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A Detailed version of Section 2

In this section, we prove our main technical result: a lower bound on the sample complexity of testing
whether a degree-d Bayes net is a product distribution.
Theorem 2.1. Let d 6 c · log n, where c > 0 is a sufficiently small absolute constant. Then, testing
whether an arbitrary degree-d Bayes net over {0, 1}n is a product distribution or is "-far from every
product distribution requires ⌦(2d/2n/"2) samples.

This theorem considerably generalizes the lower bound of ⌦(n/"2) established in Canonne et al.
[2020] for the case of trees (d = 1). To establish our result, we build upon (and considerably extend)
their analysis; in particular, we will rely on the following “mixture of trees” construction, which can
be seen as a careful mixture of (2d�1 of) the hard instances from the lower bound of [Canonne et al.,
2020, Theorem 14].

Notation. Throughout, for given n, d, ", we let N := n� d+1 (without loss of generality assumed
to be even), D := 2

d�1, � :=
"p
n

, and

z0 =
1 + 4�

1� 4�
, z1 =

1 + (4�)2

1� (4�)2
, z2 =

1 + (4�)4

1� (4�)4
.

Definition 2.2 (Mixture of Trees). Given parameters 0 6 d 6 n and � 2 (0, 1], we define the
probability distribution Dn,d,� over degree-d Bayes nets by the following process.

1. Choose a perfect matching � of [N ] uniformly at random (where N = n� d+ 1), i.e., a set
of N/2 disjoint pairs;

2. Draw i.i.d. µ1, . . . , µD uniformly at random in {0, 1}N/2;
3. For ` 2 [D], let p` be the distribution over {0, 1}N defined as the Bayes net with tree

structure �, such that if �k = (i, j) 2 � then the corresponding covariance between
variables Xi, Xj is

Cov(Xi, Xj) = (�1)
µ`,k�

4. Let the resulting distribution P�,µ over {0, 1}n be

P�,µ(x) =
1

D

DX

`=1

p`(xd, . . . , xn) [◆(x1, . . . , xd�1) = `]

where ◆ : {0, 1}d�1 ! [D] is the indexing function, mapping the binary representation to
the corresponding number.

That is, Dn,d,� is the uniform distribution over the set of degree-d Bayes nets where the first d� 1

coordinates form a “pointer” to one of the 2
d�1 tree Bayes nets sharing the same tree structure (the

matching �), but with independently chosen covariance parameters (the D parameters µ1, . . . , µD).

With this construction in hand, Theorem 2.1 will follow from the next two lemmas:
Lemma 2.3 (Indistinguishability). There exist absolute constants c, C > 0 such that the following
holds. For ⌦(1) 6 d 6 c log n, no m-sample algorithm can distinguish with probability at least 2/3
between a (randomly chosen) mixture of trees P ⇠ Dn,d,"/

p
n and the uniform distribution U over

{0, 1}n, unless m > C · 2d/2n/"2.
Lemma 2.4 (Distance from product). Fix any 0 6 d 6 n

2
and " 2 (0, 1]. With probability at least

9/10 over the choice of P ⇠ Dn,d,"/
p
n, P is ⌦(")-far from every product distribution on {0, 1}n.

Note that this guarantees farness from every product distribution, not just from the uniform distribution.
We first establish Lemma 2.3 in the next subsection, before proving Lemma 2.4 in Section A.2.
Throughout, we fix n, d, and " 2 (0, 1].

A.1 Sample Complexity to distinguish from Uniform (Lemma 2.3)

We here proceed with the proof of Lemma 2.3, starting with some convenient notations; some of the
technical lemmas and facts used here are stated and proven in Section B. Let ✓ = (�, µ1, . . . , µ2d�1),
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where each µk 2 {±1}N/2, and let P✓ be the distribution for the mixture of trees construction from
Definition 2.2. The following denotes the matching count between (�, µ) and x as the quantity

c(�, µ, x) :=
���(i, j) 2 {d, . . . , n}2 : 91 6 k 6 N

2
,�k = (i, j) and (�1)

xi+xj = (�1)
µ◆(x),k

 ��.

We will also introduce an analogous quantity with an “offset”, for xch = (xd, . . . , xn), referring
exclusively to the child nodes of x (i.e., the last N nodes, which are the “children” of the first d� 1

“pointer nodes” in our construction),

cch(�, µ, xch) := (13)
���(i, j) 2 {d, . . . , n}2 : 91 6 k 6 N

2
,�k = (i� d+ 1, j � d+ 1) and (�1)

xi+xj = (�1)
µ◆(x),k

 �� .

To denote the parameters of the “mixture of trees,” we write ✓i := (�, µi) (for i 2 [D]), recalling
that the matching parameter � is common to all D tree components. Since each µi corresponds to
one of the values of (x1, . . . , xd�1) 2 {0, 1}d�1, we as before use ◆ : {0, 1}d�1 ! [D] to denote the
indexing function (so that, for instance, ◆(x1 = · · · = xd�1 = 0) = 0). We finally introduce three
more quantities, related to the matching and orientations parameters across the D components of the
mixture:

A✓i,✓
0
i
:= {(s, t) 2 {1, . . . , N/2}2 : �[s] = �0

[t], µi[s] = µ0
i
[t]}

(common pairs, same orientation)

B✓i,✓
0
i
:= {(s, t) 2 {1, . . . , N/2}2 : �[s] = �0

[t], µi[s] 6= µ0
i
[t]}

(common pairs, different orientation)
C✓i,✓

0
i
:= (� [ �0

) \ (A [B) (pairs unique to ✓ or ✓0)

For ease of notation, we define Ai := A✓i,✓
0
i
, Bi := B✓i,✓

0
i

and Ci := C✓i,✓
0
i
; and note that Ci = C1,

as it only depends on � (not on the orientation µi).

To prove the indistinguishability, we will bound the squared total variation distance (or equivalently,
squared `1) distance between the distributions of m samples from (the uniform mixture of) P✓ and
U by a small constant; that is, between Q := E✓[P

⌦m

✓
] and U⌦m. From Ingster’s method (see, e.g.,

[Acharya et al., 2020, Lemma III.8.]), by using chi-square divergence as an intermediate step we get
��Q� U⌦m

��2
1
6 d�2(Q,U⌦m

) = E✓,✓0 [(1 + ⌧(✓, ✓0))m]� 1, (14)

where ⌧(✓, ✓0) := Ex⇠U

h⇣
P✓(x)�U(x)

U(x)

⌘⇣
P✓0 (x)�U(x)

U(x)

⌘i
. In order to get a handle on this quantity

⌧(✓, ✓0), we start by writing the expression for the density P✓ (for a given parameter ✓ of the mixture
of trees). For any x 2 {0, 1}n, recalling Item 4 of Definition 2.2,

P✓(x) = P✓(xd, . . . , xn | x1, . . . , xd�1)Ud�1(x1, . . . , xd�1)

=
1

2d�1
P�,µ◆(x)

(xd, . . . , xn)

=
1

2d�1
· 1

2N
(1 + 4�)c(�,µ◆(x),x)(1� 4�)

N
2 �c(�,µ◆(x),x)

=
1

2n
(1 + 4�)c(�,µ◆(x),x)(1� 4�)

N
2 �c(�,µ◆(x),x).

Substituting this in the definition of ⌧ , we get

⌧(✓, ✓0) = Ex⇠U

✓
P✓(x)

U(x)
� 1

◆✓
P✓0(x)

U(x)
� 1

◆�

= Ex⇠U

" 
(1� 4�)

N
2

✓
1 + 4�

1� 4�

◆c(�,µ◆(x),x)

� 1

! 
(1� 4�)

N
2

✓
1 + 4�

1� 4�

◆c(�
0
,µ

0
◆(x),x)

� 1

!#

= 1 + (1� 4�)NEx⇠U


z
c(�,µ◆(x),x)+c(�

0
,µ

0
◆(x),x)

0

�

� (1� 4�)
N
2 Ex⇠U

h
z
c(�,µ◆(x),x)

0

i
� (1� 4�)

N
2 Ex⇠U


z
c(�

0
,µ

0
◆(x),x)

0

�
, (15)

15



where z0 :=
1+4�

1�4�
. As x ⇠ UN , for fixed �, µ we have that cch(�, µ, x) follows a Bin

�
N

2
, 1

2

�

distribution; recalling the expression of the Binomial distribution’s probability generating function,
we then have

(1� 4�)
N
2 Ex⇠U [z

c(�,µ◆(x),x)

0
] = (1� 4�)

N
2 E~x1⇠Ud�1

h
E~x2⇠UN

h
z
cch(�,µ◆(~x1),~x2)

0

ii

= (1� 4�)
N
2
1

D

(
DX

i=1

E
m⇠Bin(

N
2 ,

1
2 )
[zm

0
]

)

= (1� 4�)
N
2

✓
1 + z0

2

◆N
2

= 1.

Using this to simplify the last two terms of (15), we obtain

1 + ⌧(✓, ✓0) = (1� 4�)NEx⇠U [z
c(�,µ◆(x),x)+c(�

0
,µ

0
◆(x),x)

0
]

=
1

D

(
DX

i=1

(1� 4�)NEx⇠UN [z
cch(�,µi,x)+cch(�

0
,µ

0
i,x)

0
]

)

=
1

D

(
DX

i=1

(1� 4�)N · z|Bi|
0

E
↵⇠Bin(|Ai|, 12 )

[z2↵
0

]

Y

�i:|�i|>4

E↵⇠B(�i)
[z↵

0
]

)

=
1

D

(
DX

i=1

(1� 4�)N · z|Bi|
0

✓
1 + z2

0

2

◆|Ai| Y

�i:|�i|>4

E↵⇠B(�i)
[z↵

0
]

)
, (16)

where the product is taken over all cycles in the multigraph G✓,✓0 induced by the two matchings; and,
given a cycle �, B(�) is the probability distribution defined as follows. Say that a cycle � is even
(resp., odd) if the number of edges with weight 1 along � is even (resp., odd); that is, a cycle is even
or odd depending on whether the number of negatively correlated pairs along the cycle is an even or
odd number. If � is an even cycle, then B(�) is a Binomial with parameters |�| and 1/2, conditioned
on taking even values. Similarly, if � is an odd cycle, B(�) is a Binomial with parameters |�| and 1/2,
conditioned on taking odd values. It follows that E↵⇠B(�)[z

↵
0
] is given by the following expression.

E↵⇠B(�)[z
↵

0
] =

8
<

:
E
↵⇠Bin(|�|, 12 )

[z↵ | ↵ even] = (1+z0)
|�|

+(1�z0)
|�|

2|�| , if � is even

E
↵⇠Bin(|�|, 12 )

[z↵ | ↵ odd] = (1+z0)
|�|�(1�z0)

|�|

2|�| , if � is odd
.

Denote

Se,i := Se(✓i, ✓
0
i
) = {� 2 cycle(✓i, ✓

0
i
) : |�| > 4,� is even},

So,i := So(✓i, ✓
0
i
) = {� 2 cycle(✓i, ✓

0
i
) : |�| > 4,� is odd}.

We will often drop �, µ or i, when clear from context. We expand E↵⇠B(�)[z
↵
0
] as follows:

Y

�:|�|>4

E↵⇠B(�)[z
↵

0
] =

Y

�:|�|>4,even

(1 + z0)|�| + (1� z0)|�|

2|�|

Y

�:|�|>4,odd

(1 + z0)|�| � (1� z0)|�|

2|�|

=

Y

�:|�|>4
even

(1 + z0)|�|

2|�|

 
1 +

✓
1� z0
1 + z0

◆|�|
!

Y

�:|�|>4

odd

(1 + z0)|�|

2|�|

 
1�

✓
1� z0
1 + z0

◆|�|
!

=

Y

�:|�|>4

(1 + z0)|�|

2|�|

Y

�2Se

(1 + (�4�)|�|)
Y

�2So

(1� (�4�)|�|)

=
(1 + z0)

P
�:|�|>4 |�|

2

P
�:|�|>4 |�|

Y

�2Se

(1 + (�4�)|�|)
Y

�2So

(1� (�4�)|�|)

=
(1 + z0)|C|

2|C|

Y

�2Se

(1 + (�4�)|�|)
Y

�2So

(1� (�4�)|�|)
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where for the last equality we used that
P

�:|�|>4
|�| = |C|. We now improve upon the analogous

analysis from [Canonne et al., 2020, Claim 12] to obtain a better upper bound for the remaining
terms; indeed, the bound they derived is eO("

4
/n), which was enough for their purposes but not ours

(since it does not feature any dependence on d). Let z1 :=
1+(4�)

2

1�(4�)2
. In view of using the above

expression to bound (16), we first simplify (part of) the summands of (16) by using the fact that
2|Ai|+ 2|Bi|+ |Ci| = N for all i, and following the same computations as in Canonne et al. [2020]:

(1� 4�)Nz|Bi|
0

✓
1 + z2

0

2

◆|Ai|
(1 + z0)|Ci|

2|Ci|

= (1� 4�)Nz|Bi|
0

✓
1 + z2

0

2

◆|Ai|
(1 + z0)|Ci|

2|Ci|

= ((1� 4�)2z0)
|Bi|
✓
(1� 4�)2

1 + z2
0

2

◆|Ai|✓
(1� 4�)

1 + z0
2

◆|Ci|

| {z }
=1

= (1� (4�)2)|Bi|(1 + (4�)2)|Ai|

= (1� (4�)2)|Ai|+|Bi|z|Ai|
1

= (1� (4�)2)|A1|+|B1|z|Ai|
1

,

where the last equality uses the fact that the sum |Ai| + |Bi| only depends on the matchings �,�0

(not the orientations µi, µ0
i
), and thus is independent of i. Plugging this simplification into (16), and

letting R := |A1|+ |B1| 6 N/2 for convenience, we get

1 + ⌧(✓, ✓0) =
1

D

(
DX

i=1

(1� 4�)N · z|Bi|
0

✓
1 + z2

0

2

◆|Ai|Y

�i

E↵⇠B(�i)
[z↵

0
]

)

= (1� (4�)2)R · 1

D

(
DX

i=1

z|Ai|
1

Y

�2Se,i

(1 + (�4�)|�|)
Y

�2So,i

(1� (�4�)|�|)

)
.

Next, we compute the expectation after raising the above to the power m.

E✓,✓0 [(1 + ⌧(✓, ✓0))m]

= E✓,✓0

2

4

0

@(1� (4�)2)R
1

D

(
DX

i=1

z|Ai|
1

Y

�2Se,i

(1 + (�4�)|�|)
Y

�2So,i

(1� (�4�)|�|)

)1

A
m3

5

= E�,�0

2

4(1� (4�)2)mRE~µ,~µ0

2

4

0

@ 1

D

(
DX

i=1

z|Ai|
1

Y

�2Se,i

(1 + (�4�)|�|)
Y

�2So,i

(1� (�4�)|�|)

)1

A
m3

5

3

5.

(17)

The quantity inside the inner expectation is quite unwieldy; to proceed, we will rely on the following
identity, which lets us bound the two product terms:
Y

�2Se

(1+ (�4�)|�|)
Y

�2So

(1� (�4�)|�|) 6 e
c
0 "5

N3/2
Y

�2Se:|�|=4

(1+ (�4�)|�|)
Y

�2So:|�|=4

(1� (�4�)|�|) , (18)

for some absolute constant c0 > 0. We defer the proof of this inequality to Appendix C.4, and proceed
assuming it. Note that as long as D = O(n/"6), we will have ec

0·m"
5
/N

3/2 6 e128m"
2
/(

p
Dn),4

and this restriction on D is satisfied for the regime of parameters considered in our lower bound,
d = O(log n).

Fix a pair �,�0; we have that the |Ai|’s are i.i.d. Bin(R, 1/2) random variables. We now introduce

R0
:= |{�1 : |�1| = 4}| = |{�i : |�i| = 4}|,

4As per the condition set in Lemma B.5, we will from now on assume that n/"2 > n > 40D, which gives
us N3/2 > (n/2)3/2 > n

2 · (20D)1/2 > 2n
p
D; and some more calculations give us c0 m"2

N3/2 6 128m"2p
Dn

.
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which is the random variable denoting how many cycles have length exactly 4. In particular, we
have R0 6 N

4
, since

P
�:|�|>4

� = |C| 6 N ; more specifically, we have R0 6 N�2R

4
6 N

4
. Further,

define i as the number of cycles of length 4 which have an even total number of negative correlations;
that is, the number of cycles � such that µi, µ0

i
impose either 0, 2, or 4 negatively correlated pairs

along that cycle.

Since µ, µ0 are uniformly distributed, being odd or even each has probability 1/2, and thus i ⇠
Bin
�
R0, 1

2

�
. Moreover, while i and Ai both depend on µi, µ0

i
, they by definition depend on

disjoint subsets of those two random variables: thus, because each correlation parameter is chosen
independently, we have that i and Ai are independent conditioned on (R,R0

). Now, recalling our
setting of z2 =

1+(4�)
4

1�(4�)4
and fixing a realization of R,R0, we have

E~µ,~µ0

2

4

0

@ 1

D

DX

i=1

z|Ai|
1

Y

�2Se(i):|�|=4

(1 + (4�)4)
Y

�i2So(i):|�|=4

(1� (4�)4)

1

A
m3

5

= E~µ,~µ0

" 
1

D

DX

i=1

z|Ai|
1

(1 + (4�)4)i(1� (4�)4)R
0�i

!m#

= (1� (4�)4)mR
0
E~µ,~µ0

" 
1

D

DX

i=1

z|Ai|
1

zi
2

!m#

6 (1� (4�)4)mR
0
z

mR
2

1
z

mR0
2

2
E~↵

"
DY

i=1

(cosh(2↵i�
2
))

R
(cosh(2↵i�

4
))

R
0

#
, (19)

where (19) follows from the following lemma, whose proof we defer to the end of the section:
Lemma 2.5. There exists an absolute constant �0 ⇡ 0.96 such that the following holds. Let K > 1

and R1, . . . , RK be integers, and �1, . . . , �K 2 (0, �0]. Suppose that j,1, . . . ,j,D ⇠ Bin
�
Rj ,

1

2

�
,

are i.i.d., and mutually independent across 1 6 j 6 K, and zj :=
1+�j

1��j
. Then

E
✓

1

D

P
D

i=1

Q
K

j=1
z
j,i

j

◆m�
6
⇣Q

K

j=1
z

m
2 Rj

j

⌘
E~↵

hQ
D

i=1

Q
K

j=1
cosh(2↵i�j)

i
,

where (↵1, . . . ,↵D) follows a multinomial distribution with parameters m and (1/D, . . . , 1/D).

We now focus on the expectation on the right (last factor of the RHS of (19)): using that coshu 6
min(eu

2
/2, eu) for u > 0, we have, setting � := 1/�2 = n/"2,

E~↵

"
DY

i=1

(cosh(2↵i�
2
))

R
(cosh(2↵i�

4
))

R
0

#

6 E~↵

"
DY

i=1

min(e2↵i�
2
R, e2↵

2
i �

4
R
)e2↵

2
i �

8
R

0

#

6 E~↵

"
DY

i=1

e2↵i�
2
R [↵i>�]e2↵

2
i �

4
R [↵i6�]e2↵

2
i �

8
R

0

#

6 E
"

DY

i=1

e8↵i�
2
R [↵i>�]

#1/4
E
"

DY

i=1

e8↵
2
i �

4
R [↵i6�]

#1/4
E
"

DY

i=1

e4↵
2
i �

8
R

0

#1/2
(20)

where the last step comes from the generalized Hölder inequality (or, equivalently, two applications
of the Cauchy–Schwarz inequality), and the threshold � was chosen as the value for which the term
realizing the minimum changes. We first bound the product of the last two expectations:

E
"

DY

i=1

e8↵
2
i �

4
R [↵i6�]

#1/4
E
"

DY

i=1

e4↵
2
i �

8
R

0

#1/2
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6 E
"

DY

i=1

e8�
4
Rmin(↵

2
i ,�

2
)

#1/4
E
"

DY

i=1

e4↵
2
i �

8
R

0

#1/2

6 (E[e8min(↵
2
j ,�

2
)�

4
R
])
D/4

(E[e4↵
2
1�

8
R

0
])
D/2 (21)

6 exp

✓
32�4

m2

D
R

◆
exp

✓
32�8

m2

D
R0
◆
. (22)

where we applied negative association (see, e.g., Dubhashi and Ranjan [1996, Theorem 13]) on
both expectations for (21); and then got (22) by Lemmas B.7 and B.3 (for the latter, noting that
tm = 2�8mR0 6 1/16; and, for the former, assuming with little loss of generality that " 6 1/(4

p
2)).

Applying Lemma B.6 to the first (remaining) factor of the LHS above as 8�2R 6 4 and D > ⌦(1),
we get
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= (1 + o(1)) exp(32C 02R),

recalling that R0 6 N/4 6 n/4, and our assumption that m 6 C 0pDn/"2. Combining (17), (18),
and (19), what we showed is
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where the equality follows from the definition of z1, z2. To conclude, we will use the fact that, for
every k > 0,

Pr[R > k] 6 1

k!
, (23)

which was established in Canonne et al. [2020, p.46]. By summation by parts, one can show that this
implies
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for any ↵ > 0, and so, in our case,
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In particular, the RHS can be made arbitrarily close to 1 by choosing a small enough value for the
constant C 0 (in the bound for m). By (14), this implies the desired bound on kQ� U⌦mk2

1
, and thus

establishes Lemma 2.3.

The remaining technical lemma. It only remains to establish Lemma 2.5, which we do now.
Lemma 2.5. There exists an absolute constant �0 ⇡ 0.96 such that the following holds. Let K > 1

and R1, . . . , RK be integers, and �1, . . . , �K 2 (0, �0]. Suppose that j,1, . . . ,j,D ⇠ Bin
�
Rj ,

1

2

�
,

are i.i.d., and mutually independent across 1 6 j 6 K, and zj :=
1+�j

1��j
. Then
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,

where (↵1, . . . ,↵D) follows a multinomial distribution with parameters m and (1/D, . . . , 1/D).

Proof of Lemma 2.5. We will require the following simple fact, which follows from the multinomial
theorem and the definition of the multinomial distribution:
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Fact A.1. Let D be a positive integer and m be a non-negative integer. For any x1, . . . , xD 2 R, we
have  
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"
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i

#
,

where (↵1, . . . ,↵D) follows a multinomial distribution with parameters m and (1/D, . . . , 1/D).

We now apply Fact A.1 inside the expectation of the LHS of the statement. Note that the sets of
random variables ~↵ = {↵1, . . . ,↵D}, ~1 = {1,1, . . . ,1,D}, . . . ,~K = {K,1, . . . ,K,D} are
mutually independent, since ~↵ are a set of auxiliary random variables derived from an averaging
operation and by the assumption on ~j ; and we have that j,1, . . . ,j,D are i.i.d.,
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Next, we will simplify the expression left inside by upper bounding it, using the fact that, given our
assumption on �j being bounded above by �0, we have zj =

1+�j

1��j
6 e4�j . Thus,
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as claimed.

A.2 Product Distributions Are Far from Mixture of Trees (Lemma 2.4)

In this subsection, we outline the proof of Lemma 2.4. Our argument starts with Lemma A.2, which
allows us to relate the total variation distance between the mixture and the product of its marginals to
a simpler quantity, the difference between two components of this mixture.
Lemma A.2. Let p be a distribution on {0, 1}N ⇥ {0, 1}M (with N,M > 2), and denote its
marginals on {0, 1}N , {0, 1}M by p1, p2 respectively. Then, if p1 is uniform,

dTV(p, p1 ⌦ p2) > dTV(p(· | x1 = 0), p(· | x1 = 1)) .
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This in turn will be much more manageable, as the parameters of these two mixture components are
independent, and thus analyzing this distance can be done by analyzing Binomial-like expressions.
This second step is reminiscent of [Canonne et al., 2020, Lemma 8], which can be seen as a simpler
version involving only one Binomial instead of two:
Lemma A.3. There exist C1, C2 > 0 such that the following holds. Let " 2 (0, 1] and n > C1, and
let a, b be two integers such that a+ b = n and b > 1

4
n. Then, for � :=

"p
n

, we have

(1� �)n
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◆k1+b�k2
!����� > C2".

This parameter b corresponds to the difference between the orientations parameters µ, µ0 being large,
which happens with high constant probability as long as n is large enough. The proof of Lemma A.3
is deferred to Appendix C.3, and we hereafter proceed with the rest of the argument. For fixed ✓ and
x2, . . . , xd, z :=

1+4�

1�4�
. We will denote by µ, µ0 the two (randomly chosen) orientation parameters

corresponding to the mixture components indexed by (0, x2, . . . , xd) and (1, x2, . . . , xd). By Lemma
A.2 and Lemma 1.5, for any product distribution q,

2dTV(p, q) >
1

3 · 2N (1� 4�)
N
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X

xd+1,...,xn

|zc(�,µ,x) � zc(�,µ
0
,x)| (25)

Let S1 denote the set of pairs in the child nodes with common parameters between µ and µ0, and S2

the set of pairs with different parameters (that is, the definition of S1, S2 is essentially that of A and
B from the previous section (p.15), but for equal matching parameters � = �0). In particular, we
have that |S2| = Hamming(µ, µ0

) ⇠ Binomial
�
N

2
, 1

2

�
and |S1 [ S2| = N

2
. Let c̃(S, µ, x) be the

analogue of cch(�, µ, x) from (13), but only on a subset of pairs S instead of {d, . . . , n}2; i.e.,
c̃(S, µ, x) :=

���(i, j) 2 S : 9k 2 N,�k = (i� d+ 1, j � d+ 1) and (�1)
xi+xj = (�1)

µk
 �� .

Given any x, µ and µ0, the following holds from the definitions of c̃ and cch:

• Since S1 [ S2 contains all the pairs, cch(�, µ, x) = c̃(S1, µ, x) + c̃(S2, µ, x) (similarly for
µ0).

• Since S1 (resp., S2) contains exactly the pairs whose orientation is the same (resp., differs)
between µ and µ0, we have c̃(S1, µ0, x) = c̃(S1, µ, x) and c̃(S2, µ0, x) + c̃(S2, µ, x) = |S2|

• For a fixed matching and a partition S1, S2 of its N/2 pairs, given an orientation vector
µ 2 {0, 1}N/2, and fixed values 0 6 k1 6 |S1|, 0 6 k2 6 |S2|, there are 2
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��|S2|
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different vectors x 2 {0, 1}N such that c̃(S1, µ, x) = k1 and c̃(S2, µ, x) = k2.

Using these properties, we have, assuming |S2| > 1
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where C > 0 is an absolute constant, and for the last inequality we invoked Lemma A.3. Recalling
now that |S2| ⇠ Bin

�
N

2
, 1

2

�
, for N large enough we also have

Pr


|S2| >

N

8

�
> 1� e�

N
16 > 9/10.

Thus, combining the two along with (25), we conclude that
Pr[dTV(P✓(· | x1 = 0, x2, . . . , xd), P✓(· | x1 = 1, x2, . . . , xd)) > ⌦(")] > 9/10,

establishing Lemma 2.4. ⇤
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B Useful results on the MGFs of Binomials and Multinomials

In this section, we establish various self-contained results on the moment-generating functions
(MGF) and stochastic dominance of Binomials, truncated (or “capped”) Binomials, and multinomial
distributions, which we used extensively in Section 2.1 and should be of independent interest. Notably,
derivations from Section 2 following (10) are direct consequences of the three lemmas in the section:
Lemma B.3, Lemma B.6 and Lemma B.7 below, which we restate and establish later in this section.
Lemma B.3. Let X ⇠ Bin(m, p). Then, for any t such that 0 < tm 6 1/16,

E[etX
2

] 6 exp(16tm2p2 + 2tmp).

Lemma B.6. Suppose ~↵ = (↵1, . . . ,↵D)
T follows a multinomial distribution with parameters m

and (1/D, . . . , 1/D), and � > 40D � c4 be such that m6c
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D�. Then, for any t 6 4 and

D > ⌦(1), we have
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80
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Lemma B.7. Let X 0 ⇠ Bin(m, p), and X := min(X 0,�), for some � 6 m. Then, for any t such
that 0 < t� 6 1/8 and 0 < tmp 6 1/16, we have

E[etX
2

] 6 exp(16tm2p2 + 2tmp).

B.1 Bounds on moment-generating functions

We start with some relatively simple statements:
Fact B.1. If X ⇠ Bin(m, p), then, for any 0 6 t 6 1, E[etX ] 6 exp(2tmp).

Proof. This follows from computing explicitly E[etX ] = (1 + p(et � 1))
m 6 (1 + 2tp)m 6 e2tmp,

where the first inequality uses that t 6 1.

We will also require the following decoupling inequality:
Lemma B.2. Let F : R ! R be a convex, non-decreasing function, and X = (X1, . . . , Xn) be a
vector of independent non-negative random variables. Then
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where Y is an independent copy of X .

Proof. Introduce a vector of independent (and independent of X) Bern(1/2) random variables
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and so, by Jensen’s inequality and Fubini, as well as independence of X and �,
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This implies that there exists some realization �⇤ 2 {0, 1}n such that
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Let I := {i 2 [n] : �⇤
i
= 1}. Then

P
i,j

�⇤
i
(1� �⇤

j
)XiXj =

P
(i,j)2I⇥Ic XiXj , and we get

EX

2

4F

0

@
X

i 6=j

XiXj

1

A

3

5 6 EX

2

4F

0

@4

X

(i,j)2I⇥Ic

XiXj

1

A

3

5 (26)

= EX

2

4F

0

@4

X

(i,j)2I⇥Ic

XiYj

1

A

3

5

6 EX

2

4F

0

@4

X

(i,j)2I⇥Ic

XiYj + 4

X

(i,j) 62I⇥Ic

XiYj

1

A

3

5

= EX

2

4F

0

@4

X

i,j

XiYj

1

A

3

5 ,

where the equality uses the fact that (Xi)i2I and (Xj)j2Ic are independent (as I, Ic are disjoint), and
so replacing

P
j2Ic Xj by the identically distributed

P
j2Ic Yj does not change the expectation; and

the second inequality uses monotonicity of F and non-negativity of X,Y , as 4
P

(i,j) 62I⇥Ic XiYj > 0.
(Note that up to (and including) (26), the assumption that the Xi’s are independent is not necessary;
we will use this fact later on.)

Note that compared to the usual version of the inequality, we do not require that the Xi’s have mean
zero; but instead require that they be non-negative, and that F be monotone. We will, in the next
lemma, apply Lemma B.2 to the function F (x) = e2tx, for some fixed positive parameter t > 0 (so
that F is indeed non-decreasing), and to X1, . . . , Xn independent Bernoulli r.v.’s. Specifically, we
obtain the following bound on the MGF of the square of a Binomial:
Lemma B.3. Let X ⇠ Bin(m, p). Then, for any t such that 0 < tm 6 1/16,

E[etX
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] 6 exp(16tm2p2 + 2tmp).

Proof. Write X =
P

m

i=1
Xi, where the Xi are i.i.d. Bern(p) (in particular, Xi = X2

i
). Then, by the

Cauchy–Schwarz inequality and the decoupling inequality from Lemma B.2, we have, for t > 0,
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where Yj ⇠ Bern(p) are i.i.d., and independent of the Xi’s. Let Y =
P

m

i=1
Yi ⇠ Bin(m, p). From

Fact B.1, as long as 2t 6 1, 8tm 6 1, and 16tmp 6 1 (all conditions satisfied in view of our
assumption),
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concluding the proof.
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We will prove an MGF bound on the truncated Multinomial in Lemma B.6 (noting that using
MGF bound of Multinomial distribution is not nearly enough), as required by our analysis on the
independence testing lower bound; prior to that, we will need two important lemmas: Lemma B.4
and Lemma B.5. These two lemmas both try to bound the expression with a uniform and more
manageable term.

Lemma B.4. Fix m,�, D such that m

�
6c

p
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the last inequality as long as logD > 100.

Lemma B.5. Suppose ~↵ = (↵1, . . . ,↵D)
T follows a multinomial distribution with parameters m

and (1/D, . . . , 1/D), and that m

�
6c

p
D for some c > 0,� > 1 with � > 40D > ⌦(c4) and
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D > ⌦(1). For any integer c
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D > k > 1 and any t 6 4,
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where ⌫(~↵) := |{i : ↵i > �}| denotes the number of coordinates of ~↵ greater than �.

Proof. Without loss of generality, (as later, we will sum over all combinations) assume that
↵1, . . . ,↵k are the coordinates larger than �, for some integer k; and denote their sum by L.
Note that we then have k� < L 6 m6c�

p
D, and thus 0 6 k 6 c

p
D.

E
"
Y

i:↵i>�

e4↵i · [⌫(~↵) = k]

#
=

✓
D

k

◆ X

↵1,...,↵k>�

X

↵k+1,...,↵D6�

e4
Pk

i=1 ↵i Pr[~↵ = (↵1, . . . ,↵D)]

(34)
A uniform bound on any ↵1, . . . ,↵D as specified can be obtained from Lemma B.4; and, combining
it with (34), we have an expression that does not depend on the value of ~↵; from which5

E
h
e4

Pk
i=1 ↵i [⌫(~↵) = k]

i
6

✓
D

k

◆ X

↵1,...,↵k>�,↵k+1,...,↵D6�

me�
1
5� logD

6
✓
D

k

◆
(m��)

k
�

D�k
exp

✓
logm� 1

5
� logD

◆

6 exp

✓
k logD + k log(m��) + (D � k) log�+ logm� �

5
log(D)

◆

= exp

✓
k log(D · m��

�
) +D log�+ logm� �

5
log(D)

◆

6 exp

✓
�1

5
� logD + (D + 1) log�+ log(c

p
D) +

3

2
k log(cD)

◆

6 exp

✓
� 1

10
� logD + 2c

p
D log(cD)

◆
(35)

6 exp

✓
� 1

80
� logD

◆
.

where (35) follows from 20
D

logD
6 �

log�
, which holds for � > 40D and D large enough (larger than

some absolute constant); and the last inequality holds, given the above constraints, for D > 16c4.

Lemma B.6. Suppose ~↵ = (↵1, . . . ,↵D)
T follows a multinomial distribution with parameters m

and (1/D, . . . , 1/D), and � > 40D � c4 be such that m6c
p
D�. Then, for any t 6 4 and

D > ⌦(1), we have

E
"

DY

i=1

et↵i [↵i>�]

#
6 1 + c

p
D exp

✓
� 1

80
� logD

◆
.

Proof. Let ⌫(~↵) := |{i : ↵i > �}| denote the number of coordinates of ~↵ greater than �. Note that
⌫(~↵) < L :=

m

�
, and that L = c

p
Ds by assumption. We break down the expectation by enumerating

over the possible values for ⌫(~↵), from 0 6 k 6 L:

E
"

DY

i=1

et↵i [↵i>�]

#
= E

"
LX

k=1

Y

i:↵i>�

et↵i · [⌫(~↵) = k] + [⌫(~↵) = 0]

#

5We have the number of terms in the summation upper bounded by the following analysis: (m��)k is an
upper bound of combinations of ↵1, . . . ,↵k with values larger than �; and similarly, (�+ 1)D�k will be the
upper bound for the combinations of ↵k+1, . . . ,↵D with values up to �.
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=

LX

k=1

E
"
Y

i:↵i>�

et↵i · [⌫(~↵) = k]

#
+ 1 · Pr[⌫(~↵) = 0]

6 L exp

✓
� 1

80
� logD

◆
+ Pr[⌫(~↵) = 0] (36)

6 cD1/2
exp

✓
� 1

80
� logD

◆
+ 1 ,

where (36) follows from Lemma B.5.

We now state and prove our last lemma, Lemma B.7, on the MGF of the square of a truncated
Binomial:
Lemma B.7. Let X 0 ⇠ Bin(m, p), and X := min(X 0,�), for some � 6 m. Then, for any t such
that 0 < t� 6 1/8 and 0 < tmp 6 1/16, we have

E[etX
2

] 6 exp(16tm2p2 + 2tmp).

Proof. We will analyze the sampling process in Definition B.8:

Definition B.8. Fix integers m > � > 1, and let X 0
1
, . . . , X 0

m
be i.i.d. Bern(p) random variables.

Define the distribution of X1, . . . , Xm through the following sampling process:

1. Initialize Xi = 0 for all i 2 [m]; sample {X 0
i
}16i6m as m i.i.d. Bern(p);

2. If
P

i2[m]
X 0

i
< �, let Xi = X 0

i
for all i 2 [m];

3. If
P

i2[m]
X 0

i
> �, let S 0

= {i 2 [m] : X 0
i
= 1} and let S be a uniformly random subset of

S 0 of size �; set Xi = X 0
i

for i 2 S .

Consider a sequence of random variable X1, . . . , Xm as defined in Definition B.8; each Xi (for
1 6 i 6 m) is supported on {0, 1} (so that, in particular, X2

i
= Xi); and X =

P
i2[m]

Xi. By the
Cauchy–Schwarz inequality,

E[etX
2

] = E
h
et

Pm
i=1 Xi+t

P
i 6=j XiXj

i

6
q
E
⇥
e2t

Pm
i=1 Xi

⇤
r

E
h
e2t

P
i 6=j XiXj

i

6
q
E
⇥
e2t

Pm
i=1 Xi

⇤
r

E
h
e8t

P
(i,j)2I⇥Ic XiXj

i
(37)

6
q
E [e2tX ]

q
E[e8tY1Y2 ] (38)

where Y1 ⇠ min(Bin(|I|, p),�), Y2 ⇠ min(Bin(|Ic|, p),�) and Y1 is independent of Y2 (and
(I, Ic) is some fixed, but unknown partition of [m]). (37) follows from the intermediate step (26) in
the proof of Lemma B.2 (observing that x 7! etx is convex, and non-decreasing as t > 0; and using
the remark from that proof about the independence of Xi’s not being required up to that step) and
(38) follows from Lemma B.12. We will implicitly use Facts B.9, B.10, and B.11 for the remaining
calculations, eventually replacing most expressions with X 0 ⇠ Bin(m, p).

Recalling that X 6 X 0 by definition, the first term of (38) can be bounded as E[e2tX ] 6 e4tmp.
Moreover, from our assumption, tY1 6 t� 6 1/8 and tmp 6 1/16. Combined with the fact that
Y1, Y2 is dominated by X ⇠ min(Bin(m, p),�) and thus by X 0 ⇠ Bin(m, p), we have

E[e8tY1Y2 ] = EY1 [EY2 [e
8tY1Y2 ]] 6 EY1 [e

16tY1mp
] 6 e32tm

2
p
2

.

Going back to (38), this implies

E[exp
�
tX2

�
] 6

p
exp (4tmp)

p
exp (32tm2p2) = exp

�
2tmp+ 16tm2p2

�
,

concluding the proof.
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B.2 Stochastic dominance results between truncated Binomials

Fact B.9. Let X ⇠ Bin(m, p), and 0 < n 6 m. Defining Y := min(X,n) and Z := X | X 6 n,
we have, for every k > 0,

Pr[X > k] > Pr[Y > k] > Pr[Z > k],

i.e., X ⌫ Y ⌫ Z, where ⌫ denotes first-order stochastic dominance.

Proof. We can write the PMF of Z and Y , for all 0 6 k 6 n,

Pr[Y = k] =

⇢
Pr[X = k], k < n
Pr[X > n], k = n , Pr[Z = k] =

Pr[X = k]

Pr[X 6 n]
.

It follows that Pr[Y > k] = Pr[X > k] {k 6 n}, which gives the first part of the statement.

The second part follows from a direct comparison between the two CDF of Z, Y : indeed, for
0 6 k 6 n,

Pr[Y > k] > Pr[Z > k] , Pr[X > k] > Pr[n > X > k]

Pr[X 6 n]

, Pr[X > k](1� Pr[X > n]) > Pr[X > k]� Pr[X > n]

, Pr[X > k] Pr[X > n] 6 Pr[X > n]

, Pr[X > k] 6 1 ,

and this last inequality clearly holds.

We also record the facts below, which follow respectively from the more general result that first-order
stochastic dominance is preserved by non-decreasing mappings, and from a coupling argument.
Fact B.10. Consider two real-valued random variables X,Y , and n > 0. If X ⌫ Y , then
min(X,n) ⌫ min(Y, n): for all k,

Pr[min(X,n) > k] > Pr[min(Y, n) > k] ;

i.e., the min operator preserves first-order stochastic dominance relation.
Fact B.11. Let X ⇠ Bin(n, p) and Y ⇠ Bin(m, p), where m > n. Then X � Y .
Lemma B.12. Let X1, . . . , Xm be sampled from the sampling process in Definition B.8, and I, Ic

be any partition of [m]. Define ZI :=
P

i2I
Xi, ZIc :=

P
i2Ic Xi, and YI ⇠ min(Bin(|I|, p), n),

YIc ⇠ min(Bin(|Ic|, p), n). Then
ZI · ZIc � YI · YIc .

Proof. We prove the lemma by defining a coupling ZI , ZIc , YI , YIc such that ZI ·ZIc 6 YI ·YIc with
probability one. The sampling process below will generate samples (Xi)16i6m, ZI , ZIc , YI , YIc

for all possible realizations of I and Ic. In other words, from a given sequence {X 0
i
}i2[m], we will

generate {Xi}i2[m], YI1 , YIc
1
, YI2 , YIc

2
, . . . , YI2m

, YIc
2m

, ZI1 , ZIc
1
, ZI2 , ZIc

2
, . . . , ZI2m

, ZIc
2m

, where
the (Ii, Ici ) enumerate all partitions of [m] in two sets.

1. Initialize Xi = 0 for all i 2 [m]; sample (X 0
i
)16i6m as m i.i.d. Bern(p);

2. If
P

i2[m]
X 0

i
< n, let Xi = X 0

i
for all i 2 [m];

3. If
P

i2[m]
X 0

i
> n, let S 0

= {i 2 [m] : X 0
i
= 1} and let S be a uniformly random subset of

S 0 with size n; set Xi = X 0
i

for i 2 S .
4. For each I 2 {I1, . . . , I2m}, denote S 0

I
= S 0 \ I . Select a uniformly random subset of S 0

I

with at most n indices which is a superset of S \ I . In more detail, if |S \ I| < n, select
min(|S 0

I
|, n) � |S \ I| elements uniformly at random from S 0

I
\ (S \ I) to add to S \ I ,

which becomes SI ; else, let SI = S \ I . Repeat a similar process for Ic to obtain SIc .
5. For each I 2 {I1, . . . , I2m}, set YI =

P
i2SI

X 0
i

and YIc =
P

i2SIc
X 0

i
.

From the above definition, we can readily see that for any I , YI > ZI and YIc > ZIc . What is left
is to argue that the YI ⇠ min(Bin(|I|, p), n) and YIc ⇠ min(Bin(|Ic|, p), n). We start by noting
that for any k < n, {YI = k} = {|SI | = k} = {|S 0

I
| = k}. The last equality comes from the fact

that |SI | < n can only mean that |S 0
I
| < n, and the selection process in step 4 will thus add all

elements from S 0
I

to SI . From here, we have Pr[YI = k] = Pr[|S 0
I
| = k] = Pr[Bin(m, p) = k],

for k < n; and we have Pr[YI = n] = 1 � Pr[YI < n] = Pr[Bin(m, p) > n]. As a result,
YI ⇠ min(Bin(|I|, p), n). Similarly, we can argue that YIc ⇠ min(Bin(|Ic|, p), n).
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C Deferred Proofs

C.1 Proofs from Section 3

Proof of Lemma 3.2. We analyze Algorithm 2: first we use the algorithm of Lemma 1.3 to learn P
to d�2 distance "2 as if it was a product distribution, using O

�
n

"2

�
samples. Let P̂ be the output

of the learning algorithm. Note that since Lemma 1.3 guarantees proper learning, P̂ is a product
distribution.

We then want to check that P̂ is indeed close to P (in Hellinger distance), as it should if P were
indeed a product distribution. To do this, we use the algorithm of Theorem 1.4 on P , with reference
distribution P̂ and distance parameter "; and reject if, and only if, this algorithm rejects.

By a union bound, since both algorithms are correct with probability at least 5/6, both are simulta-
neously correct with probability at least 2/3; we hereafter assume this is the case in our analysis.
The total sample complexity is O

�
n/"2

�
+O

�p
2n/"2

�
= O

�
2
n/2/"2

�
, as claimed. We now argue

correctness.

• Soundness. Proof by contrapositive: if the algorithm accepts, this means, from the guarantees
of Theorem 1.4, that dH(P, P̂ ) 6 ". Since P̂ is a product distribution, we conclude that P
is "-close (in Hellinger distance) to being a product distribution.

• Correctness. Assume that P is a product distribution. Then, Lemma 1.3 ensures that
d�2(P, P̂ ) 6 "2; and thus, by Theorem 1.4 the second step will not reject, and the algorithm
overall accepts.

Note that, by a standard amplification trick (independent repetition and majority vote), the probability
of error can be reduced from 1/3 to any � 2 (0, 1) at the price of a O(log(1/�)) factor in the number
of samples.

Proof of Theorem 3.1. We analyze Algorithm 1, denoting as in the algorithm by P 0 the product of
marginals of P , and setting � :=

1

3(
n

d+1)
, "0 := "p

2n(1+
p
d+1)

, and

m := O

✓
2
d/2

"02
log

1

�

◆
= O

✓
2
d/2n

"2
· d2 log n

◆
.

The sample complexity is thus immediate; further, note that, as stated in the algorithm, given m i.i.d.
samples from P and a fixed set T ✓ [n] of nodes, one can generate m i.i.d. samples from PT by only
keeping the relevant variables (those in T ) of each sample from P .

• Completeness. Assume P is a product distribution. Then, PT is a product distribution for
every choice of T , and each of the

�
n

d+1

�
performs thus accepts with probability at least 1��

by Lemma 3.2. Thus, by a union bound, all tests simultaneously accept with probability at
least 1�

�
n

d+1

�
· � = 2/3, and Algorithm 1 returns “accept.”

• Soundness. Assume now that P is "-far (in total variation distance) from every product
distribution over {0, 1}n. A fortiori, it is "-far from the product distribution P 0, and thus we
have

dH(P, P
0
) > 1p

2
dTV(P, P

0
) > "p

2

By Corollary 1.2, this means there exists some node i 2 [n] along with the set of its (at
most) d parents ⇧i such that, setting T := {i} [⇧i,

d2
H
(PT , P

0
T
) > "2

2n
.

Now, we can invoke our localization lemma, Lemma 3.3, to conclude that PT is not only far
from P 0

T
, it is far from every product distribution on T :

min
Q product

d2
H
(PT , Q) > "2

2n(1 +
p
d+ 1)2

= "02 .
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Thus, when this particular set T of d + 1 nodes is encountered by the algorithm, the
corresponding independence test will reject with probability at least 1� � by Lemma 3.2,
and the overall algorithm will thus reject with probability at least 1� �.

This concludes the proof: the sample complexity is O(d22d/2n log(n)/"2) as claimed, and the tester
is correct in both cases with probability at least 2/3.

C.2 Proof of Lemma 3.3

Lemma 3.3. Let P be a distribution on {0, 1}n, and P 0
= (⇡1P ) ⌦ · · · ⌦ (⇡nP ) be the prod-

uct of marginals of P . Denoting by Q the set of all product distributions on {0, 1}n, we have
minQ2Q dH(P,Q) > 1

1+
p
n
dH(P, P 0

).

Proof. Since squared Hellinger distance is an f -divergence, by the data processing inequality, we
have that

dH(P,Q) > dH(⇡P,⇡Q). (39)

By the subadditivity of Hellinger for Bayes nets from Corollary 1.2 along with (39), we obtain the
following:

dH(P, P
0
) 6 dH(P,Q) + dH(Q,P 0

)

6 dH(P,Q) +

⇣ nX

i=1

d2
H
(P 0

Xi
, QXi)

⌘1/2

= dH(P,Q) +

⇣ nX

i=1

d2
H
(PXi , QXi)

⌘1/2

6 dH(P,Q) +

q
nd2

H
(P,Q)

=
�
1 +

p
n
�
dH(P,Q).

C.3 Proof of Lemma A.3

Lemma A.3. There exist C1, C2 > 0 such that the following holds. Let " 2 (0, 1] and n > C1, and
let a, b be two integers such that a+ b = n and b > 1

4
n. Then, for � :=

"p
n

, we have

(1� �)n

2n
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�
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◆k1+b�k2
!����� > C2".

Proof. By concentration of Binomials,
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where C is some constant larger than 0. For k1 + k2 � n

2
= l 2

hp
a+

p
b, 2
⇣p

a+
p
b
⌘i

,

l >
p
a+ b =

p
n.
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�����
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◆k1+k2+b�2k2
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◆b�2k2
!

> e"(1� e4�(b�2k2)). (41)

where (40) and (41) follows from 1 � x > e�2x, 0 < x < 0.79 and e4x >
⇣

1+x

1�x

⌘
> e2x,

0 < x < 0.95. All these inequalities hold for n larger some constant and every " 2 (0, 1]. Since
b > 1

4
n, and by the summation above b� 2k2 2

h
�4

p
b,�2

p
b
i
,

e"(1� e4�(b�2k2)) > e"
⇣
1� e�8

"p
n

p
b
⌘
> e"(1� e�4"

) > ".

and therefore, summing up every term, we have our lower bound

Cp
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a
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p
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�
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concluding the proof.

C.4 Proof of (7)

Fact C.1. For any set of cycles such that
P

i
|�i| 6 n, we have
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D Structured Testing Lower Bound

Letting D = 2
n, we will rely on the construction from the “standard” lower bound of Paninski

[2008] by picking a uniformly random subset S of {0, 1}n of size D

2
. Denote S the set of all

such combinations of S, and define Pno to be Pno :=
�
P =

1+C"

2
US +

1�C"

2
USc | S 2 S

 
, where

C > 0 is a suitable normalizing constant. As before, US denotes the uniform distribution on the set
of variable S and P 2 Pno is a mixture of two uniform distributions on disjoint parts, with different
weights.

It is known that ⌦(2n/2/"2) samples are required to distinguish between such a randomly chosen
P and the uniform distribution U ; further, assume we know that the uniform distribution U is in C.
What remains to show is the distance, that is, “most” choices of P 2 Pno are "-far from C. To argue
that last part, we will use our assumption that C can be learned with m samples to conclude by a
counting argument: i.e., we will show that there can be at most 2mn or so “relevant” elements of C,
while there are at least 22

⌦(n) Pno that are "-far from each other. Suitably combining the two will
establish the theorem below:
Theorem D.1. Let C be a class of probability distributions over {0, 1}n such that the following holds:
(1) the uniform distribution belongs to C (2) there exists a learning algorithm for C with sample
complexity m = m(n, "). Then, as long as mn ⌧ 2

O(n), testing whether an arbitrary distribution
over {0, 1}n belongs to C or is "-far from every distribution in C in total variation distance requires
⌦(2

n/2/"2) samples.

Proof. As discussed above, indistinguishability follows from the literature [Paninski, 2008], and thus
all we need to show now is that Pno is far from every distribution in C. By assumption (2), there
exists an algorithm H : {0, 1}mn ! P (without loss of generality, we assume H deterministic) that
can output an estimated distribution given m = m(n, ") samples from P 2 C. Thus, for every P 2 C
given m i.i.d. samples X 2 {0, 1}mn, PrX⇠P⌦m(dTV(H(X), P ) < ") > 2/3.

In particular, this implies the weaker statement that, for every P 2 C, there exists some x in {0, 1}mn

s.t. P 2 B(H(x), ") (where B(x, r) denotes the TV distance ball of radius r centered at x). By
enumerating all possible values in {0, 1}mn, we then can obtain an "-cover {H(x1), . . . , H(x2mn)}
of C, that is, such that C ✓

S
2
mn

i=1
B(H(xi), "). The "-covering number of C is thus upper bounded

by 2
O(mn).

Next, we lower bound the size of Pno by constructing an "-packing P", where P" = {Pi 2 Pno, i 2
N : dTV(Pi, Pj) > ", i 6= j}. For P,Q 2 Pno corresponding to two sets S, S0, each of size
D

2
= 2

n�1, we have

dTV(P,Q) =
1

2
|S4S0| ·

����
1 + C"

2
� 1� C"

2

���� ·
2

D
= C" · |S4S0|

D
> "

For this to be at least ", the pairrwise symmetric difference of (the sets corresponding to the) distribu-
tions in P" should be at least D

C
= ⌦(2

n
). We know, by, e.g., Blais et al. [2019, Proposition 3.3] that

there exist such families of balanced subsets of {0, 1}n of cardinality at least ⌦(22
⇢n

), where ⇢ > 0

is a constant that only depends on C.

Thus, the size of Pno is itself ⌦(22
⇢n

); combining this lower bound with the upper bound on the
covering number of C concludes the proof.

As a corollary, instantiating the above to the class C of degree-d Bayes nets over n nodes readily
yields the following:
Corollary D.2. For large enough n, testing whether an arbitrary distribution over {0, 1}n is a
degree-d Bayes net or is "-far from every such Bayes net requires ⌦(2

n/2/"2) samples, for any
d = o(n) and " > 2

�O(n).

Proof. We can obtain a learning upper bound of m = O(2
dn log(2

d+1n) log(ndn
)/"2) for degree-d

Bayes nets by combining the known-structure case (proven in Bhattacharyya et al. [2020]) with the
reduction from known-structure to unknown-structure (via hypothesis selection/tournament [Canonne
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et al., 2020]). We have mn 6 O(2
dn6/"2). To have 2

mn ⌧ 2
2
⇢n

, where ⇢ is some constant, we
need mn < 2

O(n), which requires d = o(n) and " > 2
�O(n) for large enough n.

D.1 An ⌦(2
d/2

p
n/"2) Lower Bound

In this section, we state and prove a simpler, but quantitatively weaker lower bound than Theorem 2.1
for independence testing, Theorem D.3. This simpler lower bound is adapted from Canonne et al.
[2020, Theorem 13] – the “mixture-of-products” construction. Their analysis readily provides
indistinguishability, and distance from the uniform distribution. Thus, all we need here is to show
that most of these hard instances (i.e., “mixtures of products”) are far from every product distribution
(Lemma D.4), not just the uniform distribution. While the ⌦(2

d/2
p
n/"2) lower bound this yields is

not as tight in terms of sample complexity, with a
p
n dependence instead of n (at a high level, this is

because we fix the Bayesian structure, and thus the algorithms have additional information they can
leverage), the restriction on d is much milder than the one in Theorem 2.1, allowing up to d = n/2.
Theorem D.3. Let 1 6 d 6 n/2. Testing whether an arbitrary degree-d Bayes net over {0, 1}n is
a product distribution or is "-far from every product distribution requires ⌦(2d/2

p
n/"2) samples.

This holds even if the structure of the degree-d Bayes net is known.

Proof. As discussed above, we will use the same “mixture-of-products” construction as in Canonne
et al. [2020, Theorem 13], which established a lower bound of ⌦(2d/2

p
n/"2) samples to distinguish it

from the uniform distribution. We first recall the definition of this “mixture-of-products” construction.

Letting N := n� d > n/2, we define, for z 2 {±1}N the product distribution pZ over {0, 1}N by

pz(x) =
NY

i=1

✓
1

2
+ zi(�1)

xi�

◆
, x 2 {0, 1}N . (42)

where � :=
"p
N

= ⇥

⇣
"p
n

⌘
. A mixture-of-products distribution is then defined by choosing 2

d

i.i.d. Z1, . . . , Z2d 2 {±1}N uniformly at random, and setting pZ1,...,Z2d
to be the distribution over

{0, 1}n which is uniform on the first d bits, and where the first d bits of x are seen as the binary
representation (i.e., a “pointer”) for which pZi will be used for the last N bits of x. That is,

pZ1,...,Z2d
(x) =

1

2d
pZ◆(x1,...,xd)

(xd+1, . . . , xn), x 2 {0, 1}n (43)

where, analogously to Definition 2.2, ◆ : {0, 1}d ! [2
d
] is the indexing function, mapping the binary

representation (here on d bits) to the corresponding number.

As mentioned in the preceding discussion, this construction was already used in Canonne et al.
[2020, Theorem 13], where the authors show an ⌦(2

d/2
p
n/"2) sample complexity lower bound to

distinguish a uniformly randomly chosen mixture-of-products distribution (which is a degree-d Bayes
net) from the uniform distribution (which is a product distribution). For their theorem (a lower bound
on testing uniformity), they then conclude from the easy fact that every such mixture-of-products
distribution is "-far from the uniform distribution. This is not enough for us, as, to obtain the
lower bound stated in Theorem D.3, what we need is to show that every such mixture-of-products
distribution (or at least most of them) is far from every product distribution, not just the uniform one.
This is the only missing part towards proving Theorem D.3, and is established in our next lemma:

Lemma D.4 (Distance from Product distributions). For p uniformly sampled from the mixture-of-
products construction,

Pr


min
q1,q2

dTV(p, q1 ⌦ q2) >
"

750

�
> 9

10

as long as n > d+ C1, for some constants C1 > 0 and n/2 > d.

This lemma will directly follow from Claim D.5 (below) and Lemma 1.5; the rest of this appendix is
thus dedicated to proving the former, which states that most mixture-of-products distributions are far
from the product of their marginals.
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Claim D.5. Given a mixture-of-products distribution p as in (43), let p1 be the marginal of p on the
first d variables (parent nodes) and p2 the marginal on the N last variables (child nodes). Note that
p1 ⌦ p2 is then a product distribution on {0, 1}n. Then, we have

Pr

h
dTV(p, p1 ⌦ p2) >

"

250

i
> 9

10

as long as n > C1 + d, for some constants C1 > 0 and n > 2d.

Proof. Fix any mixture-of-products distribution p. From Lemma A.2 and the structure of p as given
in (43), one can show that

dTV(p, p1 ⌦ p2) >
1

2d�1

X

x2,...,xd

dTV(p(· | 0, x2, . . . , xd), p(· | 1, x2, . . . , xd)).

Denoting p(· | 0, x2, . . . , xd) by p◆(x2,...,xd)
and p(· | 0, x2, . . . , xd) by q◆(x2,...,xd)

(where
◆(x2, . . . , xd) 2 [2

d�1
], abusing slightly the definition of the indexing function to extend it to

d� 1 bits), we can rewrite this as

dTV(p, p1 ⌦ p2) >
1

2d�1

2
d�1X

t=1

dTV(pt, qt) =: dTV .

Now, since d 6 n/2, one can show that, for every fixed t,

Pr[dTV(pt, qt) < "/25] < e�C·N (44)

where the probability is taken over the choice of p (i.e., its 2d parameters Z1, . . . , Z2d ), and C > 0 is
an absolute constant. We defer the proof of this inequality to the end of the appendix, and for now
observe that the RHS is less than 1/10 for N greater than some (related) absolute constant C1 > 0.
We can then write, letting D := 2

d�1 and Xt := {dTV(pt, qt)}

dTV > "

25
· 1

2d�1

2
d�1X

t=1

n
dTV(pt, qt) >

"

25

o
=

"

25
· 1

D

DX

t=1

Xt,

where the Xt’s are i.i.d. Bernoullis with, by the above analysis, parameter ↵ > 1� e�C·N > 9/10.
We then have

Pr[dTV(p, p1 ⌦ p2) < "/250] 6 Pr[dTV < "/250] 6 Pr

"
DX

t=1

Xt <
D

10

#
,

so it remains to show that the RHS is less than 1/10. Since E[Xt] > 9/10 for all t, this readily
follows from a Hoeffding bound, for d > 1.

To conclude, we only need to prove (44), which (slightly rephrasing it) tells us that two independent
parameterizations pZ , p0Z will be at total variation distance at least ⌦(") far with overwhelming
probability.

Proof of (44). Let distribution pZ , pZ0 be defined as in (42), and Z,Z 0 be i.i.d. and uniform on
{±1}N . The statement to show is then

Pr

h
dTV(pZ , pZ0) > "

25

i
> 1� e�N/18, (45)

We know (see, e.g., Kamath et al. [2019, Lemma 6.4]) that as long as � 6 1/6 (which holds for
n > 36), then the TV distance is related to the `2 distance between mean vectors µZ , µZ0 2 [0, 1]N

as

dTV(pZ , pZ0) > 1

20

vuut
NX

i=1

(µZ,i � µZ0,i)
2. (46)
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Relating this `2 distance between mean vectors the Hamming distance between Z and Z 0, we have
vuut

NX

i=1

(µZ,i � µZ0,i)
2 =

vuut
NX

i=1

✓✓
1

2
� Zi�

◆
�
✓
1

2
� Z 0

i
�

◆◆2

= 2�
p
Hamming(Z,Z 0), (47)

where Hamming(Z,Z 0
) =

P
N

i=1
[Zi 6= Z 0

i
]. Noting that Hamming(Z,Z 0

) ⇠ Bin(N, 1/2), we
have the following via Hoeffding’s inequality along with (46) and (47),

Pr

"
dTV(pZ , pZ0) > 1

20

r
4�2N

3

#
> Pr[Hamming(Z,Z 0

) > N/3] > 1� e�N/18.

Since n/2 > d and thus,
q

4�2N

3
> 4

5
", we get (45).

This concludes the proof of Lemma D.4, and with it of Theorem D.3.
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