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Abstract

Existing Optimal Transport (OT) methods mainly derive the optimal transport
plan/matching under the criterion of transport cost/distance minimization, which
may cause incorrect matching in some cases. In many applications, annotating a
few matched keypoints across domains is reasonable or even effortless in annotation
burden. It is valuable to investigate how to leverage the annotated keypoints to guide
the correct matching in OT. In this paper, we propose a novel KeyPoint-Guided
model by ReLation preservation (KPG-RL) that searches for the matching guided
by the keypoints in OT. To impose the keypoints in OT, first, we propose a mask-
based constraint of the transport plan that preserves the matching of keypoint pairs.
Second, we propose to preserve the relation of each data point to the keypoints to
guide the matching. The proposed KPG-RL model can be solved by the Sinkhorn’s
algorithm and is applicable even when distributions are supported in different
spaces. We further utilize the relation preservation constraint in the Kantorovich
Problem and Gromov-Wasserstein model to impose the guidance of keypoints in
them. Meanwhile, the proposed KPG-RL model is extended to partial OT setting.
As an application, we apply the proposed KPG-RL model to the heterogeneous
domain adaptation. Experiments verified the effectiveness of the KPG-RL model.
Code is available at https://github.com/XJTU-XGU/KPG-RL.

1 Introduction

As a mathematical tool for distribution alignment, mass transport, etc., Optimal Transport (OT) [1]
has gained increasing attention in the machine learning community. OT aims to derive a transport map
or plan between a source and a target distribution, such that the transport cost is minimized. Due to its
capacity to exploit the geometric property of data, OT has been employed in many applications, e.g.,
computer vision [2, 3], natural language processing [4, 5, 6, 7], generative adversarial network [8],
domain adaptation [9], clustering [10], anomaly detection [11], etc. OT has two typical formulations,
i.e., the Monge’s formulation [12] and the Kantorovich’s formulation [13]. The Kantorovich’s
formulation [13] relaxes the Monge’s formulation and attracts broader studies in applications. Unless
otherwise stated, by OT, we refer to the Kantorovich’s formulation in this paper. The original OT
model, i.e., the Kantorovich Problem [13] (KP), is a linear program that is computationally expensive.
The entropy-regularized OT [14] introduces the entropy of the transport plan as regularization to the
OT model which is solved by the computationally cheaper Sinkhorn-Knopp algorithm [15] allowing
to use automatic differentiation [16].

KP needs to transport all the mass of source distribution to exactly match the mass of target distribution.
But in some cases, only partial mass of source and target distributions should be matched, e.g., the
source or target samples contain outliers. To overcome this limitation, the partial OT [17, 18, 19, 20],
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Figure 1: (a) Positive (cross) and negative (circle) samples of source (in blue) and target (in green)
distributions. (b) KP distorts the data structure, leading to mismatch of some positive and negative
samples. (c) GW model better preserves the data structure, but completely mismatches the samples.
(d) Our proposed KPG-RL model utilizes some keypoints (red pairs) to guide the transport and
produce correct matching.

unbalanced OT [21, 22], and robust OT [23, 24, 25] models are presented, that allow to transport only
partial mass of distribution. Another extension of KP is the Gromov-Wasserstein (GW) model [26, 27]
that computes the distance between metrics defined within each domain rather than between samples
across domains as in KP.

In most of the above models, the main criterion for the optimal transport plan/matching is by the
minimization of total transport distance or distortion over all samples. Though having achieved
promising results in many applications, without any additional guidance, the OT models may lead
to incorrect matching of samples. Figures 1(b) and 1(c) illustrate examples of incorrect matching
produced by KP and GW models. In many applications, it is reasonable to annotate some paired
keypoints across domains for guiding the matching in OT. For instance, in non-rigid point set or
image registration [28, 29], a few keypoint pairs that should be matched are annotated in two point
sets/images. In semi-supervised domain adaptation [30] and heterogeneous domain adaptation [31],
there are a few labeled target domain data and large amount of labeled source domain data available,
that could be directly taken as keypoints. Therefore, it is valuable and important to investigate how to
take advantage of those keypoints to guide the correct matching in OT. Figure 1(d) shows an example
that with the guidance of a few keypoints, the correctness of matching can be improved.

In this paper, we propose a novel KeyPoint-Guided model by ReLation preservation (KPG-RL) for
leveraging the annotated keypoints to guide the matching in OT. In KPG-RL, we first preserve the
matching of keypoint pairs in OT using a mask-based constraint of the transport plan. We then propose
to preserve the relation of each data point to the keypoints in transport, enforcing the matching of the
data points near paired keypoints across domains. The proposed KPG-RL model is applicable even
when distributions lie in different spaces, and can be solved by Sinkhorn’s algorithm. We further
enforce the relation preservation constraint in KP and GW to impose the guidance of keypoints in
them. To tackle the problems that only partial mass should be transported, we extend the KPG-RL
model to partial OT setting, forming partial-KPG-RL model.

As an application, we apply the KPG-RL model to the heterogeneous domain adaptation (HDA) [31].
HDA is a transfer learning task that aims to transfer the knowledge of large-scale labeled source
domain data to the target domain where a few labeled and larger amounts of unlabeled data are
available for training. The “heterogeneity” implies that the source and target domain data are in
heterogeneous feature spaces, e.g., generated by different deep networks. This heterogeneity poses a
major obstacle in adapting the source trained model to the target domain. We take the labeled target
domain data and source class centers as keypoints and transport source domain data to target domain
by our KPG-RL model. Upon the transported source domain data and the labeled target domain data,
a classification model is trained that is transferable to the target domain. Experiments show that the
KPG-RL model is effective for HDA.

In the following sections, we discuss the related works in Sect. 2, and introduce the background of
OT in Sect. 3. In Sect. 4, we discuss the details of the proposed KPG-RL model. In Sect. 5, we apply
the KPG-RL model to HDA. Section 6 concludes this paper.

Notations. Σm = {p ∈ Rm
+ |

∑
i pi = 1} is the probability simplex. ⟨·, ·⟩F is the Frobenius dot

product of two matrices. ⊙ stands for the Hadamard product. 1m denotes m-dimensional all-one
vector. πi,: and π:,j are respectively the i-th row and j-th column of matrix π.
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2 Related Works

We review below the most related OT models and HDA methods to our work.

OT models. The GW model [27] seeks a “distance-preserving” transport plan such that the distance
between transported points in target domain is the same as the distance between the original points
in source domain. Our KPG-RL model aims to use keypoint pairs to guide the matching in OT by
preserving the relation of each point to the keypoints. Our “relation-preserving” scheme preserves the
relation of data w.r.t. the given keypoints, different from the pairwise distance-preserving constraint
in GW. We experimentally verified the effectiveness of relation-preserving scheme for introducing the
guidance of keypoints in OT. From the computational point of view, GW is a non-convex quadratic
program, while KPG-RL is a linear program. Lin et al. [32] use the anchors to encourage clustering
of data and to impose rank constraints on the transport plan to improve its robustness to outliers. The
“anchors” in [32] are intermediate points in computation for improving robustness, different from
the “keypoints” in this paper, which are the annotated paired data for guiding the matching in OT.
Hierarchical OT [7, 33, 34] transports points by dividing them into some subgroups and then derives
the transportation of these subgroups using OT. Different in goal and methodology from Hierarchical
OT, we impose the guidance of keypoints for pursuing correct matching in OT by preserving the
relation to the keypoints. We do not explicitly divide the points into subgroups, and there is no
hierarchy in our method. TLB [27, 35] is a lower bound of GW that can be computed faster. TLB
takes the ordered distance of each point to all the points in the same domain as features, and then
performs the Kantorovich formulation of OT using such features. Differently, our method uses a
carefully designed relation of each point to the keypoints to impose the guidance of keypoints to the
other points. Courty et al. [9] constrain the cost function to encourage the matching of labeled data
across source and target domains that share the same class labels for domain adaptation. They use the
Laplacian regularization to preserve the data structure. Differently, we explicitly model the guidance
of keypoints matching to the other data points in our OT formulation. The matching of paired
keypoints is enforced by our mask-based constraint on the transport plan. Zhang et al. [36] propose
Masked OT model as a regularization term to preserve the local feature invariances between fine-
tuned and pretrained graph neural network (GNN) for the fine-tuning of GNNs. Though the Masked
OT [36] shares similar spirits to the mask-based modeling in our method, our main contribution is the
relation preservation for imposing the guidance of keypoints, different from [36] in methodology. For
our mask-based modeling, it is utilized to impose the matching of keypoints which is theoretically
guaranteed. While the mask in [36] aims to preserve the local information of finetuned network from
pretrained models. The motivation and design of our mask are different from those in [36].

HDA methods. HDA methods could be roughly categorized into cross-domain mapping and common
subspace learning methods. The cross-domain mapping approaches [31, 37, 38, 39, 40] learn a
transform to map the source features or model parameters to target domain to achieve adaptation. The
common subspace learning approaches [41, 42, 43, 44, 45, 46] learn domain-specific projections to
map source and target domain data into a common subspace such that their distributions are aligned.
Our method for HDA belongs to the first category, and could be mostly related to [37]. The method
in [37] transports source samples to target domain using GW model regularized by the distance
between the center of transported source samples and the center of labeled target samples having the
same class labels. Different from [37], we take each labeled target domain data and its corresponding
source domain class center as a paired keypoint and preserve the relation of each data to the set of
keypoints in each domain when conducting OT.

3 Background on Optimal Transport

Kantorovich Problem (KP). We consider two sets of data points, i.e., the source data X = {xi}mi=1
and the target data Y = {yj}nj=1, of which the empirical distributions are p =

∑m
i=1 piδxi

and
q =

∑n
j=1 qjδyj

. With a slight abuse of notations, we may also denote p = (p1, p2, · · · , pm)⊤ ∈ Σm

and q = (q1, q2, · · · , qn)⊤ ∈ Σn as the mass supported on X and Y respectively. We define the cost
matrix between X and Y as C = (Ci,j) ∈ Rm×n with Ci,j = c(xi, yj), where c is a cost function,
which is set to the squared L2-distance of xi and yj in our experiments. OT aims to optimally
transport p towards q at the smallest cost, formulated as the following Kantorovich Problem (KP):

min
π∈Π(p,q)

Lkp(π) ≜ ⟨π,C⟩F , s.t. Π(p, q) = {π ∈ Rm×n
+ |π1n = p, π⊤

1m = q}. (1)
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Figure 2: Example of modeling the matching of keypoints (red) using mask. The left part illustrates
the matching of data points with keypoint pairs K = {(3, 2), (6, 5)}. To preserve the matching of
keypoint index pair (i, j), e.g., (3, 2), the i-th row and j-th column of transport plan π̃ must be zeros
except π̃i,j . Therefore, we can model π̃ by π̃ = M ⊙ π, where M is the mask determined by the
keypoints, and π is to be optimized.

When c is taken as a distance metric (aka. ground metric), the minimum value of objective function
in Eq. (1) is a distance between p and q, named Wasserstein distance.

Partial OT model. The KP in Eq. (1) takes the mass preserving assumption that all the mass of p
is transported to exactly match the mass of q. In many applications, only partial mass should be
transported. The partial OT model [18, 19] seeks the minimal cost of transporting only s unit mass
from p to q, where 0 ⩽ s ⩽ min(∥p∥1, ∥q∥1), formulated as

min
π∈Πs(p,q)

Lkp(π), s.t. Πs(p, q) = {π ∈ Rm×n
+ |π1n ⩽ p, π⊤

1m ⩽ q,1⊤
mπ1n = s}. (2)

Note that in partial OT, the total mass ∥p∥1 and ∥q∥1 are not necessarily equal. In the definition of
Π(p, q) and Πs(p, q), m and n are respectively the length of p and q.

Gromov-Wasserstein (GW) model. If the data points xi and yj lie in different spaces, the distance
between xi and yj may not be computed. The GW [27] model then minimizes the distortion when
transporting the whole set of points from one space to another. The GW model relies on the intra-
domain distance of source domain as Cs = (Cs

i,k) ∈ Rm×m and target domain as Ct = (Ct
j,l) ∈

Rn×n where Cs
i,k is the distance between source domain data xi and xk, and Ct

j,l is the distance
between target domain data yj and yl. The GW model is given by

min
π∈Π(p,q)

Lgw(π) ≜
m∑

i,k=1

n∑
j,l=1

πi,jπk,l|Cs
i,k − Ct

j,l|2. (3)

4 Keypoint-Guided Optimal Transport

This section details our proposed keypoint-guided model that leverages the keypoints to guide the
matching in OT. The guidance is imposed by preserving the matching of keypoint pairs and the
relation of each data point to the keypoints. We first discuss the preservation of matching of keypoints,
then introduce the modeling of relation, and finally present the keypoint-guided OT models.

Preservation of matching of keypoints in transport. We denote the set of keypoint index pairs
as K = {(iu, ju)}Uu=1 with U denoting the number of paired keypoints. We respectively denote
I = {iu}Uu=1 and J = {ju}Uu=1 as the sets of source and target keypoint indexes. For the example
illustrated in Fig. 2, K = {(3, 2), (6, 5)}, I = {3, 6}, and J = {2, 5}. To impose the guidance of
these keypoints with indexes in K in deriving the matching in OT, we first guarantee the matching of
the keypoint pairs. As illustrated in Fig. 2, we preserve the matching of keypoints in transport using a
mask-based constraint of the transport plan, which is motivated by the following observation. If the
paired keypoints (i, j) ∈ K are matched, the optimal transport plan π̃ satisfies that the i-th row and
j-th column of π̃ must be zeros except π̃i,j , which means that the all mass of source keypoint xi must
be transported to target keypoint yj and yj can only receive the mass from xi. For the example in
Fig. 2, the 3-th row and 2-th column are zeros except that π̃3,2 > 0. This sparsity of π̃ motivates us to
model it as the Hadamard product of a mask matrix M = (Mi,j) ∈ Rm×n and a matrix π ∈ Rm×n

+
with positive entries, i.e.,

π̃ = M ⊙ π, with π̃i,j = Mi,jπi,j . (4)
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With Eq. (4), we define the admissible solution set for our keypoint-guided OT model as

Π(p, q;M) = {π ∈ Rm×n
+ |(M ⊙ π)1n = p, (M ⊙ π)⊤1m = q}. (5)

Note that the π in Eq. (5) is not necessarily a coupling. The entry Mi,j of the mask matrix M is set
to 0 if π̃i,j needs to be 0, otherwise Mi,j is set to 1. Figure 2 illustrates the mask-based modeling of
Eq. (4). M is constructed as in Proposition 1.
Proposition 1. Suppose that the mask matrix M satisfies that

Mi,j =


1, if (i, j) ∈ K,
0, if i ∈ I and (i, j) /∈ K,
0, if j ∈ J and (i, j) /∈ K,
1, otherwise (i.e., i /∈ I and j /∈ J ).

(6)

and pi = qj , for (i, j) ∈ K. Then, the transport plan π̃ = M ⊙ π with π ∈ Π(p, q;M) preserves
the matching of paired keypoints with index pairs in K.

More explanations of the construction of M and the proof of Proposition 1 are provided in Ap-
pendix A.1. Proposition 1 indicates that if pi = qj , for (i, j) ∈ K, the matching of keypoint pairs is
preserved by the mask-based constraint. This mask-based modeling in Eq. (4) is also applicable even
for the case that there exist some (i, j) ∈ K such that pi ̸= qj . For this case, we shall use different
mask matrices. Please refer to Appendix A.1 for the details.

Modeling the relation to keypoints. To use the keypoints to guide the matching in transport,
we propose to preserve the relation of each point to the set of keypoints in transport. Figure 3
illustrates the relation within points of each distribution. For the data point xk ∈X , its relation score
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Figure 3: Illustration of relation of each point
to the keypoints (red). In the keypoint-guided
OT model, the relation of each point to keypoints
should be preserved after transport.

to the keypoint xiu for iu ∈ I (illustrated by red
circle in the left of Fig. 3) is defined as

Rs
k,iu =

e−Cs
k,iu

/τ∑U
u′=1 e

−Cs
k,iu

/τ
, ∀iu ∈ I, (7)

where Cs
k,iu

is the l2-distance between xk and
xiu , and τ is temperature set as τ = ρ ∗
maxi,k{Cs

i,k} in experiments. Similarly, for
yl ∈ Y , its relation score to the keypoint yju for
ju ∈ J is defined as

Rt
l,ju =

e−Ct
l,ju

/τ ′∑U
u′=1 e

−Ct
l,ju

/τ ′ , ∀ju ∈ J , (8)

where Ct
l,ju

is the distance between yl and yju ,
τ ′ is temperature set to ρ ∗maxj,l{Ct

j,l}. The
setting of τ and τ ′ implies that the distances
are divided by their maximum value, and normalized to [0, 1], which increases the robustness of
the relation score to the scale of the distances. ρ is a tunable parameter and set to 0.1 in our
experiments, since 0.1 is a commonly used temperature in the softmax function [47, 48]. We denote
Rs

k = (Rs
k,i1

, Rs
k,i2

, · · · , Rs
k,iU

) and Rt
l = (Rt

l,j1
, Rt

l,j2
, · · · , Rt

l,jU
) that represent the relation of

data points xk and yl to the keypoints in source and target domains respectively. From the definition of
the relation, the cross domain points near to a paired keypoints share similar relation to the keypoints
in corresponding domain. For instance, in Fig. 3, xk and yl near to the paired keypoints with indexes
(i2, j2) have similar relation Rs

k and Rt
l . Meanwhile, if xk is distant from all the keypoints, Rs

k is
close to a uniform probability vector.

Keypoint-guided model. Based on the relation given above, we define the guiding matrix G =
(Gk,l) ∈ Rm×n by Gk,l = d(Rs

k, R
t
l) where d measures the dissimilarity of Rs

k and Rt
l . Then, Gk,l

is with small and even near to 0 if Rs
k and Rt

l are similar. d is taken as the Jensen–Shannon divergence
in this paper. We will study the effect of d in Appendix B.5. By using the mask-based constraint of
transport plan, the KeyPoint-Guided model by ReLation preservation (KPG-RL) is defined as

min
π∈Π(p,q;M)

Lkpg(π) ≜ ⟨M ⊙ π,G⟩F . (9)
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By the KPG-RL model in Eq. (9), first, the matching of keypoint pairs is enforced by the mask-based
constraint of the transport plan. Second, the minimization of the objective function enforces that the
optimal transport plan has larger entries in the locations where the entries of G are smaller. Hence the
cross-domain points corresponding to these locations (e.g., k and l shown in Fig. 3) that are near to a
paired keypoints tend to be matched. Based on the softmax-based formulations in Eqs. (7) and (8),
d(Rs

k, R
t
l) is mainly determined by the relation score to the closest keypoint(s), since relation scores

to the distant keypoints are small or close to 0. This implies that the points are mainly guided by
the closest keypoints in our KPG-RL model in Eq. (9). For the points distant from all the keypoints,
their corresponding entries of G are close to zeros according to the definition of G. Therefore,
the guidance of keypoints to these points is limited. To achieve correct matching of these points,
additional information, e.g., point-wise cost or more keypoints, is needed.

Equation (9) is a linear program and can be solved by linear programming algorithms, e.g., the
Simplex algorithm. We give the details for reformulating Eq. (9) as the standard form of linear
programming in Appendix A.2. Since Sinkhorn’s algorithm offers a lightspeed computation of the
entropy-regularized OT [14], a natural question is that, can Sinkhorn’s algorithm be applied to the
KPG-RL model with entropy regularization? We give the positive answer, and the details of the
deduction are given in Appendix A.3. The iterative formulas are

u(l+1) =
p

Kvl
, v(l+1) =

q

K⊤u(l+1)
, (10)

where K = M ⊙ e−G/ϵ, ϵ is the coefficient of entropy regularization. The division operator used
above is entry-wise. After iteration, the optimal transport plan is diag(u)Kdiag(v).

Note that in this KPG-RL model in Eq. (9), the points in X and Y do not necessarily lie in the
same space because we only need to compute the distance within each one of X and Y . Therefore
the proposed KPG-RL model in Eq. (9) is applicable even when p and q are supported in different
spaces. As mentioned in Sect. 1, the GW model is applicable for transport across different spaces.
However, GW is a non-convex quadratic program and is often solved by the Frank-Walfe algorithm
in which a KP-like problem needs to be solved at each iteration by Sinkhorn’s algorithm or linear
programming. Surprisingly, our KPG-RL model can be directly solved using Sinkhorn’s algorithm or
linear programming without additional iteration, as discussed above.

Imposing keypoint guidance in KP/GW. We can impose the keypoint guidance in KP by adding
Lkpg(π) as a regularization term to KP, obtaining the following KPG-RL-KP model:

min
π∈Π(p,q;M)

{αLkp(M ⊙ π) + (1− α)Lkpg(π) = ⟨M ⊙ π, αC + (1− α)G⟩F } , α ∈ (0, 1). (11)

The KPG-RL-KP can be solved by Sinkhorn’s algorithm or linear programming, the same as the
solution of KPG-RL model. Similarly, we define the KPG-RL-GW model in GW by

min
π∈Π(p,q;M)

αLgw(M ⊙ π) + (1− α)Lkpg(π), α ∈ (0, 1). (12)

The KPG-RL-GW model is solved using the Frank-Walfe algorithm of which the details are given
in Appendix A.4. The KPG-RL-KP/KPG-RL-GW models take both advantages of KP/GW and
KPG-RL models, and could be helpful especially when the number of paired keypoints is small.
We show in Appendix A.5 that the KPG-RL-KP and KPG-RL-GW provde a proper metric and a
divergence under mild conditions. α is simply set to 0.5 in our experiments.

Extension to partial OT. We now extend the above KPG-RL model to the more practical partial OT
setting that only partial mass is transported. To do this, we first apply the above mask-based constraint
of transport plan to the partial OT model in Eq. (2). We then add more constraints to enforce that all
the mass of keypoints is transported to preserve the matching of keypoints. Finally, we define the
partial-KPG-RL model as

min
π∈Πs(p,q;M)

{Lkpg(M ⊙ π) = ⟨M ⊙ π,G⟩F } , (13)

where Πs(p, q;M) = {π ∈ Rm×n
+ |(M ⊙ π)1n ⩽ p, (M ⊙ π)⊤1m ⩽ q,1⊤

m(M ⊙ π)1n =

s; (M ⊙ π)i,:1n = pi,∀i ∈ I;1⊤
m(M ⊙ π):,j = qj ,∀j ∈ J }. Chapel et al. [20] propose a

compelling method to solve the original partial OT problem in Eq. (2) by transforming the partial OT
problem into an OT-like problem. Inspired by Chapel et al. [20], to solve our partial-KPG-RL model
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(b) KPG-RL-KP (w/ 2 keypoints)

Matching
accuracy: 96.7%
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Figure 4: Matching produced by (a) KP, (b) KPG-RL-KP model given 2 keypoint pairs, (c) KPG-RL-
KP model given 3 keypoint pairs, (d) GW model, (e) KPG-RL-GW model given 2 keypoint pairs,
and (f) KPG-RL-GW model given 3 keypoint pairs.

in Eq. (13), we add a dummy point to each of the marginal distributions to transform Eq. (13) into a
KPG-RL-like problem. To do this, we extend p, q, G,M by

p̄ =

[
p

∥q∥1 − s

]
, q̄ =

[
q

∥p∥1 − s

]
, Ḡ =

[
G ξ1n

ξ1⊤
m 2ξ +A

]
, M̄ =

[
M a
b⊤ 1

]
,

where A > 0, ξ > 0,a ∈ Rm, b ∈ Rn. The element ai of a is 0 if i ∈ I, otherwise 1. The element
bj of b is 0 if j ∈ J , and 1 otherwise. For more motivations of this extension, please refer to
Appendix A.6. By the following theorem, solving the optimal transport plan of problem (13) boils
down to solving the problem minπ̄∈Π(p̄,q̄;M̄)⟨M̄ ⊙ π̄, Ḡ⟩F .

Theorem 1. Suppose A > 0, ξ > 0,
∑

i∈I pi < s, and
∑

j∈J qj < s, then the optimal transport
plan M ⊙ π∗ of problem (13) is the m-by-n block in the upper left corner of the optimal transport
plan M̄ ⊙ π̄∗ of problem minπ̄∈Π(p̄,q̄;M̄)⟨M̄ ⊙ π̄, Ḡ⟩F .

Please refer to Appendix A.7 for the proof of Theorem 1.

5 Experiments

We evaluate the keypoint-guided models on toy data, and apply them to HDA and open-set HDA.

5.1 Toy Data

As illustrated in Fig. 4, in this toy data experiment, each of the source (blue) and target (green)
distributions is a Gaussian mixture composed of three distinct Gaussian components indicated by
different shapes where the same shapes indicate points of the same class. In Fig. 4, we have the
following observations. In Fig. 4(a), in the KP model, the points in each component of target
distribution are mismatched to points in different classes of source distributions, and only a small
fraction of target points are correctly matched to source points belonging to the same class. In
Fig. 4(b), given 2 keypoint pairs (from distinct classes), the KPG-RL-KP model apparently improves
the correctness of matching. In Fig. 4(c), the KPG-RL-KP model mainly matches the source points to
the target points belonging to the same class, thanks to the given 3 keypoint pairs. This implies that
our proposed keypoint-guided model does help to produce correct matching in OT by leveraging the
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Table 1: Accuracy on Office-31 for HDA. “A”, “W”, and “D” are respectively the domains of amazon,
webcam, and dslr. “· → ∗” denotes a heterogeneous adaptation task where · and ∗ are respectively
source domain using DeCAF6 feature and target domain using ResNet-50 feature.

Method A→A A→D A→W D→A D→D D→W W→A W→D W→W Avg
Labeled-target-only 45.3 69.2 67.3 45.3 69.2 67.3 45.3 69.2 67.3 60.6
STN [50] 58.7 84.8 80.0 51.2 91.0 83.8 52.8 95.2 87.4 76.1
SSAN [51] 56.8 89.7 87.1 54.2 82.6 90.3 50.0 85.8 85.8 75.8
DDACL [52] 44.2 63.2 64.2 43.9 77.4 70.6 39.8 64.5 73.2 60.1
CDSPP [45] 55.5 79.7 76.5 43.2 80.6 84.2 47.4 78.7 84.5 70.0
SGW [37] 49.7 77.7 73.6 49.4 78.4 73.6 48.7 80.3 74.5 67.3

GW [27] 33.6 41.6 35.5 39.7 40.0 31.7 34.8 34.5 29.0 35.6
GW (w/ mask) 41.3 71.6 69.7 41.9 71.2 69.8 40.3 71.6 69.7 60.8
HOT [33] 39.0 44.8 40.0 31.3 52.6 44.8 29.7 60.0 56.5 44.3
HOT (w/ mask) 45.2 60.3 57.4 48.9 63.5 59.2 40.3 67.1 61.4 55.9
TLB [27] 29.4 36.5 43.2 24.5 31.3 51.0 23.6 31.9 49.7 35.7
TLB (w/ mask) 42.5 66.3 64.7 38.5 68.5 65.9 43.1 68.2 67.3 58.3

KPG (w/ dist) 55.2 60.7 71.6 51.3 71.9 77.1 48.7 70.0 77.7 64.9
KPG-RL-GW 58.7 92.9 84.2 57.4 95.5 87.1 55.5 95.5 90.0 79.6
KPG-RL (LP) 56.5 93.6 83.2 58.1 94.5 86.8 55.8 95.2 89.7 79.3
KPG-RL (SH) 60.0 91.6 83.6 57.4 95.8 87.7 59.1 95.2 88.4 79.9

given a few keypoint pairs. In Figs. 4(d), 4(e) and 4(f), the proposed KPG-RL-GW model improves
the correctness of matching of GW model by leveraging the guidance of given keypoints pairs. Please
refer to Appendix B.1 for the toy experiment for evaluating the partial-KPG-RL model.

5.2 Heterogeneous Domain Adaptation

In HDA, we are given a large amount of labeled source domain data {(xi, ti)}mi=1, a few labeled
target domain data {yj , t̄j}nl

j=1, and large number of unlabeled target domain data {yj}nj=nl+1, where
m≫ nl, n≫ nl, xi and yj are features, and ti and t̄j are respectively the class labels of xi and yj .
The heterogeneity means that xi and yj are from different spaces/modalities. The goal of HDA is
to train a classification model using the given data to predict the label of unlabeled target domain
data, leveraging the knowledge of large-scale labeled source domain data. The main challenge is that
the domain gap between heterogeneous source and target distributions supported in distinct spaces
hinders the direct employment of the source domain trained model in the target domain.

We tackle the problem of HDA using our proposed KPG-RL model as follows. We first transport the
source domain data using our KPG-RL model to the target domain. More concretely, in KPG-RL,
each labeled target domain data and the source domain class center of the same class are taken as
a matched keypoint pair. The KPG-RL model is then performed between empirical distributions
of the source domain data along with class centers and the target domain data (including labeled
and unlabeled data). Based on the produced optimal transport plan, we transport the source domain
data using the barycentric mapping [49] to the target domain. Finally, we train the classification
model (taken as a kernel SVM) on the transported source domain data (using their class label before
transport) and the labeled target domain data, which is applied to the target domain test data. ϵ is set
to 0.005. More details of the barycentric mapping, the kernel SVM, etc, are given in Appendix B.4.

We compare our method with the following baseline methods, including 1) “Labeled-target-only”
that trains the kernel SVM using the labeled target data; 2) the OT methods of “GW”, “HOT”, and
“TLB” that transport source domain data using barycentric mapping induced by the transport plan of
GW [27], Hierarchical OT [33], and TLB [27], and then train the kernel SVM on the transported data
and labeled target domain data; 3) the typical HDA methods of “SGW” [37] and “STN” [50], and the
recent HDA methods of “SSAN” [51], “DDACL” [52] and“CDSPP” [45]. We conduct experiments
on Office-31 [53] dataset. On Office-31, we use the DeCAF6 [54] features and the features extracted
by ResNet-50 [55] pretrained on ImageNet [56] to respectively build source and target domains for
constructing heterogeneous adaptation tasks. In each task, one labeled data (1-shot) for each class is
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Table 2: Results of methods of Labeled-target-only and KPG given different shots (1, 2, and 3) of
labeled target domain data (keypoints) per-class under five distinct samplings (S1,S2,S3,S4, and S5).

Method 1-shot 2-shot 3-shot
S1 S2 S3 S4 S5 Avg S1 S2 S3 S4 S5 Avg S1 S2 S3 S4 S5 Avg

Labeled-target-only 61.2 58.4 64.1 60.6 58.7 60.6 77.8 76.3 78.3 75.0 74.2 76.3 80.7 76.6 81.0 83.4 82.7 80.9
KPG-RL (SH) 77.6 76.2 82.1 82.9 80.7 79.9 86.5 86.5 86.8 84.4 82.6 85.4 86.5 88.5 87.0 88.3 88.2 87.7

given in target domain. Note all the methods use the same training data (including labeled source and
target domain data, and unlabeled target domain data) and test data.

Table 1 reports the results on Offce-31 dataset. In Table 1, “KPG-RL (SH)” and “KPG-RL (LP)”
denote our KPG-RL model solved using Sinkhorn’s algorithm and linear programming respectively.
KPG-RL (SH) achieves marginal better average accuracy than KPG-RL (LP), which could be because
the barycentric mapping based on the more dense transport plan optimized by Sinkhorn’s algorithm is
more robust to wrong matching. We also observe that KPG-RL-GW achieves slightly lower average
accuracy than KPG-RL (SH), and KPG-RL (SH) is more computationally efficient as discussed
in Sect. 4. “KPG (w/ dist)” is the approach that imposes the guidance of keypoints using distance
preservation in our framework, i.e., Rs

k,iu
and Rt

l,ju
in Eqs. (7) and (8) are taken as Cs

k,iu
and

Ct
l,ju

respectively. KPG-RL (SH) improves the accuracy of KPG (w/ dist) by 15%, implying that
our relation-preserving scheme is more effective for imposing the guidance of keypoints than the
distance-preserving scheme. Table 1 shows that the results of GW, HOT, and TLB are inferior to that
of Labeled-target-only, indicating that GW, HOT, and TLB cause negative transfer. This is reasonable
because GW, HOT, and TLB do not take advantage of the guidance of keypoints and can cause
wrong matching. We also use our mask-based constraint on the transport plan in GW, HOT, and
TLB, of which the corresponding approach are denoted as GW (w/ mask), HOT (w/ mask), TLB
(w/ mask). We can observe that with the mask-based constraint, the performances of GW, HOT, and
TLB are improved but worse than KPG-RL (SH) and KPG-RL (LP), verifying the importance of
the relation preservation scheme in KPG-RL. SGW [37] aligns the class centers of labeled target
domain data and transported source domain data in the GW model, and realizes positive transfer. Our
proposed KPG-RL (SH) outperforms SGW by 12.2%, confirming that our KPG-RL model preserving
relation is more effective than SGW preserving class centers for HDA. Compared with the other HDA
methods, KPG-RL (SH) achieves the best average accuracy.

The keypoints are important to KPG-RL, since they are used to guide the matching. We show the
results with varying keypoints by giving different numbers and sampling of labeled target domain data,
in Table 2. It can be observed in Table 2 that under different numbers and samplings of labeled target
domain data, our approach KPG-RL (SH) consistently outperforms the baseline Labeled-target-only,
achieving positive transfer. We also find that as the number of labeled target domain data increases,
the margin between the accuracy of Labeled-target-only and KPG-RL (SH) decreases. This indicates
that given more labeled target domain data, the necessity of knowledge transferred from source
domain becomes smaller. Please refer to Appendix B.5 for the effect of source keypoints.

5.3 Open-Set Heterogeneous Domain Adaptation

We conduct open-set HDA experiments to evaluate our proposed partial-KPG-RL model. The
problem setting of open-set HDA is the same as HDA, except that the unlabeled target domain data
contain samples of unknown classes absent in the categories of labeled data. The goal of open-set
HDA is to correctly classify the common class samples and to detect the unknown class samples. We
consider the case that the proportion η of unknown class samples in the unlabeled target domain data
is given. For applying partial-KPG-RL to open-set HDA, the keypoint pairs are constructed using
labeled target domain data and their corresponding source class centers, same as KPG-RL for HDA
in Sect. 5.2. We use the partial-KPG-RL model in Eq. (13) to transport all the labeled source domain
data to partially match the target domain data. The unmatched target domain data are detected as
unknown class. We then train a kernel SVM on the transported source domain data and labeled target
domain data to classify the common class samples detected by partial-KPG-RL. The natural Baseline
for open-set HDA is the approach that rejects the η-proportion unlabeled samples with largest distance
to labeled target domain data as unknown, and trains a kernel SVM on the labeled target domain data
to classify common class data. We also evaluate the HDA methods STN [50] and SSAN [51] in the
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Table 3: Accuracy of common class sample (OS∗), Accuracy of unknown class sample (UNK), and
their harmonic mean (HOS) on Office-31 for open-set HDA (η = 0.67).

Method A→A A→D A→W D→A D→D
OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS

Baseline 40.0 71.0 51.2 37.3 85.3 51.9 29.1 82.7 43.0 40.0 71.0 51.2 37.3 85.3 51.9
STN [50] 48.2 80.6 60.3 67.3 86.6 75.7 54.6 78.4 64.3 46.3 76.6 57.8 63.6 84.4 72.6
SSAN [51] 25.4 66.7 36.8 29.1 68.4 40.8 64.5 83.1 72.7 34.6 70.6 46.4 22.7 64.1 33.6
Partial-KPG-RL 41.8 77.1 54.2 48.2 74.9 58.6 38.2 73.2 50.2 52.7 82.3 64.3 80.0 92.6 85.9

Method D→W W→A W→D W→W Avg
OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS

Baseline 29.1 82.7 43.0 40.0 71.0 51.2 37.3 85.3 51.9 29.1 82.7 43.0 35.5 79.7 48.7
STN [50] 54.6 79.2 64.6 49.9 78.4 60.4 60.0 82.6 69.5 55.5 79.2 65.2 55.6 80.7 65.6
SSAN [51] 29.1 66.4 40.4 31.8 68.4 43.3 19.1 64.5 29.4 26.4 67.9 37.9 31.4 68.9 42.4
Partial-KPG-RL 73.6 89.2 80.7 52.7 82.7 64.4 78.2 90.9 84.1 71.8 88.3 79.2 59.7 83.5 69.1

open-set HDA task. For STN [50] and SSAN [51], we reject the η-proportion unlabeled samples
with lowest prediction confidence as unknown class. Table 3 reports the results. We use the open-set
evaluation metrics [57] including accuracy of common class sample (OS∗), accuracy of unknown
class sample (UNK), and their harmonic mean HOS = 2OS∗×UNK

OS∗
+UNK . We can observe in Table 3 that

our proposed partial-KPG-RL achieves the best results in terms of average OS∗, UNK, and HOS,
indicating that the partial-KPG-RL is effective for both classifying common class data and identifying
unknown class data. Compared with the Baseline, partial-KPG-RL outperforms it by 20.4% in terms
of average HOS, confirming the positive transfer achieved by our method. More implementation
details and the solution for Open-Set HDA with unknown η are given in Appendix B.2.

Due to space limit, we include the experiment of our approach for deep unsupervised domain
adaptation in Appendix B.3. More empirical analysis and ablation studies, e.g., sensitivity to hyper-
parameters, the effect of d, the discussion on how to define the keypoints in more general practical
applications, the time and memory cost, etc., are given in Appendix B.5.

6 Conclusion

In this paper, we propose a novel KPG-RL model that leverages keypoints to guide the correct
matching in OT. We devise a mask-based constraint to preserve the matching of keypoints pairs,
and propose to preserve the relation of each point to the keypoints to impose the guidance of these
keypoints in OT. The effectiveness of the proposed KPG-RL model is verified in the application
of HDA. The keypoint-guided OT model could be possibly applied to more applications, e.g.,
cross-domain data generation/translation [58, 59], and point-set or image registration.
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and NSFC (12125104, U1811461, U20B2075, 11971373, 12026605).
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mental results (either in the supplemental material or as a URL)? [Yes] See Sect. 5.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sect. 5 and Appendix B.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We have reported the results for different samples in Table
2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A] The experiments are conducted on
CPU.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Sect. 5.
(b) Did you mention the license of the assets? [N/A] The datasets are public.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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