̃

T∑
t=1

1 (Ya(t) = 1, fa(t) = f)

≤
∑
f∈F̃

T∑
t=1

(
1
(
Ya(t) = 1, fa(t) = f, Ta,f (t) ≥ Ta,f∗

a
(t)
)
+ 1

(
E(r)
a,f (t) = 1, E(r)

a,f∗
a
= 0
))

≤
∑
f∈F̃

T∑
t=1

1
(
Ya(t) = 1, fa(t) = f, Ta,f (t) ≥ Ta,f∗

a
(t)
)

+

T∑
t=1

∑
f∈F̃

1

(
E(r)
a,f (t) = 1, E(r)

a,f∗
a
= 0
)

≤
∑
f∈F̃

T∑
t=1

1
(
Ya(t) = 1, fa(t) = f, Ta,f (t) ≥ Ta,f∗

a
(t)
)

︸ ︷︷ ︸
Term A

+

T∑
t=1

1

(
E(r)
a,f∗

a
= 0
)

︸ ︷︷ ︸
Term B

33

Let’s first analyze Term A. Define Ft−1 = {{fa(τ), Ya(τ), Ua(τ)}t−1
τ=1}a∈A. We first observe that

1

(
Ya(t) = 1, E(r)

a,f (t) = 1, E(c)
a,f (t) = 1, Ta,f∗

a
≤ Ta,f (t)

)
= 1

(
Ya(t) = 1, E(r)

a,f (t) = 1, E(c)
a,f (t) = 1, Ta,f∗

a
≤ Ta,f (t), Ta,f (t) < µ̂a,f∗

a
− ϵ
)

︸ ︷︷ ︸
Term C

+ 1
(
Ya(t) = 1, E(r)

a,f (t) = 1, E(c)
a,f (t) = 1, Ta,f∗

a
≤ Ta,f (t), Ta,f (t) ≥ µ̂a,f∗

a
− ϵ
)

︸ ︷︷ ︸
Term D

(F.1)

We first provide a bound on Term C. Prior to that let’s define some notations. Let’s define G(s)
a,f (ϵ) =

1 − F
(s)
a,f (µ̂a,f∗

a
− ϵ). Furthermore, conditioned on the event that atleast one arm is pulled, for

any agent a let’s define Pa(t) to be the set of firms that are pruned before one is chosen to be
played at time t. Moreover let Ãselect

a,f (t) be a random variable such that Ãselect
a,f (t) = 1 iff f is

the firm with maximum index value in all of the non-pruned firms at time t. That is, Ãselect
a,f (t) =

1

(
f ∈ argmaxf ′∈F\{P(t)∪{f∗

a}} Ta,f ′(t)
)
. Using this the following holds:

E[Term C] = E[E[Term C|Ft−1]]

= E[Pr
(
Ya(t) = 1, E(r)

a,f (t) = 1, E(c)
a,f (t) = 1, Ta,f∗

a
≤ Ta,f (t), Ta,f (t) < µ̂a,f∗

a
− ϵ|Ft−1

)
]

≤ E
[
Pr
(
Ta,f∗

a
< µ̂a,f∗

a
− ϵ|Ft−1

)
Pr
(
Ya(t) = 1, Ãselect

a,f (t) = 1, Ta,f (t) < µ̂a,f∗
a
− ϵ|Ft−1

)]
(F.2)

Moreover note that

Pr
(
Ya(t) = 1, E(c)

a,f∗
a
(t) = 1, Ta,f (t)(t) < µ̂a,f∗

a
− ϵ|Ft−1

)
≥ Pr

(
Ya(t) = 1, Ãselect

a,f (t) = 1, Ta,f (t)(t) < µ̂a,f∗
a
− ϵ, Ta,f∗

a
(t) > µ̂a,f∗ − ϵ|Ft−1

)
= Pr

(
Ta,f∗

a
(t) > µ̂a,f∗

a
(t− 1)− ϵ|Ft−1

)
Pr
(
Ya(t) = 1, Ãselect

a,f (t) = 1, Ta,f (t)(t) < µ̂a,f∗
a
− ϵ|Ft−1

)
(F.3)

Using (F.3) in (F.2) we obtain the following

E[Term C] = E

[
Pr
(
Ta,f∗

a
< µ̂a,f∗

a
− ϵ|Ft−1

)
Pr
(
Ta,f∗

a
(t) > µ̂a,f∗

a
(t− 1)− ϵ|Ft−1

)Pr
(
Ya(t) = 1, E(c)

a,f∗
a
(t) = 1, Ta,f (t)(t) < µ̂a,f∗

a
− ϵ|Ft−1

)]

= E

1−G(Ma,f∗
a
(t−1))

a,f∗
a

(ϵ)

G
(Ma,f∗

a
(t−1))

a,f∗
a

(ϵ)
Pr
(
Ya(t) = 1, E(c)

a,f∗
a
(t) = 1, Ta,f (t)(t) < µ̂a,f∗

a
− ϵ|Ft−1

)
≤ E

1−G(Ma,f∗
a
(t−1))

a,f∗
a

(ϵ)

G
(Ma,f∗

a
(t−1))

a,f∗
a

(ϵ)
Pr
(
Ya(t) = 1, E(c)

a,f∗
a
(t) = 1|Ft−1

)
34

Further evaluating the expectation of Term C we have:

E[Term C] =
T∑
t=1

E

1−G(Ma,f∗
a
(t−1))

a,f∗
a

(ϵ)

G
(Ma,f∗

a
(t−1))

a,f∗
a

(ϵ)
1

(
E(c)
a,f∗

a
(t) = 1, E(r)

a,f∗
a
(t) = 1, Ya(t) = 1

)
=

T∑
t=1

t∑
s=1

E

1−G(s)
a,f∗

a
(ϵ)

G
(s)
a,f∗

a
(ϵ)

1

(
E(c)
a,f∗

a
(t) = 1, E(r)

a,f∗
a
(t) = 1, Ya(t) = 1,Ma,f∗

a
(t− 1) = s

)
≤ E

 T∑
s=1

1−G(s)
a,f∗

a
(ϵ)

G
(s)
a,f∗

a
(ϵ)

T∑
t=s+1

1 (Ma,f (t− 1) = s,Ma,f (t) = s+ 1)


≤

∞∑
s=0

1−G(s)
a,f∗

a
(ϵ)

G
(s)
a,f∗

a
(ϵ)

≤ 1

ϵ2
log(

1

ϵ
)

where the last inequality is due to Lattimore and Szepesvári (2020)13. Now let’s look at Term D.
Let’s set of time indices when Ja,f = {t : G(Ma,f (t−1))

a,f (ϵ) > 1/T}.

E[Term D] =

T∑
t=1

E
[
1

(
Ya(t) = 1, E(r)

a,f (t) = 1, E(c)
a,f (t) = 1, Ta,f∗

a
≤ Ta,f (t), Ta,f (t) ≥ µ̂a,f∗

a
− ϵ
)]

≤
∑
t∈Ja,f

E
[
1

(
Ya(t) = 1, E(r)

a,f (t) = 1
)]

︸ ︷︷ ︸
Term E

+
∑
t ̸∈Ja,f

E
[
1
(
Ta,f (t) ≥ µ̂a,f∗

a
− ϵ
)]

︸ ︷︷ ︸
Term F

Let’s first analyze the Term E above. Note that∑
t∈Ja,f

1

(
Ya(t) = 1, E(r)

a,f (t) = 1
)

≤
T∑
t=1

t−1∑
s=1

1

(
Ya(t) = 1, E(r)

a,f (t) = 1, Gsa,f (ϵ) >
1

T
,Ma,f (t− 1) = s,Ma,f (t) = s+ 1

)

=

T−1∑
s=0

1

(
G

(s)
a,f (ϵ) >

1

T

) T∑
t=s+1

1 (Ma,f (t− 1) = s,Ma,f (t) = s+ 1)

=

T−1∑
s=0

1

(
G

(s)
a,f (ϵ) >

1

T

)
≤ O

(
log(T)

(∆a,f − ϵ)2
+ log(T)

)
where the last property is a property of concentration of normal distribution and is standard in
frequentist Thompson sampling analysis. For reader’s reference we point to Lattimore and Szepesvári
(2020). Next, we bound Term F below:∑
t ̸∈Ja,f

E
[
1
(
Ta,f (t) ≥ µ̂a,f∗

a
− ϵ
)]

=

T∑
t=1

E
[
1

(
Ta,f (t) ≥ µ̂a,f∗

a
− ϵ,G(Ma,f (t−1))

a,f (ϵ) ≤ 1

T

)]

=

T∑
t=1

E
[
E
[
1

(
Ta,f (t) ≥ µ̂a,f∗

a
− ϵ,G(Ma,f (t−1))

a,f (ϵ) ≤ 1

T

)]
|Ft−1

]

=

T∑
t=1

E
[
G

(Ma,f (t−1))
a,f (ϵ)1

(
G

(Ma,f (t−1))
a,f (ϵ) <

1

T

)]
≤ 1

13This inequality is an

35

Combining the bounds on Term C, Term E and Term F and choosing ϵ = ∆
2 we have

∑
f∈Fa

E[Ma,f (T)] ≤ |Fa|O
(

1

∆2
log

(
1

∆

)
+

log(T)

∆2
+ log(T)

)
+ E

[
T∑
t=1

1

(
E(c)
a,f∗

a
(t) = 1, E(r)

a,f∗
a
(t) = 0

)]

≤ |Fa|O
(

1

∆2
log

(
1

∆

)
+

log(T)

∆2
+ log(T)

)
+O

(
E

[
T∑
t=1

1
(
Ha,f∗

a
(t)
)])

where the second inequality is due to Lemma 21. This concludes the proof.

G Experimental Study

In this section we present the numerical experiments that demonstrates and validates the results
presented in this paper. Moreover, we also observe that our algorithm performs surprisingly well in
general market structure, that is in markets which are not α−reducible. We leave this as a future
work to establish the regret bounds for the proposed algorithms in general markets.

In both sets of experiments, we consider a market comprising of 5 agents and 5 firms. We consider
the following two settings:

(S-I). randomly initialized preference for agents and randomly initialized (but uniform) preference
for firms. This setting ensures that market is α−reducible

(S-II). randomly initialized preference for agents and firms. In this part we specifically consider
setting where α−reducibility does not hold. This would provide directions for future research in this
area.

In our simulations for every agent we randomly sample the preference ordering of firms and assign
a mean reward in [0, 5] such that the successful match with most preferred firm gives mean reward
5 and the least preferred firm gives the mean reward 0 and the mean rewards from other firms are
equally spaced between [0, 5]. The rewards follow a normal distribution with variance 1. We run both
Algorithm 2 and Algorithm 5 for 25 times for two randomly sampled preference ordering for each of
(S-I)-(S-II).

In Figure 2 we consider (S-I) and observe the performance of algorithms. We observe that the
mean regret (taken over 25 runs) accumulated by the algorithms saturate very quickly and agents
identify their stable match. In Figure 3 we consider (S-II) and observe the performance of algorithm.
Surprisingly, even without the α−reducibility structure, the mean regret14 (taken over 25 runs)
accumulated by the algorithms saturate very quickly and agents identify their stable match. This
presents an opportunity to further explore the algorithm presented in this paper for general markets.

Furthermore, in both (S-I)-(S-II) we observe that the TS-DMA has higher variance but is faster than
UCB-DMA. This is because, compared to UCB-DMA, we observe empirically that TS-DMA very
rarely encounters the scenario where all of the firms gets pruned by the adversarial bandit module.
We would also like to point that in some cases the regret can be negative (which is desirable) as is
shown in Figure 2(c) for the red agent.

14mean regret here refers to the agent-optimal stable regret(Liu et al., 2021)

36

(a) UCB-DMA(Algorithm 2) (b) UCB-DMA(Algorithm 2)

(c) TS-DMA(Algorithm 5) (d) TS-DMA(Algorithm 5)

Figure 2: Performance of UCB-DMA (Algorithm 2) and TS-DMA(Algorithm 5) where α−reducibilty
condition is satisfied. We simulated the algorithm for two randomly generated preference orderings
which satisfy the α-reducibility condition. The simulation results of one of the preference ordering
are presented in left column and for the other in right column. The bold lines and the corresponding
shaded region denotes the mean regret and the variance of regret for the agents over 25 runs of the
algorithm.

(a) UCB-DMA(Algorithm 2) (b) UCB-DMA(Algorithm 5)

(c) TS-DMA(Algorithm 5) (d) TS-DMA(Algorithm 5)

Figure 3: Performance of UCB-DMA (Algorithm 2) and TS-DMA(Algorithm 5) where α−reducibilty
condition is NOT satisfied. We simulated the algorithm for two randomly generated preference
orderings which satisfy the α-reducibility condition. The simulation results of one of the preference
ordering are presented in left column and for the other in right column. The bold lines and the
corresponding shaded region denotes the mean regret and the variance of regret for the agents over
25 runs of the algorithm.

37

H Table of Notations

We have accumulated all the main notations used in the paper in form of table below

Notation Description
A Set of agents
F Set of firms/arms
M Union of agents and firms
ua(f) Utility for agent a when matched with firm f
uf (a) Utility for firm f when matched with agent a
fa(t) Firm chosen by agent a at time t
f∗a Stable match of agent a
Fa Set of super-optimal firms for agent a
Fa Set of sub-optimal firms for agent a
K Number of markets formed by decomposition as stated in Remark 3
Ai Agents forming fixed pairs after i− 1 rounds of elimination (Remark 3)
Fi Firms forming fixed pairs after i− 1 rounds of elimination (Remark 3)
Ua,f Noisy reward that agent a receives on getting matched with firm f
Af Set of agents that pull firm f

Ma,f (T) Number of times agent a has successfully matched with firm f till time T
Ca,f (T) Number of times agent a has collided on firm f till time T
pa,f (t) Probability that agent a will pull firm f at time t
Pa,f (t) An indicator if agent a has pulled arm f at time t
Ya(t) An indicator if agent a got successfully matched at time t
µ̂a,f (t) Empirical mean of utility derived by agent a on matching with f

Ia,f (t) Index of firm f as computed by agent a at time t
UCBa,f (t) UCB estimate of reward from firm f to agent a at time t
Ta,f (t) Thompson Sampling index of reward from firm f to agent a at time t
E(r)
a,f (t) An indicator if agent a pulled firm f at time t

E(c)
a,f (t) An indicator if all the firms with higher index than f got pruned at time t

τa,f (T) Time steps during which E(c)
a,f (t) = 1

∆a,f ua(f
∗
a)− ua(f)

Table 1: Table of notations

38

	Introduction
	Setting
	Preliminaries on matching markets

	Algorithms
	Stochastic Bandit Subroutine
	Adversarial Bandit Subroutine

	Regret bounds for decentralized matching algorithms
	Conclusions
	Related Work
	Adaptive Adversarial Algorithms
	Problem formulation from bubeck2019improved
	Adaptive Adversarial Module
	AB_Subroutine

	Technical Lemma

	Proofs of main Lemmas
	Proof of Lemma 8
	Proof of Lemma 7
	Proof of (L1) in Lemma 7
	Proof of (L2) in Lemma 7
	Proof of (L3) in Lemma 7
	Proof of (L4) in Lemma 7
	Proof of (L5) in Lemma 7

	Proof of Theorem 6
	Technical lemmas
	Thompson Sampling based Decentralized Matching Algorithm
	Algorithmic Description
	Bounds for Algorithm 5

	Experimental Study
	Table of Notations

