
Supplementary Materials for "Private Set Generation
with Discriminative Information"

These supplementary materials include the privacy analysis (§A), the details of the adopted algorithms
(§B), and the details of experiment setup (§C), and additional results and discussions (§D). The
source code is available at https://github.com/DingfanChen/Private-Set.

A Privacy Analysis

Our privacy computation is based on the notion of Rényi-DP, which we recall as follows.
Definition A.1. (Rényi Differential Privacy (RDP) [8]). A randomized mechanism M is (α, ε)-RDP
with order α, if

Dα(M(D)∥M(D′)) =
1

α− 1
logEx∼M(D)

[(
Pr[M(D) = x]

Pr[M(D′) = x]

)α−1
]
≤ ε (1)

holds for any adjacent datasets D and D′, where Dα(P∥Q) = 1
α−1 logEx∼Q[(P (x)/Q(x))α] is the

Rényi divergence of order α > 1 between the distributions P and Q.

To compute the privacy cost of our approach, we numerically compute Dα(M(D)∥M(D′)) in
Definition A.1 for a range of orders α [9, 14] in each training step that requires access to the real
gradient gDθ . To obtain the overall accumulated privacy cost over multiple training iterations, we use
the composition properties of RDP summarized by the following theorem.
Theorem A.1. (Adaptive Composition of RDP [9]). Let f : D → R1 be (α, ε1)-RDP and g :
R1 × D → R2 be (α, ε2)-RDP, then the mechanism defined as (X,Y ), where X ∼ f(D) and
Y ∼ g(X,D), satisfies (α, ε1 + ε2)-RDP

In total, our private set generation (PSG) approach (shown in Algorithm 1 of the main paper) and the
generator prior variant (shown in Algorithm 2) can be regarded as a composition over RTK (i.e., the
number of iterations where the real gradient is used) homogenous subsampled Gaussian mechanisms
(with the subsampling ratio = B/N ) in terms of the privacy cost.

Lastly, we use the following theorem to convert (α, ε)-RDP to (ε, δ)-DP.
Theorem A.2. (From RDP to (ε, δ)-DP [8]). If M is a (α, ε)-RDP mechanism, then M is also
(ε+ log 1/δ

α−1 , δ)-DP for any 0 < δ < 1.

B Algorithms

Objective . The distance Ldis (in Equation 5 of the main paper) between the real and synthetic
gradients is defined to be the sum of cosine distance at each layer [20, 18]. Let θl denote the weight
at the l-th layer, the distance can be formularized as follows,

Ldis(∇θL(S,θt),∇θL(D,θt)) =

L∑

l=1

d(∇θlL(S,θt),∇θlL(D,θt))

where d denotes the cosine distance between the gradients at each layer:

d(A,B) =

out∑

i=1

(
1− Ai· ·Bi·

∥Ai·∥∥Bi·∥

)
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Ai· and Bi· are the flattened gradient vectors to each output node i. For FC layers, θl is a 2D tensor
with dimension out× in and the flattened gradient vector has dimension in, while for Conv layer,
θl is a 4D tensor with dimensionality out × in × h × w and the flattened vector has dimension
in× h×w. out,in, h, w corresponds to the number of output and input channels, kernel height, and
width, respectively.

Generator Prior . We present the pseudocode of the generator prior experiments (Section 6 of the
main paper) in Algorithm 2, which is supplementary to Figure 4,5 and Equation 8 of the main paper.

Algorithm 2: Private Set Generation with Generator Prior

Input: Dataset D = {(xi, yi)}Ni=1, learning rate for update network parameters τθ and τφ, batch
size B, DP noise scale σ, gradient clipping bound C, number of runs R, outer iterations
T , inner iterations J , batches K, number of classes L, number of samples per class (spc),
desired privacy cost ε given a pre-defined δ

Output: Synthetic set S
Compute the DP noise scale σ numerically so that the privacy cost equals to ε after the training;
Initialize model parameter φ of the conditional generator G;

for c in {1, ..., L} do
for sample_index in spc do

ySi = c ;
Sample zi ∼ N (0, I) (zi is fixed for each corresponding synthetic sample during the
training) ;
xS = G(zi, y

S
i ; φ);

Insert (xS
i , y

S
i ) into S;

end
end
for run in {1, ..., R} do

Initialize model parameter θ0 ∼ Pθ0
;

for outer_iter in {1, ..., T} do
θt+1 = θt
for batch_index in {1, ...,K} do

Uniformly sample random batch {(xi, yi)}Bi=1 from D;
for each (xi, yi) do

// Compute per-example gradients on real data
gDθt

(xi) = ℓ(F (xi;θt), yi)
// Clip gradients

g̃Dθt
(xi) = gDθt

(xi) ·min(1, C/∥gDθt
(xi)∥2)

end
// Add noise to average gradient with Gaussian mechanism

g̃Dθt
= 1

B

∑B
i=1(g̃

D
θt
(xi) +N (0, σ2C2I))

// Compute parameter gradients on synthetic data and update G

gSθt
= ∇θL(S,θt)) = 1

M

∑M
i=1 ℓ(F (xS

i ;θt), y
S
i ) where xS

i = G(zi, y
S
i ;φ)

φ = φ− τφ · ∇φLdis(g
S
θt
, g̃Dθt

)

end
end
for inner_iter in {1, ..., J} do

// Update network parameter using S
S = {G(zi, y

S
i ;φ), y

S
i }Mi=1

θt = θt − τθ · ∇θL(S,θt)
end

end
return Synthetic set S
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Figure 1: Training pipeline (with prior).

The only difference to the original PSG for-
mulation is that the samples are restricted
to be the output of a generator network and
the updates are conducted on the generator
network parameters (See Figure 1 for the il-
lustration and see Figure 1 in the main paper
for a comparison). Note that we fix the ran-
dom latent code zi during the whole training
process to guarantee that there is no other
randomness/degree of freedom except that
introduced by the generator network itself.
While it is possible to allow random sam-
pling of the latent code and generate change-
able S to mimic the training of generative models (i.e., train a generative network using the gradient
matching loss), we observe that the training easily fails in the early stage. We argue that this also
indicates that training a generative network is a harder task than training a set of samples directly,
which explains the better convergence behavior and superior final performance of our formulation in
comparison to existing works (which build on top of deep generative networks).

C Experiment Setup

C.1 Datasets

MNIST [6] dataset contains 28× 28 grayscale images of digit numbers. The dataset comprises 60K
training images and 10K testing images in total. The task is to classify the image into one of the 10
classes based on the digit number it contains.

Fashion-MNIST [15] dataset consists of 28× 28 grayscale images fashion products of 10 categories.
The total dataset size is 60K for the training set and 10K for the testing set, respectively. The task is
to classify the fashion product given in the images.

C.2 Required Resources and Computational Complexity

All our models and methods are implemented in PyTorch. Our experiments are conducted with Nvidia
Tesla V100 and Quadro RTX8000 GPUs and a common configuration with 16GB GPU memory is
sufficient for conducting all our experiments.

In comparison to normal non-private training, the major part of the additional memory and com-
putation cost is introduced by the DP-SGD [1] step (for the per-sample gradient computation) that
sanitizes the parameter gradient on real data, while the other steps (including the update on S,
and the updates of F (·;θ) on S are equivalent to multiple calls of the normal non-private forward
and backward passes (whose costs have lower magnitude than the DP-SGD step). Moreover, our
formulation requires much less computational and memory consumption than previous works that
require training multiple instances of the generative modules [3, 7, 12].

C.3 Hyperparameters

Training. We set the default value of hyperparameters as follows: batch size = 256 for both
computing the parameter gradients in the outer iterations and for update the classifier F in the inner
iterations, gradient clipping bound C = 0.1, R = 1000 for ε = 10 (and R = 200 for ε = 1),
K = 10. The number of inner J and outer T iterations are dependent on the number of samples
per class (spc), as more samples generally requires more iterations till convergence: (T, J) is set to
be (1, 1), (10, 50), (20, 25) and (50, 10) for spc = 1, 10, 20, 50, respectively. The DP noise scale σ
is calculated numerically1 [1, 9] so that the privacy cost equals to ε after the training (with RTK
steps in total that consume privacy budget), given that δ = 10−5. The learning rate is set to be
τθ = 0.01 (and τφ = 0.01 for training with generator prior) and τS = 0.1 for updating the network
parameters and samples, respectively. We use SGD optimizer for the classifier F , and samples S
1 Based on Google’s TensorFlow privacy under version ≤ 0.8.0: https://github.com/tensorflow/

privacy/blob/master/tensorflow_privacy/privacy/analysis/rdp_accountant.py
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(with momentum= 0.5), while we use Adam optimizer for the generator G if trained with prior. For
the training process, no data augmentation is adopted. Our implementation of the DP-SGD step and
the uniform data sampling operation is based on the Opacus [16] 2 package.

Evaluation. We set the epoch to be 40 and 300 when training the downstream classification
models on the synthetic data with “full” size (spc = 6000) and small size (spc ∈ {1, 10, 20, 50}),
respectively, to guarantee the convergence of downstream model training and maintain the evaluation
efficiency. We set the learning rate to be 0.01 at the beginning and decrease it (by multiplying with
0.1) when half of the total epoch is achieved. We use SGD optimizer with momentum= 0.9, weight
decay= 5 · 10−4 and set batch size = 256 for training the classifier. Random cropping and re-scaling
are adopted as data augmentation when training the classification model.

C.4 Baseline Methods

We present more details about the implementation of the baseline methods. In particular, we provide
the default value of the privacy hyperparameters below.

DP-Merf [4] 3 For ε = 1 we use as the default hyperparameters setting provided in the official
implementation: DP noise scale σ = 5.0, training epoch = 5, while for ε = 10, the DP noise scale is
σ = 0.568.

DP-CGAN [11] 4 We set the default hyper-parameters as follows: gradient clipping bound C = 1.1,
noise scale σ = 2.1, batch size= 600 and total number of training iterations= 30K. We exclude
this model from evaluation at ε = 1 as the required noise scale is too large for the training to make
progress, which is consistent with the results in literature [4, 3].

GS-WGAN [3] 5 We adopt the default configuration provided by the official implementation
(ε = 10): the subsampling rate = 1/1000, DP noise scale σ = 1.07, batch size = 32. Following [3],
we pretrain (warm-start) the model for 2K iterations, and subsequently train for 20K iterations.
Similar to the case for DP-CGAN, we exclude this model from evaluation at ε = 1 as the required
noise scale is too large for the training to be stable.

For G-PATE [7], DataLens [12] and DP-Sinkhorn [2], we present the same results as reported in the
original papers (in Table 1 of the main paper) as reference, as they are either not directly comparable
to ours or not open-sourced.

C.5 Private Continual Learning

Setting. The experiments presented in Section 5.2 of the main paper correspond to the class-
incremental learning setting [10] where the data partition at each stage contains data from disjoint
subsets of label classes. And the task protocol is sequentially learning to classify a given sample
into all the classes seen so far. For our experiments on SplitMNIST and SplitFashionMNIST
benchmarks [17], the datasets are split into 5 partitions each containing samples of 2 label classes.
The evaluation task is thus binary classification for the first stage, while two more classes are included
after each following stage.

While a clear definition of the private continual learning setting is, to the best of our knowledge,
missing in the literature, we introduce a basic case where privacy can be strictly protected during the
whole training process. In brief, we need to guarantee that all the information that is delivered to
another party/stage should be privacy-preserving.

Hence, for the DP-SGD [1] baseline, the classification model is initialized to be a 10-class classifier,
and is updated (fine-tuned) via DP-SGD at each training stage on each data partition. During the
whole process, the model is transferred between different parties while privacy is guaranteed by
DP-SGD training.

2 https://opacus.ai/
3 https://github.com/frhrdr/dp-merf
4 https://github.com/reihaneh-torkzadehmahani/DP-CGAN
5 https://github.com/DingfanChen/GS-WGAN
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And for the private generation methods, i.e., DP-Merf and Ours, we use a fixed privacy budget to
train a private generative model or a private synthetic set for each partition/stage. Subsequently, such
a generative model or synthetic set is transferred between parties for conducting different training
stages. For evaluation, a n-class classifier is initialized and then trained on the transferred private
synthetic samples for each stage, where n is the total number of label classes seen so far. In our
experiments, both methods only exploit information from the local partition for the generation,
i.e., our private set is optimized on a freshly initialized classification network at each stage and for
DP-Merf the mean embedding is taken over the local partition. While our formulation can be adjusted
to (and may be further improved by) more advanced training strategies designed for continual learning
to eliminate forgetting, many of such strategies are not directly compatible with private training as
they require access to old data. We believe that our introduced private continual learning setting is of
independent interest and leave an in-depth investigation of this topic as future work.

Hyperparameters. We use the default values for the hyperparameters as shown in Section C.3 and
C.4, except that the training epoch is set to be 10 for DP-SGD and the runs R = 200 for Ours, to
balance the convergence, forgetting effect, and evaluation efficiency. Moreover, the DP noise scale is
calibrated to each partition of the data.

D Additional Results and Discussions

D.1 Dataset Distillation Basis

In this paper, we propose to use the gradient matching technique [20, 18] (among existing dataset
distillation approaches) as a basis for private set generation. In the following, we briefly discuss other
popular dataset condensation approaches that achieve competitive performance for non-private tasks
but appear less suitable for private learning. For example, [13] requires solving a nested optimization
problem, which makes it hard to quantify the individual’s effect (i.e., the sensitivity) and thus difficult
to impose DP into the training. In addition, [19] relies on "per-class" feature aggregation as the only
source of supervision to guide the synthetic data towards representing its target label class. However,
this "per-class" operation contradicts label privacy and the requirement of uniform sampling for the
privacy cost computation. In contrast, our formulation adopts uniform sampling (which is compatible
with DP) and exploits the (inherently class-dependent) gradient signals to generate representative
samples.

D.2 Computation Time

Under the default setting (See Section C.2 and C.3), it takes around 4.5 hours and 11 hours to train
the synthetic data for the case of spc = 10 and spc = 20, respectively. To the best of our knowledge,
our method is more efficient than existing works that require pre-training of (multiple) models [3, 7],
but requires more running time than methods that use static pre-computed features [4]. Moreover, we
see a tendency that the distilled dataset requires less time on downstream tasks compared to samples
from generative models due to the smaller (distilled) sample size.

D.3 Evaluation on Colored Images

1 10 20

non-private 30.0 48.6 52.6
ε = 10 28.9 40.3 42.6

Table 1: Test accuracy (%) on real data of
downstream ConvNet classifier on CIFAR-10.

In this section, we provide additional evaluation
results on colored image benchmark dataset. On
CIFAR-10 [5] dataset, We use the same default
setting as described in Section C.3 and adjust
the network architectures to the input dimension
(32× 32× 3). We summarize in Figure 1 the quan-
titative results of downstream utility when varying
the number of samples per class (spc ∈ {1, 10, 20})
and show as reference the results when training non-privately (We show here the results when ap-
plying uniform sampling of the data instead of the original per-class sampling approach [20, 18]
also for the non-private baseline for controlled comparison). Additionally, we show in Figure 2 the
synthetic images when training under DP (ε = 10), and in 3 the results when training non-privately.
We observe that while the synthetic samples look noisy and non-informative, they do provide useful
features for downstream classifiers, leading to a decent level of performance. Note that colored
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images are generally challenging for private learning. In fact, this makes our work the first one that is
able to report non-trivial performance on this dataset.

Figure 2: CIFAR-10 (ε = 10)

Figure 3: CIFAR-10 (non-private)
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