
A Proofs

Proposition 1 The mapping fk : RD ! Vk as defined in the 2-step procedure is a homeomorphism.

Proof. Let x 2 RD and xk be a given anchor point corresponding to a Voronoi cell Vk. If x 6= xk,
then x is uniquely represented by the tuple (�, �) where � = kx� xkk and � = x�xk

kx�xkk , since
x = xk +��. Since � uniques defines the ray {xk + ��;� > 0} and x(�⇤), then because ↵k in
Equation (8) is a bijection in �, fk is a bijection. For x 6= xk, the continuity of fk follows from Rudin
et al. [41, Theorem 4.7] since � and x(�⇤) are continuous in x and ↵k is continuous in �. Then
since fk(x) ! xk as x ! xk from all directions, this justifies the choice of setting fk(x) = xk

when x = xk. Finally, by the invariance of domain theorem, since Vk is an open set in RD, fk is an
open map and the inverse f�1

k is continuous, and we can conclude f is a homeomorphism between
RD and Vk.

Proposition 2 If px(x) is continuous, then the transformed density pz(fk(x)) is continuous a.e.

Proof. See proof of Proposition 3 below for the form of the Jacobian. For the case where x 6= xk,
all quantities in Equations (15) to (22) are continuous with respect to x. Hence the Jacobian @fk(x)

@x

is continuous, and since it is always full-rank, then the composition
���det @fk(x)

@x

��� is continuous [41,

Theorem 4.7] and so is the product px(x)
���det @fk(x)

@x

��� [41, Theorem 4.9].

Proposition 3 Let the transformation fk(x) and all intermediate quantities be as defined in Section 3
for some given input x. Then the Jacobian factorizes as

@fk(x)
@x = cI + u1v

T
1 + u2v

T
2 (10)

for some c 2 R, ui 2 RD, vi 2 RD, and its log determinant has the form

log
���det @fk(x)

@x

��� = log |1 + w11|+ log
���1 + w22 � w12w21

1+w11

���+D log c (11)

where

� , kx� xkk (15)

c , ↵k(�̃)�⇤��1 (16)

u1 ,
"
↵k(�̃)��1 � @↵k(�̃)

@�̃

#
�k(x) (17)

v1 , @�⇤

@�k(x)
(18)

u2 ,
" 

@↵k(�̃)

@�̃

!
� ↵k(�̃)�⇤��1 � ↵k(�̃)��1

 ✓
@�⇤

@�k(x)

◆T

�k(x)

!
(19)

+

 
@↵k(�̃)

@�̃

! ✓
@�⇤

@�k(x)

◆T

�k(x)

!#
�k(x) (20)

v2 , �k(x) (21)

wij , c�1vTi uj , for i, j 2 {1, 2} (22)

Proof. We first write the Jacobian of fk in the form of cI + u1vT1 + u2vT2 where c is a scalar, and
u1, u2, v1, v2 are vectors of size D. Define the shorthand � , kx� xkk, �⇤ , kx(�⇤)� xkk,
and �̃ , �/�⇤. To simplify notation, we use the short-hands ↵k = ↵k(�̃), �k = �k(x). Then the
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Jacobian follows
@fk(x)

@x
(23)

=
@

@x

�
xk + ↵k(x(�

⇤) � xk)
�

(24)

=
�
x(�⇤) � xk

� ✓ @↵k

@�̃

◆ 
@�̃

@x

!T

+ ↵k

 
@x(�⇤)

@x

!
(25)

=
�
x(�⇤) � xk

� ✓ @↵k

@�̃

◆ 
1

�⇤ �Tk �
�

(�⇤)2
(x(�⇤) � xk)

T @x(�⇤)

@x

!
+ ↵k

 
@x(�⇤)

@x

!
(26)

=

✓
@↵k

@�̃

◆
�k�

T
k �

✓
@↵k

@�̃

◆
��k�

T
k

@x(�⇤)

@x
+ ↵k

 
@x(�⇤)

@x

!
(27)

=

✓
@↵k

@�̃

◆
�k�

T
k +

✓
↵k �

✓
@↵k

@�̃

◆
��k�

T
k

◆ 
@x(�⇤)

@x

!
(28)

=

✓
@↵k

@�̃

◆
�k�

T
k +

✓
↵k �

✓
@↵k

@�̃

◆
��k�

T
k

◆0

@�⇤��1I � �⇤��1�k�
T
k + �k

 
@�⇤

@�k

!T ✓ @�k

@x

◆1

A (29)

=

✓
@↵k

@�̃

◆
�k�

T
k +

✓
↵k �

✓
@↵k

@�̃

◆
��k�

T
k

◆0

@�⇤��1I � �⇤��1�k�
T
k + ��1�k

 
@�⇤

@�k

!T ⇣
I � �k�

T
k

⌘
1

A (30)

=

✓
@↵k

@�̃

◆
�k�

T
k +

✓
↵k �

✓
@↵k

@�̃

◆
��k�

T
k

◆0

@�⇤��1I � �⇤��1�k�
T
k + ��1�k

 
@�⇤

@�k

!T

� ��1

0

@
 

@�⇤

@�k

!T

�k

1

A �k�
T
k

1

A

(31)

=

✓
@↵k

@�̃

◆
�k�

T
k + ↵k�

⇤��1I � ↵k�
⇤��1�k�

T
k + ↵k�

�1�k

 
@�⇤

@�k

!T

� ↵k�
�1

0

@
 

@�⇤

@�k

!T

�k

1

A �k�
T
k (32)

�
✓

@↵k

@�̃

◆
�⇤�k�

T
k +

✓
@↵k

@�̃

◆
�⇤
⇣
�Tk�k

⌘
�k�

T
k �

✓
@↵k

@�̃

◆⇣
�Tk�k

⌘
�k

 
@�⇤

@�k

!T

(33)

+

✓
@↵k

@�̃

◆⇣
�Tk�k

⌘
0

@
 

@�⇤

@�k

!T

�k

1

A �k�
T
k (34)

=↵k�
⇤��1I +


↵k�

�1 �
✓

@↵k

@�̃

◆⇣
�Tk�k

⌘�
�k

 
@�⇤

@�k

!T

(35)

+

2

4
✓

@↵k

@�̃

◆
� ↵k�

⇤��1 � ↵k�
�1

0

@
 

@�⇤

@�k

!T

�k

1

A� �⇤
✓

@↵k

@�̃

◆⇣
�Tk�k � 1

⌘
+

✓
@↵k

@�̃

◆⇣
�Tk�k

⌘
0

@
 

@�⇤

@�k

!T

�k

1

A

3

5 �k�
T
k

(36)

=↵k�
⇤��1I +


↵k�

�1 �
✓

@↵k

@�̃

◆�
�k

 
@�⇤

@�k

!T

(37)

+

2

4
✓

@↵k

@�̃

◆
� ↵k�

⇤��1 � ↵k�
�1

0

@
 

@�⇤

@�k

!T

�k

1

A +

✓
@↵k

@�̃

◆0

@
 

@�⇤

@�k

!T

�k

1

A

3

5 �k�
T
k (38)

Now that @fk(x)
@x is in the form of cI + u1vT1 + u2vT2 , where

c , ↵k(�̃)�⇤��1 (39)

u1 ,

↵k(�̃)��1 � @↵k(�̃)

@�̃

�
�k(x) (40)

v1 , @�⇤

@�k(x)
(41)

u2 ,
"✓

@↵k(�̃)

@�̃

◆
� ↵k(�̃)�⇤��1 � ↵k(�̃)��1

 ✓
@�⇤

@�k(x)

◆T

�k(x)

!
+

✓
@↵k(�̃)

@�̃

◆ ✓
@�⇤

@�k(x)

◆T

�k(x)

!#
�k(x)

(42)

v2 , �k(x) (43)

Applying the matrix determinant lemma twice, we can show that

det(cI + u1v
T
1 + u2v

T
2 ) = (1 + vT2 (cI + u1v

T
1 )

�1u2) det(cI + u1v
T
1 ) (44)

=

✓
1 + c�1vT2u2 �

c�2

1 + c�1vT1u1

◆
vT2u1v

T
1u2

�
(1 + c�1vT1u1)c

D (45)

We simplify this by defining the scaled dot products,

wij , c�1vTi uj , for i, j 2 {1, 2}. (46)
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Then

log

����det
@fk(x)

@x

���� = log |1 + w11|+ log

����1 + w22 �
w12w21

1 + w11

����+D log c (47)

Intermediate steps above used the following gradient identities.

@�k(x)

@x
=

@

@x
(x� xk)�

�1

=��1I + (x� xk)

✓
@

@x

�
�2
�� 1

2

◆T

=��1I + (x� xk)

✓
�1

2�3

◆✓
@�2

@x

◆T

=��1I + (x� xk)

✓
�1

2�3

◆
2 (x� xk)

T

=��1
�
I � �k(x)�k(x)

T
�

(48)

@�

@x
=

@�

@x
=

@

@x

�
�2
� 1

2 =
1

�
(x� xk) = �k(x) (49)

B The inverse mapping

We use the inverse mapping f�1
k : Vk ! RD for training disjoint mixture models, so we next describe

how to compute this. Let z = fk(x).

Conveniently, since both x and z lie on the ray {x(�) : � > 0}, we know �k(x) = �k(z). So the
first step is the same as the forward procedure: we solve for �⇤ and x(�⇤). Following this, we then
recover x by inverting Step 2 of the forward procedure.

This inverse transformation is given by

↵̃ =
z � xk

x(�⇤)� xk
(50)

�̃ = ↵�1
k (↵̃1) (51)

� = �̃ kx(�⇤)� xkk (52)
x = ��k(z) + xk (53)

Equation (50) is an element-wise division. Since ↵̃ will the same in all dimensions, we can simply
pick a dimension in Equation (51). In our experiments, the inverse ↵�1

k can be computed analytically,
though since it is just a scalar function, simple methods like bisection can also work when the inverse
is not known analytically. Lastly, Equation (53) follows from the observation that �k(x) = �k(z).

Log determinant of the inverse. We can also use Proposition 3 to compute the log determi-
nant of the inverse transform without needing to recompute fk(x). The only difference is a sign:
log
���det @f�1

k (z)
@z

��� = � log
���det @fk(x)

@x

���. The required quantities, �, x(�⇤), and �k(x), are readily

available after computing x = f�1
k (z). The gradients with respect to quantities of x can be expressed

using gradients with respect to quantities of z,

@↵k(�)

@�
=

✓
@↵�1

k (↵̃)

@↵̃

◆�1

and
@�⇤

@�k(x)
=

@�⇤

@�k(z)
, (54)

which are accessible through automatic differentiation.
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C Data sets

C.1 UCI Data sets

The main preprocessing we did was to (i) remove the “label” attribute from each data set, and (ii)
remove attributes that only ever take on one value. Apart from this, the USCensus90 data set contains
a unique identifier for each row, which was removed. Descriptions for all data set are below.

Connect4 [webpage] This data set contains all legal 8-ply positions in the game of Connect Four in
which neither player has won yet, and in which the next move is not forced. The original task was to
predict which player would win, which has been removed during preprocessing. There are a total 42
discrete variables (one for each location on the board), each with 3 possible discrete values (taken by
player 1, taken by player 2, blank). This data set was randomly split into 54045 training examples,
6755 validation examples, and 6757 test examples.

Forests [webpage] This data set contains cartographic variables regarding forests including four
wilderness areas located in the Roosevelt National Forest of northern Colorado. These areas represent
forests with minimal human-caused disturbances. The original task was to predict the forest cover
type, which has been removed during preprocessing. There are a total of 54 discrete variables, with
10 being the highest number of discrete values. This data set was randomly split into 464809 training
examples, 58101 validation examples, and 58102 test examples.

Mushroom [webpage] This data set includes descriptions of hypothetical samples corresponding to
23 species of gilled mushrooms in the Agaricus and Lepiota Family. The original task was to predict
whether each species is edible, which has been removed during preprocessing. There are a total of 21
discrete variables, with 12 being the highest number of discrete values. This data set was randomly
split into 6499 training examples, 812 validation examples, and 813 test examples.

Nursery [webpage] This data set contains attributes of applicants to nursery schools, during a
period when there was excessive enrollment to these schools in Ljubljana, Slovenia, and the rejected
applications frequently needed an objective explanation. All data have been completely anonymized.
The original task was to predict whether an applicant would be recommended for acceptance by
hierarchical decision model, which has been removed during preprocessing. There are a total of 8
discrete variables, with 5 being the highest number of discrete values. This data set was randomly
split into 10367 training examples, 1296 validation examples, and 1297 test examples.

PokerHands [webpage] This data set contains poker hands consisting of five playing cards drawn
from a standard deck of 52. Each card is described using two attributes (suit and rank), for a total of
10 predictive attributes. There is one Class attribute that describes the “poker hand”. The original
task was to predict the poker hand class (pairs, full house, royal flush, etc.), which has been removed
during preprocessing. There are a total of 10 discrete variables, with 13 being the highest number of
discrete values. This data set was randomly split into 820008 training examples, 102501 validation
examples, and 102501 test examples.

USCensus90 [webpage] This data set contains a portion of the data collected as part of the 1990
census in the United States, with the data completely anonymized. There are a total of 68 discrete
variables, with 18 being the highest number of discrete values. This data set was randomly split into
2212456 training examples, 122914 validation examples, and 122915 test examples.

C.2 Itemset Data sets

These data sets were taken from the Frequent Itemset Mining Data set Repository [webpage]. Each
row is interpreted as a set of items with no emphasis on the ordering of items.

Retail [3] This data set contains anonymized retail market basket data from an anonymous Belgian
retail store. We first removed rows with less than 4 items, then randomly sampled a subset of 4
items for every row. Items that appear in less 300 rows were dropped from the data set. The final
preprocessed data set contains 765 distinct items. This data set was randomly split into 24280 training
examples, 3035 validation examples, and 3036 test examples.
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Accidents [11] This data set contains contains anonymized traffic accident data. Data on traffic
accidents are obtained from the National Institute of Statistics (NIS) for the region of Flanders
(Belgium) for the period 1991-2000. We first removed rows with less than 4 items, then randomly
sampled a subset of 4 items for every row. This subsampling occurred 10 times if a row has 16 or
more items, 5 times if the row has 8 to 15 items, and once if the row has 4-7 items. Items that appear
in less 300 rows were dropped from the data set. The final preprocessed data set contains 213 distinct
items. This data set was randomly split into 270129 training examples, 33766 validation examples,
and 33767 test examples.

D Experimental Details

All experiments were run on a single NVIDIA V100 GPU. Detailed hyperparameter sweeps are
below. We used the validation set to choose hyperparameters as well as to perform early stopping.

2D synthetic data sets Continuous data sets were quantized into 91 bins for each coordinate. For
Voronoi dequantization, we dequantized each coordinate into an embedding space of 2 dimensions,
with 91 Voronoi cells. The dequantization model is parameterized by 4 layers of coupling blocks,
each with a 2 hidden layer MLP with 256 hidden units each, where the Swish activation function was
used [39]. The flow model is similarly parameterized but with 16 layers of coupling blocks. Each
block alternated between 4 different partitioning schemes: maksing out the first half, masking out
the second half, masking out the odd indices, and masking out the even indices. We trained with the
Adam optimizer [22] with a learning rate of 1e-3.

Discrete-valued UCI data sets For Voronoi dequantization, we dequantized each coordinate into
an embedding space of 4 or 6 dimensions, with the number of Voronoi cells set to the highest number
of discrete values over all discrete variables. The dequantization model is parameterized by 4 layers
of coupling blocks, each with a 2 hidden layer MLP with 256, 512, or 1024 hidden units each, where
the Swish activation function was used [39]. The flow model is similarly parameterized but with
16 or 32 layers of coupling blocks. Each block alternated between 4 different partitioning schemes:
maksing out the first half, masking out the second half, masking out the odd indices, and masking out
the even indices. We trained with the Adam optimizer [22] with a learning rate sweep over {1e-3,
5e-4, 1e-4}.

Itemset data sets For Voronoi dequantization, we dequantized each coordinate into an embedding
space of 6 dimensions, with the number of Voronoi cells set to the number of items in the data set.
We used a continuous normalizing flow (CNF) with the ordinary differential equation (ODE) defined
using a Transformer archiecture and a L2-distance based multihead attention layer [21] and the GeLU
activation function [15]. No positional embeddings were provided to the model to ensure the model is
equivariant to permutations. We composed 12 CNF layers, each defined using a Transformer model
that has 2 or 3 layers of alternating multihead attention and fully connected residual connections. To
solve the ODE and train our model, we used the dopri5 solver from the torchdiffeq library [5] with
atol=rtol=1e-5. We trained with the AdamW optimizer [30, 49] with a learning rate of 1e-3 and
weight decay of 1e-6. For the Voronoi dequantization, we set D=6 for both data sets, though it may
be possible to improve performance by tuning D.

Character-level language modeling We used the provided hyperparameters from the open source
repository [URL]. Some parts of code had to be adapted for our usage, but model architecture and
optimizer remained largely the same.

Continuous-valued UCI data sets Disjoint mixture modeling is the inverse of a dequantization
method. We use a flow model which maps the data nonlinearly, z = f(x). Then a Voronoi mixture
model partitions the space and assigns each z an index through the set identification function k = g(z).
The probabilities p(k) are parameterized through a softmax and learned. We then apply the inverse
transformation from Section 3 to map from Vk to RD. A conditional normalizing flow is then used
to model each mixture model p(z|k). We set the base distribution to be a Gaussian with standard
deviation 0.2, as this helps concentrate the density around the anchor points at initialization. We
tuned the number of flow layers before and after the mixture layer, with the total number of layers in
{16, 32, 48, 64}. We also tuned the number of mixtures in {8, 16, 32, 64, 128}. Each coupling block
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uses a neural network with 3 hidden layers of dimension 64 with either the GeLU or Swish [39]
activation function. We trained with a batch size of 1048 and the Adam optimizer [22] with a learning
rate sweep over {1e-3, 5e-3}.
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