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Abstract

Meticulously analysing the empirical strengths and weaknesses of reinforcement
learning methods in hard (challenging) environments is essential to inspire innova-
tions and assess progress in the field. In tabular reinforcement learning, there is
no well-established standard selection of environments to conduct such analysis,
which is partially due to the lack of a widespread understanding of the rich theory
of hardness of environments. The goal of this paper is to unlock the practical
usefulness of this theory through four main contributions. First, we present a sys-
tematic survey of the theory of hardness, which also identifies promising research
directions. Second, we introduce Colosseum, a pioneering package that enables
empirical hardness analysis and implements a principled benchmark composed
of environments that are diverse with respect to different measures of hardness.
Third, we present an empirical analysis that provides new insights into computable
measures. Finally, we benchmark five tabular agents in our newly proposed bench-
mark. While advancing the theoretical understanding of hardness in non-tabular
reinforcement learning remains essential, our contributions in the tabular setting are
intended as solid steps towards a principled non-tabular benchmark. Accordingly,
we benchmark four agents in non-tabular versions of Colosseum environments,
obtaining results that demonstrate the generality of tabular hardness measures.

1 Introduction

Reinforcement learning studies a setting where an agent interacts with an environment by observing
states, receiving rewards, and selecting actions with the objective of optimizing a reward-based crite-
rion. The field has attracted significant interest in recent years after striking performances obtained
in board games [1] and video games [2, 3]. Solving these grand challenges constitutes a pivotal
milestone in the field. However, the corresponding agents require efficient simulators due to their
high sample complexity, i.e., the number of observations that they require to optimize a reward-based
criterion in an unknown environment. Outside of games, many important applications in healthcare,
robotics, logistics, finance, and advertising can also be naturally formulated as reinforcement learning
problems. However, simulators for these scenarios may not be available, reliable, or efficient.

The development of reinforcement learning methods that explore efficiently has long been considered
one of the most crucial efforts to reduce sample complexity. Meticulously evaluating the strengths
and weaknesses of such methods is essential to assess progress and inspire new developments in
the field. Such empirical evaluations are performed through benchmarks composed of a selection of
environments and evaluation criteria. Ideally, this selection should be based on theoretically principled
reasoning that considers the hardness of the environments and the soundness of the evaluation criteria.

In non-tabular reinforcement learning, where the number of states is large (and potentially infinite),
there is no theory of hardness except for a few restricted settings. Consequently, the selection of
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environments in current benchmarks [4, 5] relies solely on the experience of their authors. Although
such benchmarks are certainly valuable, there is no guarantee that they contain a sufficiently diverse
range of environments and that they are effectively able to quantify agent capabilities. In contrast,
in tabular reinforcement learning, where the number of states and actions is finite, a rich theory
of hardness of environments is available. Perhaps surprisingly, a principled benchmark based on
this theory has so far been absent. There are at least two reasons for this absence. First, these
hardness measures have been developed to provide theoretical guarantees for reinforcement learning
methods, and not considered as directly useful for practical purposes. Second, the lack of a unifying
presentation and critical comparison between different measures has limited their potential impact.

The goal of this paper is to establish the importance of hardness measures outside the context of
theoretical reinforcement learning and unlock their practical usefulness with four main contributions.
In Section 2, we present a systematic survey of the theory of hardness for Markov decision processes.
This survey serves as an introduction, tutorial, and, equally importantly, identifies gaps in the current
theoretical landscape that suggest promising directions for future work. In Section 3.1, we introduce
Colosseum, a pioneering Python package that enables the empirical investigation of hardness and
implements a principled benchmark for the four most widely studied tabular reinforcement learning
settings. The selected environments aim to maximize diversity with respect to two important measures
of hardness, thus providing a varied set of challenges for which a precise characterization of hardness
is available. In Section 3.2, we present an empirical comparison between three theoretical, yet
efficiently computable, measures of hardness. Our analysis provides insights into which aspects
of hardness are best captured by each of the measures and identifies desirable qualities for future
measures. Finally, in Section 3.3, we report the results of five agents with theoretical guarantees in
our novel (principled) benchmark, which allows us to empirically validate the quality of the selection
methodology by demonstrating that harder environments effectively lead to worse performances.

Although this paper is concerned with the tabular setting, for which principled measures of hardness
are available, we intend our contributions as milestones towards the future development of theoretical
and empirical measures of hardness for non-tabular reinforcement learning. Accordingly, Section 3.1
shows how tabular hardness measures can be used in a widespread class of environments that includes
non-tabular versions of the environments in the Colosseum benchmark, which enables studying how
these measures relate to the performance of four agents from the non-tabular bsuite benchmark [4].

2 Hardness in Theory

Section 2.1 introduces our notation and important definitions. Section 2.2 presents our survey of
the theoretical landscape of measures of hardness, which includes a novel categorization of existing
measures. Section 2.2.3 highlights the weaknesses of existing measures and introduces the concept
of a complete measure of hardness, which we believe should be the focus of future developments.

2.1 Preliminaries

Let ∆(X ) denote the set of probability distributions over a set X . A finite Markov decision process
(MDP) is a tuple M = (S,A, P, P0, R), where S is the finite set of states, A is the finite set of
actions, P : S ×A → ∆(S) is the transition kernel, P0 ∈ ∆(S) is the initial state distribution, and
R : S ×A → ∆([0, 1]) is the reward kernel [6]. Given an optimization horizon T , a reinforcement
learning agent aims to find a (possibly stochastic) policy π : S → ∆(A) that optimizes a reward-
based criterion. The MDP M is unknown to the agent but can be learned through experience. The
interaction between the agent and the environment starts when the initial state s0 ∼ P0 is drawn.
For any 0 ≤ t < T , the agent samples an action at ∼ πt(st) from its current policy πt, and the
environment draws the next state st+1 ∼ P (st, at) and reward rt+1 ∼ R(st, at). An MDP is
episodic with time horizon H when the state st+1 is drawn from the initial state distribution whenever
t+ 1 ≡ 0 (mod H) and continuous otherwise. In the continuous setting, a factor γ ∈ (0, 1) is used
to discount future rewards in the discounted setting, and future rewards are averaged across time
in the undiscounted setting. For a policy π, an MDP M induces a Markov chain [7] with transition
probabilities Pπ

s→s′(M) =
∑

a∈A π(a | s)P (s′ | s, a) whose stationary distribution is denoted by
µπ . MDPs can be classified into three communication classes [8]. An MDP is ergodic if the Markov
chain induced by any deterministic policy is ergodic. An MDP is communicating if, for every two
states s, s′ ∈ S, there is a deterministic policy that induces a Markov chain where s is accessible
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from s′ and vice versa. An MDP is weakly communicating when there is a partition (C,S \ C) of the
set of states S such that, for every two states s, s′ ∈ C, there is a deterministic policy that induces a
Markov chain where s is accessible from s′ and vice versa, and every state s ∈ S \ C is transient in
every Markov chain induced by any deterministic policy. Every ergodic MDP is communicating, and
every communicating MDP is weakly communicating.

The episodic state-action value function is given by Qπ
h,epi(s, a) := E

[∑H
t=h+1 rt|sh = s, ah = a

]
,

and the episodic state value function is given by V π
h,epi(s) :=

∑
a π(a | s)Qπ

h,epi(s, a). The dis-
counted state-action value function is given by Qπ

γ (s, a) := E
[∑∞

t=1 γ
t−1rt | s0 = s, a0 = a

]
, and

the discounted state value function is given by V π
γ (s) :=

∑
a π(a | s)Qπ

γ (s, a). These expectations
are taken w.r.t. the policy π, the transition kernel P , and the reward kernel R. In the undiscounted
setting, the value of every state(-action) is the same, since rewards are averaged across infinite time
steps. In that case, we define the expected average reward as ρπ := limT→∞

1
T

∑T
t=1 E [rt], which

is also given by ρπ = ⟨µπ,Rπ⟩, where Rπ is a vector such that Rπ
s = Ea∼π(s)R(s, a) is the expected

reward obtained when following π from state s. An optimal policy π∗ obtains maximum value for
every state. We assume with little loss of generality that the optimal policy is unique. We drop the
subscripts when the setting is clear from the context, and write ∗ to denote π∗ in superscripts.

The most widely studied performance criteria are the expected cumulative regret, which yields the
regret minimization setting [9], and the sample efficiency of exploration, which yields the Probably
Approximately Correct Reinforcement Learning (PAC-RL) setting [10]. In simple terms, the regret
measures the loss in reward due to the execution of a sub-optimal policy. In contrast, the sample
efficiency measures how many interactions the agent requires to approximately learn π∗ with high
probability. The main difference between the two criteria is that the rewards obtained during the
interactions with the MDP are not considered in PAC-RL, whereas all rewards contribute to the
cumulative regret. Therefore, PAC-RL agents can generally afford more aggressive exploration.

2.2 Characterization of hardness

We distinguish the hardness of MDPs into two kinds of complexity, the visitation complexity and the
estimation complexity. The visitation complexity relates to the difficulty of visiting all the states, and
the estimation complexity relates to the discrepancy between the optimal policy and the best policy
an agent can derive from a given estimate of the transition and reward kernels. The two complexities
are complementary in the sense that the former quantifies the hardness of gathering samples from the
state space while the latter quantifies the hardness of producing a highly rewarding policy given the
samples. In the literature, we identify two approaches that aim to capture the mentioned complexities.
The first approach, which we call Markov chain-based, considers that an MDP is an extension of
a Markov chain where transition probabilities can be changed based on direct interventions by an
agent [11]. This approach is well suited to capture the hardness that comes from the visitation
complexity since it considers the properties of transition kernels. The second approach, which we call
value-based, considers the discrepancy between the optimal policy and the best policy an agent can
derive from a value function point estimate. Note that the information contained in such point estimate
is lower than the one in kernels estimate and that the difficulty of obtaining an accurate estimate of
the value function is not considered in this approach. Therefore, the value-based approach is only
able to partially capture the estimation complexity. A striking fact that highlights this shortcoming is
that almost every value-based measure of hardness is independent of the variability of the reward
kernel. Therefore, given an MDP M′ that is obtained by increasing the reward kernel variability of an
MDP M, value-based measures of hardness assign the same level of hardness to M and M′.

Markov chain properties and value functions depend on a fixed policy, which presents two natural
choices to derive measures of hardness. The first choice considers the optimal policy, which typically
leads to a measure that considers a best-case scenario. The second choice considers a policy that
maximizes a criterion that characterizes a worst-case scenario. For instance, a policy that maximizes
such criterion may spend its time in a region of the state space that is not relevant for learning π∗.
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2.2.1 Markov chain-based measures of hardness

Mixing time. The mixing time of a Markov chain with stationary distribution µ is defined as

tµ := inf{n | sup
s∈S

dTV (pns , µ) ≤ 0.25}, (1)

where dTV is the total variation distance between distributions and the vector pns represents the
distribution over states after n steps starting from state s. The value 0.25 is conventionally established
in the Markov chain literature for the definition of the mixing time. For ergodic and aperiodic Markov
chains, limn→∞ pns = µ for every state s, so the mixing time is the number of steps a Markov chain
takes to produce samples that are close to being distributed according to the stationary distribution µ.

For instance, a Markov chain with a non-negligible probability of transitioning from every state to
every state is quickly mixing. In contrast, the mixing time can be very long in chains where the state
space has several distinct regions each of which is well connected but where transitions between
regions have low probability [12]. Kearns and Singh [13] propose an extension of the mixing time to
MDPs that considers the maximum mixing time across policies t := supπ tµπ in the undiscounted
setting. Although the mixing time plays an important role in that setting, since the average reward
obtained by policy π is given by ρπ = ⟨µπ,Rπ⟩, it is not a generally good measure of hardness. First,
it does not capture the visitation complexity, since it neglects the fact that the agent may direct its
exploration through a choice of policy. Second, it does not capture any significant aspect of optimal
policy estimation, which does not require stationary distribution samples from every policy.

Diameter. The diameter is fundamentally related to the number of time steps required to transition
between states. In the continuous setting, the diameter D is most commonly defined as

D := sup
s1 ̸=s2

inf
π
Tπ
s1→s2 , (2)

where Tπ
s1→s2 is the expected number of time steps required to reach state s2 from state s1 when

following policy π [14]. Intuitively, D is the worst-case expected number of time steps required to
transition between two states when following the best policy for that purpose. Related definitions are
Dworst := sup

π
sup
s1 ̸=s2

Tπ
s1→s2 and Dopt := inf

π
sup
s1 ̸=s2

Tπ
s1→s2 , which imply D ≤ Dopt ≤ Dworst [15].

In the episodic setting, we define the diameter by augmenting each state s with the current in-episode
time step h and considering the diameter of this augmented MDP in the continuous setting. Note
that Tπ

(s1,h1)→(s2,h2)
can be larger than the episode length H , which means that (on average) more

than one episode may be required to transition from state (s1, h1) to state (s2, h2). This happens
whenever h2 < h1, which may be undesirable if the intent is to focus on the expected number of time
steps required to transition between states from the same episode. The diameter is always infinite
in weakly-communicating MDPs if the supremum is not restricted to states in the recurrent class
C and is always finite in the episodic setting (where every state is reachable within an episode). A
large diameter can be caused by high stochasticity. The diameter is very apt at measuring visitation
complexity, since it captures the effort required to deliberately move between states. However, it
neglects the reward kernel, and so has limited capacity to measure the estimation complexity.

Distribution mismatch coefficient. The distribution mismatch coefficient (DMC) has been defined
for the continuous undiscounted [16] and continuous discounted [17] cases respectively as

DMC := sup
π

∑
s∈S

µ∗
s

µπ
s

and DMCs0 := sup
s∈S

d∗s0(s)

P0(s)
,

where d∗s0(s) = (1− γ)
∑∞

t=0 γ
tPr(st = s | s0) is the discounted state visitation distribution of the

optimal policy given an initial state s0. Note that the DMC is guaranteed to be finite only for ergodic
MDPs. In communicating MDPs, there is at least one policy π whose stationary distribution assigns
probability zero to some states. MDPs whose optimal stationary distribution µ∗ has its probability
mass concentrated on a few states tend to have a large DMC. In contrast, when µ∗ is closer to being
uniformly distributed across states, the DMC tends to be small. For small values of DMC, as every
µπ is close to µ∗, the agent will gather samples from the optimal stationary distribution regardless of
its current policy, which may enable quick learning. In contrast, for large values of DMC, the agent
needs to actively seek a policy that gathers such samples. The DMC is not well suited to quantify
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the visitation complexity, since it fails to capture the difficulty of visiting all states. The DMC also
does not capture the estimation complexity, since it does not account for the stochasticity of the
environment, which is related to the number of samples required to make accurate estimations.

2.2.2 Value-based measures of hardness

Action-gap regularity. Given an estimate Q̂∗ of the optimal state-action value function Q∗, the
greedy policy with respect to Q̂∗ always chooses an action associated with the highest state-action
value. Whether or not such a policy is optimal depends exclusively on the ordering of the estimates
for a given state rather than their accuracy. For instance, assuming that a∗ is the optimal action for
every state s, a greedy agent would act optimally if Q̂(s, a∗) > Q̂(s, a′) for every action a′ ̸= a∗,
even if |Q∗(s, a) − Q̂(s, a)| ≫ 0 for every action a. The action-gap regularity ζ is a measure of
hardness that leverages this principle through the theory of hardness for classification algorithms [18].
However, this measure is only defined for two actions, and so has exceptionally limited applicability.

Environmental value norm. The (discounted) environmental value norm Cπ
γ is defined as

Cπ
γ := sup

(s,a)

√
Var

s′∼P (s,a)
V π
γ (s′).

This quantity can be similarly defined in the undiscounted setting [19]. In words, the environmental
value norm captures the one-step variance of the value function V π for a given policy π. In the
episodic setting, a closely related measure called maximum per-step conditional variance Cπ

H [20] is
defined as

Cπ
H := sup

(s,a,h)

(
VarR(s, a) + Var

s′∼P (s,a)
V π
h+1(s

′)

)
.

Alternatively, as with the diameter, it is also possible to define this quantity by augmenting each
state s with the current in-episode time step h and considering the environmental value norm of
this augmented MDP in the continuous setting. For every policy, the environmental value norm is
equal to zero when the transition kernel is deterministic. However, a highly stochastic MDP may
still have a small environmental value norm, since this norm captures the variance of the state value
function rather than the stochasticity of the transition kernel. Maillard et al. [19] suggest using the
environmental value norm of the optimal policy π∗ as a measure of hardness. The main strength of
such measure is that the variability of the optimal value function captures an important aspect of the
estimation complexity. However, this measure of hardness neglects the visitation complexity.

Sub-optimality gap. The sub-optimality gap is defined in the continuous and episodic settings as

∆(s, a) := V ∗(s)−Q∗(s, a) and ∆h(s, a) := V ∗
h (s)−Q∗

h(s, a),

respectively. Since V ∗(s) = maxaQ
∗(s, a) for every state s, the sub-optimality gap ∆(s, a) mea-

sures the difference in expected return between selecting the optimal action for state s and selecting
the action a. Intuitively, identifying a suboptimal action a′ in a given state s is easier if the gap ∆(s, a′)
is large. Simchowitz and Jamieson [21] identifies the sum of the reciprocals of the sub-optimality
gaps

∑
(s,a)|∆(s,a)̸=0

1
∆(s,a) as a measure of hardness. They also demonstrate the importance of the

sub-optimality gaps by showing that recent optimistic algorithms necessarily incur in a cumulative
regret proportional to the smallest nonzero sub-optimality gap in the episodic setting. However, note
that approximating the optimal value function (and identifying a near-optimal policy) is particularly
easy when every sub-optimality gap is small. Consequently, the (PAC-RL) sample complexity is
likely to decrease when the sum of the reciprocals of the sub-optimality gaps increases. Furthermore,
this measure does not explicitly capture visitation complexity and is prone to severe numerical issues.

Table 1: Computational complexity of generally applicable measures up to logarithmic factors.

Markov chain-based measures Value-based measures

Mixing time Diameter Distribution mismatch coefficient Environmental value norm Sub-optimality gaps

? Õ(|S|3.5|A|) ? Õ(|S|2|A|(1− γ)−1) Õ(|S|2|A|(1− γ)−1)
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2.2.3 Future directions

Current hardness measures suffer from three principal issues. They are not designed to be efficiently
computable (see Table 1 and Appendix B), they are limited in their ability to simultaneously capture
visitation complexity and estimation complexity, and they are oblivious to the distinct challenges
presented by different performance criteria. For instance, while regret minimizing agents must be
cautious not to incur in large regret during learning (for example, by not revisiting lowly rewarding
states that are not followed by highly rewarding states), PAC-RL agents have the flexibility to incur
in large regret as long as they end up with a near-optimal policy. Therefore, the visitation complexity
should differ across settings. The fact that current measures disregard this distinction is concerning,
since they should account for the specific difficulty of the optimization task. These issues are not
discussed in previous work, since measures of hardness have not been considered relevant outside the
context of deriving theoretical performance guarantees for reinforcement learning agents.

In order to address these issues, we believe that future work should focus on developing efficiently
computable (non-trivial) hardness measures that (approximately) meet the following novel definition.

Definition 2.1 (Complete measure of hardness) A measure θ : M → R+ is complete for an MDP
class M and criterion ψ (sample complexity or cumulative regret) if, for every pair M1,M2 ∈ M
and near-optimal agent A∗ that achieves the criterion lower bound of class M up to logarithmic
factors1, θ(M1) > θ(M2) implies ψ̃(M1, A

∗) > ψ̃(M2, A
∗), where ψ̃ hides logarithmic factors.

Combining existing measures that capture visitation complexity and estimation complexity is a viable
first step in that direction. Recently, Wagenmaker et al. [23] have pioneered this approach in the
episodic setting by proposing the gap-visitation complexity,

GVP(ϵ) :=
H∑

h=0

inf
π

sup
s,a

inf

(
1

wπ
h(s, a)∆h(s, a)2

,
Wh(s)

2

wπ
h(s, a)ϵ

2

)
, (3)

where wπ
h(s, a) := Pπ(sh = s, ah = a) is the probability of visiting state-action pairs (s, a) at

in-episode time step h when following policy π, Wh(s) := supπ Pπ(sh = s) is the maximum
reachability of state s at in-episode time step h, and ϵ is a parameter related to the optimality of the
output policy in the PAC-RL setting. The strength of this measure is that it weights the sub-optimality
action gaps with measures of visitation complexity, wπ

h and Wh. This captures the difficulty induced
by the critical states that are both hard to reach and for which it is hard to estimate the best action.
However, the gap-visitation complexity fails to be a generally applicable hardness measure. It depends
on the PAC-RL setting-specific parameter ϵ, it is restricted to the finite horizon setting (and can not
be extended to the continuous setting), and is not efficiently computable.

3 Hardness in Practice

3.1 Colosseum

This section briefly introduces Colosseum, a pioneering Python package that bridges theory and
practice in tabular reinforcement learning while also being applicable in the non-tabular setting. More
details about the package can be found in Appendix A and in the project website.2

As a hardness analysis tool, Colosseum identifies the communication class of MDPs, assembles
insightful visualizations and logs of interactions between agents and MDPs, computes three measures
of hardness (environmental value norm, sum of the reciprocals of the sub-optimality gaps, and
diameter, whose computation requires a novel solution described in App. A.4). Eight MDP families
are available for experimentation. Some are traditional families (RiverSwim [24], Taxi [25], and
FrozenLake) while others are more recent (MiniGid environments [26]). Additionally, DeepSea
[27] was included as a hard exploration family of problems, and the SimpleGrid family is composed
of simplified versions of the MG–Empty environment. By controlling the parameters of MDPs from
each family (further detailed in App. A.3), it is easy to create an MDP with any desired hardness.

As a benchmarking tool, Colosseum is unique in its strong connection with theory. For instance,
in contrast to non-tabular benchmarks, Colosseum computes theoretical evaluation criteria such

1For example, the Ω(|S||A|H2ϵ−2) sample complexity bound for the episodic communicating setting [22].
2Available at https://michelangeloconserva.github.io/Colosseum.
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as the expected cumulative regret and the expected average future reward, which can be used to
exactly evaluate the performance criterion of regret minimizing agents. The benchmark covers the
most commonly studied reinforcement learning settings: episodic ergodic, episodic communicating,
continuous ergodic, and continuous communicating. For each setting, we have selected twenty MDPs
that are diverse with respect to their diameters and environmental value norms as proxies for different
combinations of visitation complexity and estimation complexity. Figure 17 in Appendix E shows
how each of these MDPs varies according to these measures, and Section 3.3 empirically validates
this selection by showing that harder MDPs correspond to worse agent performance. Notably, the
theoretically backed selection of MDPs and the rigorous evaluation criteria make the Colosseum
benchmark the most exhaustive in tabular reinforcement learning, since previous evaluations were
conducted empirically in a few MDPs (such as Taxi or RiverSwim).

Colosseum also allows testing of non-tabular agents by leveraging the BlockMDP model [28].
BlockMDPs equip tabular MDPs with an emission map that is a (possibly stochastic) mapping q : S →
∆(O) from the finite state space S to a (possibly infinite) observation space O. Agents interacting
with BlockMDPs are only provided with observations, so non-tabular methods are generally required.
Many commonly used non-tabular MDPs (such as Minecraft [29]) can be straightforwardly encoded
as BlockMDPs using the Colosseum MDP families. Colosseum implements a diverse set of
deterministic emission maps and allows combining them with different sources of noise. Appendix
A.2 further details BlockMDPs and the available emission maps.

3.2 Empirical analysis of hardness measures

For brevity, this section only presents results of hardness measures in the MiniGridEmpty family of
environments in the episodic setting. Appendix D presents the full outcome of the empirical analysis.

A MiniGridEmpty MDP is a grid world where an agent has three available actions: moving forward,
rotating left, and rotating right. An agent is rewarded for being in a few specific states and receives no
reward in every other state. Appendix A.3.4 provides more details about this family of environments.

In our investigation, we consider four scenarios that highlight the different aspects of MDP hardness.

Scenario 1. We vary the probability p_rand that an MDP executes a random action instead of the
action selected by an agent. As p_rand approaches one, value estimation becomes easier, since
outcomes depend less on agent choices. However, intentionally visiting states becomes harder.

Scenario 2. We vary the probability p_lazy that an MDP stays in the same state instead of executing
the action selected by an agent. Contrary to increasing p_rand, increasing p_lazy never benefits
exploration. Increasing p_lazy decreases estimation complexity and increases visitation complexity.

Scenario 3 and 4. We vary the number of states across MDPs from the same family. In scenario
4, we also let p_rand = 0.1 to study the impact of stochasticity. In these scenarios, increasing the
number of states simultaneously increases the estimation complexity and the visitation complexity.

In every scenario, hardness measures are compared with the cumulative regret of a near-optimal agent
tuned for each specific MDP (see App. D). This regret serves as an optimistic measure of hardness.
Appendix C describes how these measures are normalized. Note that, due to normalization, the plots
should only be compared in terms of trends (growth rates) rather than absolute values.

Analysis. Figure 1 presents the empirical results for the episodic MiniGridEmpty family in the four
scenarios with 95% bootstrapped confidence intervals over twelve random seeds.

The experiments confirm our claim that the diameter captures visitation rather than estimation
complexity. This measure of hardness grows superlinearly with both p_rand and p_lazy (Figures
1a and 1b) since deliberate movement between states requires an exponentially increasing number of
time steps. Although the diameter highlights the sharply increasing visitation complexity, its trend
overestimates the increase in cumulative regret of the tuned near-optimal agent, which is explained
by the unaccounted decrease in estimation complexity. The diameter also increases almost linearly
with the number of states (Figures 1c and 1d). For the small p_rand (scenario 4), the relation is still
approximately linear. This linear trend underestimates the evident non-linear growth in hardness in
the regret of the tuned near-optimal agent but is in line with the mild increase in visitation complexity.

The empirical evidence indicates that the environmental value norm can only capture estimation
complexity. It decreases as p_lazy and p_rand increase (Figures 1a and 1b) because the optimal
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Figure 1: The Colosseum hardness analysis for the episodic MiniGridEmpty family.

value of neighboring states becomes closer, which decreases the per-step variability of the optimal
value function. When the number of states increases but the transition and reward structures remain
the same (Figures 1c and 1d), the small increase in this variability only generates a sublinear growth.

We empirically observe that the sum of the reciprocals of the sub-optimality gaps is not particularly
apt at capturing estimation complexity, due to its exclusive focus on optimal policy identification, and
it also underestimates the increase in hardness induced by an increase in visitation complexity. This
measure increases weakly superlinearly in scenarios 1 and 2 (Figures 1a and 1b). The probability
of executing the action selected by the agent decreases when p_lazy and p_rand increase, so the
difference between the state and the state-action optimal value functions decreases sharply. The
measure increases almost linearly with the number of states (Figures 1c and 1d). This is explained by
the fact that the average value of the additional terms in the summation is often similar to the average
value of the existing terms when MDPs have the same structure of reward and transition kernels.

3.3 Colosseum benchmarking

In this section, we benchmark five tabular agents with theoretical guarantees and four non-tabular
agents. Besides being valuable on their own, these results help to empirically validate our benchmark.

Agents. The tabular agents are posterior sampling for reinforcement learning (PSRL) for the episodic
and continuous settings [30, 31], Q-learning with UCB exploration for the episodic setting [32],
Q-learning with optimism for the continuous setting [16], and UCRL2 for the continuous setting [14].
The non-tabular agents (from bsuite) are ActorCritic, ActorCriticRNN, BootDQN, and DQN.

Experimental procedure. We set the total number of time steps to 500 000 with a maximum training
time of 10 minutes for the tabular setting and 40 minutes for the non-tabular setting. If an agent
does not reach the maximum number of time steps before this time limit, learning is interrupted,
and the agent continues interacting using its last best policy. This guarantees a fair comparison
between agents with different computational costs. The performance indicators are computed every
100 time steps. Each interaction between an agent and an MDP is repeated for 20 seeds. The agents’
hyperparameters have been chosen by random search to minimize the average regret across MDPs
with randomly sampled parameters (see Appendix E). We use a deterministic emission map that
assigns a uniquely identifying vector to each state (for example, a gridworld coordinate) to derive
the non-tabular benchmark MDPs. In Table 2, we report the per-step normalized cumulative regrets
divided by the total number of time steps (defined in Appendix C), which allows comparisons across
different MDPs. We summarize the main findings here and refer to Appendix E for further details.

Analysis. Table 2 often shows high variability in the performance of the same agent across MDPs of
the same family. Therefore, maximising the diversity across diameters and value norms effectively
produces diverse challenges even for MDPs with similar transition and reward structures. For example,
in the continuous communicating case (Table 2d), Q-learning performs well only in some MDPs of
the MiniGridEmpty family. This also happens for UCRL2 for the SimpleGrid family.

The average normalized cumulative regret is lower in ergodic environments compared to commu-
nicating environments. This indicates that the ergodic setting is generally slightly easier than the
communicating settings. Notably, in the continuous setting, the ergodic setting is more challenging
than the communicating setting for Q-learning (Tables 2c and 2d). Designing a naturally ergodic
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Table 2: Normalized cumulative regrets of selected agents on the Colosseum benchmark. (a) Episodic
ergodic. (b) Episodic communicating. (c) Continuous ergodic. (d) Continuous communicating.

(a)
Q-learning PSRL

MDP

DeepSea .64± .00 .01± .00
.52± .01 .00± .00

FrozenLake .90± .01 .01± .00

MG-Empty 1.00± .00 .86± .16
1.00± .00 .94± .07
1.00± .00 .91± .09
1.00± .00 .35± .10
1.00± .00 .44± .12
.92± .04 .14± .08
.91± .03 .04± .03

MG-Rooms .90± .04 .05± .04
1.00± .00 .54± .36
.99± .01 .24± .29

RiverSwim .07± .02 .00± .00
.91± .01 .00± .00

SimpleGrid .78± .03 .05± .01
.79± .03 .79± .03
.50± .03 .50± .03

Taxi .84± .01 .08± .01
.56± .02 .05± .00

Average .81± .24 .30± .33

(b)
Q-learning PSRL

MDP

DeepSea .01± .01 .00± .00
.83± .02 .54± .01

FrozenLake .78± .04 .03± .11

MG-Empty .59± .07 .09± .05
.99± .00 .24± .15
.99± .01 .23± .12

1.00± .00 .91± .09
1.00± .00 .93± .09

MG-Rooms .99± .01 .21± .29
1.00± .00 .44± .39
1.00± .00 .43± .39
.94± .05 .04± .04

RiverSwim .87± .00 .00± .00
.96± .01 .80± .00

SimpleGrid .78± .10 .20± .15
.80± .00 .55± .15
.50± .00 .11± .01
.79± .04 .79± .04

Taxi .94± .00 .09± .01
.91± .01 .36± .06

Average .83± .23 .35± .30

(c)
Q-learning PSRL UCRL2

MDP

DeepSea .94± .00 .06± .01 .23± .05

FrozenLake .83± .03 .01± .03 .01± .02

MG-Empty .98± .02 .99± .01 .05± .06
.98± .02 .98± .04 .03± .05
.97± .00 .95± .03 .04± .01
.98± .01 .99± .01 .54± .26
.96± .01 .83± .31 .01± .00
.98± .02 .99± .02 .45± .35
.98± .03 .99± .01 .27± .33
.98± .01 .99± .01 .93± .09

MG-Rooms .98± .03 .99± .02 .18± .29
.98± .02 1.00± .00 .62± .36

RiverSwim .73± .19 .00± .00 .00± .00
.71± .22 .00± .00 .01± .00
.90± .06 .02± .04 .01± .01
.50± .25 .01± .00 .01± .01

SimpleGrid .78± .00 .70± .19 .01± .01
.46± .08 .01± .02 .00± .00
.49± .00 .43± .16 .00± .00

Taxi .87± .01 .89± .08 .09± .01

Average .85± .18 .59± .44 .17± .26

(d)
Q-learning PSRL UCRL2

MDP

DeepSea .78± .00 .78± .05 .90± .01
.99± .00 .99± .00 .99± .00
.79± .00 .79± .04 .92± .01

FrozenLake .77± .04 .01± .04 .01± .01
.84± .04 .01± .02 .04± .06

MG-Empty .51± .23 .95± .22 .02± .00
.01± .00 1.00± .00 .02± .00
.00± .00 .60± .50 .01± .00
.35± .17 1.00± .00 .01± .00
.75± .21 1.00± .00 .08± .20

MG-Rooms .01± .01 1.00± .00 .78± .40
.01± .01 1.00± .00 .02± .01
.02± .02 1.00± .00 .66± .47

RiverSwim .16± .03 .00± .01 .00± .00
.34± .14 .01± .00 .02± .01

SimpleGrid .11± .01 .93± .00 .01± .00
.01± .00 .45± .15 .01± .00
.15± .01 .93± .00 .70± .40
.01± .00 .50± .00 .33± .24

Taxi .95± .00 .94± .04 .12± .01

Average .38± .37 .69± .38 .28± .37

MDP is not straightforward. In fact, the majority of MDPs in the literature are communicating.
In Colosseum, ergodicity is induced by setting p_rand > 0 in otherwise communicating MDPs.
Model-free agents struggle with the resulting increase in variability of the state-action value function.

In the episodic settings (Tables 2a and 2b), PSRL obtains excellent performances with low variability.
Q-learning instead performs well in a few MDPs. This often happens since, when the action selected
by the agent is randomly substituted (due to p_rand > 0) with one with a large sub-optimality gap,
the resulting Q-value update introduces a critical error that requires many samples to be corrected.

In the continuous settings (Tables 2c and 2d), UCRL2 performs best in the ergodic cases when
Q-learning suffers from the issue caused by p_rand > 0 but is only slightly better than Q-learning
in the communicating ones. PSRL instead struggles with most MDPs. The reason for its weak
performance in this setting is the computationally expensive optimistic sampling procedure required
for its worst-case theoretical guarantees. It often breaks the time limit before reaching the first quarter
of available time steps, meaning that it lacks sufficient samples to estimate the optimal policy.

Figure 2 places the regret of the agents in the continuous ergodic setting (Table 2c) on a position
corresponding to the diameter and value norm of the benchmark environments. PSRL and Q-learning
(Figures 2a and 2b), appear to be impacted more by the value norm than the diameter. This is in line
with the lack of sufficient samples for PSRL and the aforementioned issue related to high q estimates
variability for Q-learning, which is exacerbated when the estimation complexity is higher. In the
case of UCRL2 (Figure 2c), which provides more reliable evidence since it performs well across the
MDPs, higher regret effectively corresponds to higher diameter and value norm.
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Figure 2: Average cumulative regret obtained by the tabular agents with guarantees in the continuous
ergodic setting placed according to the diameter and the value norm associated to the MDPs.
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Non-tabular benchmarking. The performance of the agents is in line with the results reported by
Osband et al. [4], with the exception of BootDQN. Being the most computationally intensive, this
agent often breaks the time limit, which consequently worsens its overall performance. Figure 3
places the regret of the agents in the continuous ergodic setting on a position corresponding to the
diameter and value norm of the benchmark environments. Interestingly, and similarly to the tabular
case (Figure 2), while the best performing agent (DQN) is evidently impacted more by the diameter,
the opposite holds for the other agents. Regardless of the visitation complexity, this suggests that
an agent that fails to handle the estimation complexity of an environment is bound to perform badly
both in the tabular and non-tabular settings.
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Figure 3: Average cumulative regret obtained by the non-tabular baseline agents in the continuous
ergodic setting placed according to the diameter and the value norm associated to the MDPs.

4 Conclusion

We established the usefulness of the theory of hardness in empirical reinforcement learning. Prior
to our work, hardness measures were limited to providing theoretical guarantees for agents. In
order to promote a wider understanding of these measures, we presented a systematic survey that
newly identified two major approaches for characterizing hardness: Markov chain-based and value-
based. These approaches aim to capture complementary aspects of hardness: visitation complexity
and estimation complexity. Our survey also exposed a relative lack of measures that capture both
aspects, which motivates our definition of complete measures of hardness. Their development is
important theoretically, elucidating what makes a problem hard for a specific performance criterion,
and empirically, allowing the creation of principled benchmarks for a specific performance criterion.

We presented the first empirical study of (efficiently computable) hardness measures. This study
revealed which aspects of hardness current measures capture and clarified their relationship with
the behavior of near-optimal agents. Based on these results, we proposed a benchmark for the most
widely studied tabular reinforcement learning settings that contains environments that maximize
diversity with respect to two highly distinct measures. Such a principled benchmark is valuable to
gauge progress in the field. The new benchmark allowed conducting the most exhaustive empirical
comparison between theoretically principled tabular reinforcement learning agents to date, which
revealed undocumented weaknesses of these agents and further validated our choices of environments.

As a first step towards principled non-tabular benchmarking, we argued that many commonly used
environments can be encoded as BlockMDPs, which are non-tabular versions of tabular MDPs for
which a partial characterization of hardness is already possible. We observed a clear empirical relation
between two tabular hardness measures and the performance of four non-tabular agents. BlockMDPs
represent a promising starting point for the future development of non-tabular hardness measures
while already being useful to provide relevant insights into the performance of non-tabular agents.

Our work has led to the development of Colosseum, a pioneering tool for empirical but theoretically
principled study of tabular reinforcement learning with experimental non-tabular benchmarking
capabilities. Besides implementing the aforementioned tabular benchmark, Colosseum provides
valuable analysis tools: regret and hardness computations, communication class identification,
logging, and visualizations. Colosseum can also be easily extended and integrated with new agents
and environments, for which we will actively seek contributions from the community. We strongly
believe that Colosseum has the potential to become a fundamental tool in reinforcement learning.
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A Colosseum

Colosseum is a pioneering Python package that creates a bridge between theory and practice in
tabular reinforcement learning with an eye on the non-tabular setting. It allows to empirically, and
efficiently, investigate the hardness of MDPs, and it implements the first principled benchmark for
tabular reinforcement learning algorithms. In the following sections, we report some additional
details on the capabilities of Colosseum. However, we invite the reader to check the latest online
documentation along with the tutorials that cover in detail every aspect of the package.3

A.1 Expected performance indicators

Each agent in Colosseum is required to implement a function that returns its current best policy
estimate π̂∗

t for any time step t. Using an efficient implementation of the policy evaluation algorithm,
Colosseum can compute the corresponding expected regret and expected average reward, which,
summed across time steps, amounts to the expected cumulative reward and expected cumulative regret.
Although it is possible to perform this operation at every time step of the agent/MDP interaction, we
leave the option to approximate the expected cumulative regret by calculating the expected regret
every n time steps and assuming that the policy of the agent in the previous n− 1 time steps would
have yielded a similar expected regret. For instance, for n = 100, the expected cumulative regret at
time step T = 500 would be approximated as the sum of the expected regrets calculated at time steps
t = 100, 200, . . . , 500 multiplied by 100.

A.2 Non-tabular capabilities

Colosseum is primarily aimed at the tabular reinforcement learning setting. However, as our ultimate
goal is to develop principled non-tabular benchmarks, we offer a way to test non-tabular reinforcement
learning algorithms on the Colosseum benchmark. Although our benchmark defines a challenge
that is well characterized for tabular agents, we believe that it can provide valuable insights into the
performance of non-tabular algorithms. In order to do so, we adopt the BlockMDP formalism proposed
by Du et al. [28]. A BlockMDP is a tuple (S,A, P, P0, R,O, q), where O and q : S → ∆(O) are
respectively the non-tabular observation space that the agent observes and the (possibly stochastic)
emission map that associates a distribution over the observation space to each state in the MDP. Note
that the agent is not provided with any information on the state space S . Colosseum implements six
deterministic emission maps with different properties and four kinds of noise to make the emission
maps stochastic, which we describe below. Examples of the emission maps with distinguishable
characteristics for each MDP family will be presented in the corresponding sections.

Emission maps:

• One-hot encoding. This emission map assigns to each state a feature vector that is filled
with zeros with the exception of an index that uniquely corresponds to the state.

• Linear optimal value. This emission map assigns to each state a feature vector ϕ(s) that
enables linear representation of the optimal value function. In other words, there is a θ such
that V ∗(s) = θTϕ(s).

• Linear random value. This emission map assigns to each state a feature vector ϕ(s) that
enables linear representation of the value function of the randomly acting policy. In other
words, there is a θ such that V π(s) = θTϕ(s), where π is the randomly acting policy.

• State information. This emission map assigns to each state a feature vector that contains
uniquely identifying information about the state (e.g., coordinates for the DeepSea family).

• Image encoding. This emission map assigns to each state a feature matrix that encodes the
visual representation of the MDP as a grayscale image.

• Tensor encoding. This emission map assigns to each state a tensor composed of the
concatenation of matrices that one-hot encode the presence of a symbol in the corresponding
indices. For example, for the DeepSea family, the tensor is composed of a matrix that
encodes the position of the agent and a matrix that encodes the positions of white spaces.

Noise:
3Available at https://michelangeloconserva.github.io/Colosseum.
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