
A Analytical computation of the expected quantization error

A.1 Input quantization error.

Equation 4 (the quantization error) can be split into two terms corresponding to the rounding error
Erw and the clipping error Ecw:

E(W �Q↵(W))2 = E(R↵(W))2 = Erw + Ecw, (10)

Erw =

↵maxZ

↵min

R2
↵(w)pw(w)dw, (11)

Ecw =

↵minZ

�1

(w � ↵min)
2pw(w)dw +

1Z

↵max

(↵max � w)2pw(w)dw. (12)

As the weight and activation tensor values are bound, we assume that the distribution pw(w) is
clipped within the interval (wmin, wmax). Thus the clipping error can be written as:

Ecw = 1wmin<↵min

↵minZ

wmin

(w � ↵min)
2pw(w)dw + 1↵max<wmax

wmaxZ

↵max

(↵max � w)2pw(w)dw,

(13)

where 1↵max<wmax is the indicator function. The calculation or the rounding error Erw can be
split into two sub-intervals for each interval (↵i,↵i+1) where the first sub-interval corresponds to
rounding up and the second sub-interval corresponds to rounding down:

Erw =

|↵|X

i=1

↵i+1Z

↵i

R2
↵(w)dw =

|↵|X

i=1

(↵i+↵i+1)/2Z

↵i

(w � ↵i)
2pw(w)dw+

|↵|X

i=1

↵i+1Z

(↵i+↵i+1)/2

(↵i+1 � w)2pw(w)dw.

(14)

In order to simplify the computation, we introduce the following function:

Iw(a, b, w0) :=

bZ

a

(w � w0)
2pw(w)dw. (15)

Thus we can redefine 14 as:

Erw =

|↵|X

i=1

[I(↵i, (↵i + ↵i+1)/2,↵i) + I((↵i + ↵i+1)/2,↵i+1,↵i+1)] . (16)

The sum of the rounding errors for each interval between two representable grid-points. We note that
the clipping error Ecw can also be expressed using Iw(a, b, w0):

Ecw = Iw(wmin,↵min,↵min) + Iw(↵max, wmax,↵max). (17)

The analytical expressions for I(wmin,↵min,↵min) for different distributions are given in Appendix
A.3. Thus, given the explicit definition of the quantization grid and the probability density function,
we can analytically compute the rounding error for different distributions, for example the Gaussian,
Uniform, or Student’s t-distribution.

13

A.2 Scalar product quantization error.

In this section, we describe a practical way for analytical computation of the expected MSE of the
scalar product with quantized inputs E(�Y 2). Practically, the covariance matrix for W and X is
diagonally dominant therefore we can assume their independence. Thus the expected value E(�Y 2)
can further be expressed as:

E(�Y 2) =

1Z

�1

1Z

�1

[xR↵(w) + wR�(x) +R↵(w)R�(x)]
2 px(x)pw(w)dwdx, (18)

E(�Y 2) =

1Z

�1

x2px(x)dx

1Z

�1

R2
↵(w)pw(w)dw +

1Z

�1

w2pw(w)dw

1Z

�1

R2
�(x)px(x)dx+

1Z

�1

R2
�(x)px(x)dx

1Z

�1

R2
↵(w)pw(w)dw + 2

1Z

�1

wR↵(w)pw(w)dw

1Z

�1

xR�(x)px(x)dx+

2

1Z

�1

R2
�(x)px(x)dx

1Z

�1

wR↵(w)pw(w)dw + 2

1Z

�1

R2
↵(w)pw(w)dw

1Z

�1

xR�(x)px(x)dx.

(19)

We note that the first term is nothing but the rounding error on W (see equation (4)) weighted by a
non-central second moment on X which does not depend on the quantization grid. The structure of
the second term is very similar while W and X are interchanged. As the first two terms are the only
integrals of non-negative functions, in practice they become dominant and mostly determine the MSE
magnitude.

In order to compute the scalar product error analytically, we rewrite equation (19) in the following
form:

E(�Y 2) = MxErw +MwErx + ErwErx + 2EswEsx + 2ErwEsx + 2ErxEsw, (20)

Where every term is introduced below. Mw and Mw are the second non-central moments for W
and X , respectively. These terms can be computed using functions Iw(a, b, w0) and Ix(a, b, x0) :=
bR
a
(x� x0)2px(x)dx:

Mw =

wmaxZ

wmin

w2pw(w)dw = Iw(wmin, wmax, 0),

Mx =

xmaxZ

xmin

x2px(x)dx = Ix(xmin, xmax, 0);

(21)

Erw and Erx are rounding errors on W and X similar to the expression in equation (4):

Erw =

wmaxZ

wmin

R2
↵(w)px(w)dw,

Erx =

xmaxZ

xmin

R2
�(x)px(x)dx;

(22)

14

finally, Esw and Esx are the following integrals.

Esw =

wmaxZ

wmin

wR↵(w)pw(w)dw,

Esx =

xmaxZ

xmin

xR�(x)px(x)dx.

(23)

Similar to rounding error calculation in equation 14, the computation of Esw and Esx can be split
into sub-intervals. For Esw:

Esw =

|↵|X

i=1

2

64

(↵i+↵i+1)/2Z

↵i

w(w � ↵i)pw(w)dw +

↵i+1Z

(↵i+↵i+1)/2

w(↵i+1 � w)pw(w)dw

3

75 . (24)

We define Jw(a, b, w0) as follows:

J(a, b, w0) :=

bZ

a

w(w � w0)p(w)dw. (25)

Thus we can express the term Esw in equation 24 as:

Esw =

|↵|X

i=1

[J(↵i, (↵i + ↵i+1)/2,↵i)� J((↵i + ↵i+1)/2,↵i+1,↵i+1)] . (26)

The term Esx can be computed in a similar way. The formulas for Jw(a, b, w0) for different
distributions are given in Appendix A.3.

A.3 Formulas for integrals Ix(a, b, x0) and Iw(a, b, x0).

In this section we give formulas for the functions Ix(a, b, x0) and Jx(a, b, x0) for different distri-
butions which are necessary for the analytical computation of the rounding error and the scalar
product error. The formulas for Iw(a, b, w0) and Jw(a, b, w0) are similar while pw(w) is used as the
probability density function. The formulas were obtained using symbolical computations.

Gaussian distribution.

p(x) =
1

Z
exp

"
�1

2

✓
x� µ

�

◆2
#
, (27)

where
Z =

1

�
p
2⇡

, (28)

Ix(a, b, x0) = � exp

✓
�a2/2 + aµ� µ2/2

�2

◆
�2(�a� µ+ 2x0)/Z+

r
⇡

2
�(�µ2 � �2 + 2µx0 � x2

0) erf

�a+ µ

�
p
2

�
/Z+

exp

�b2/2 + bµ� µ2/2

�2

�
�2(�b� µ+ 2x0)/Z+

�

r
⇡

2
(�µ2 � �2 + 2µx0 � x2

0) erf

�b+ µ

�
p
2

�
/Z,

15

Jx(a, b, x0) = x0� exp

� µ2

2�2

�
exp

(�a/2 + µ)a

�2

�
/Z�

x0� exp

� µ2

2�2

�✓
exp

(�b/2 + µ)b

�2

�
� �

r
⇡

2
µ erf

a� µp

2�

�
+

r
⇡

2
µ erf

b� µp
2�

�◆
/Z�

�

Z

✓
exp

�a2/2 + aµ� µ2/2

�2

�
�(a+ µ) +

r
⇡

2
(µ2 � �2) erf

µ� ap

2�

�◆
+

�

Z

✓
exp

�b2/2 + bµ� µ2/2

�2

�
�(b+ µ) +

r
⇡

2
(µ2 � �2) erf

µ� bp
2�

�◆
.

(29)
Uniform distribution.

p(x) =

⇢
p0, if a x b
0, otherwise,

(30)

Ix(a, b, x0) = p0

✓
�a3 + b3

3
+ (a2 � b2)x0 + (b� a)x2

0

◆
, (31)

Jx(a, b, x0) =
a2 � b2

2
p0 + (b� a)p0x0. (32)

Student’s t-distribution.

p(x) =
1

Z

✓
1 +

t2

⌫

◆�(⌫+1)/2

, (33)

Z =
p
⌫B

✓
1

2
,
⌫

2

◆
, (34)

Ix(a, b, x0) =
2⌫x0(�1 + (a

2+⌫
⌫))

1�⌫
2

(1� ⌫)Z
�

2⌫x0(�1 + (b
2+⌫
⌫))

1�⌫
2

(1� ⌫)Z
+

�au2hyp2f1(1/2, (1 + ⌫)/2, 3/2,�a2/⌫)/Z+

bu2hyp2f1(1/2, (1 + ⌫)/2, 3/2,�b2/⌫)/Z�
a3hyp2f1(3/2, (1 + ⌫)/2, 5/2,�a2/⌫)/(3Z)+

b3hyp2f1(3/2, (1 + ⌫)/2, 5/2,�b2/⌫)/(3Z),

(35)

where hyp2f1(a, b, c, d) is Gaussian hypergeometric function.

Jx(a, b, x0) =
⌫(1+⌫)/2x0

1� ⌫

h
�(a2 + ⌫)(1�⌫)/2 + (b2 + ⌫)(1�⌫)/2

i
/Z + Ix(a, b, 0). (36)

B Ablations

B.1 Quantization error ablation

In this section we analyze different combinations of floating point formats for weights and activations
based on the analytical computation of the scalar product error. We consider two Gaussian distri-
butions fit into weights and activations distributions of a layer of pre-trained Resnet18 model. The
results are shown in fig. 7. We observe that the optimal format for both weights and activations is

16

Figure 7: Study of a layer of pre-trained Resnet18 model. We fit two Gaussian distributions into
weights and activations sample. Weights W ⇠ N (�1.0⇥10�3, 1.7⇥10�2), clipped at [�0.35, 0.35],
activations X ⇠ N (0.06, 0.11) clipped at [0, 3.63]. The optimal format is M5E2 for both weights
and activations.

Figure 8: Comparison of the expected quantization error computed analytically to empirical quantiza-
tion error. A random subset of 30 weights/activations tensor is chosen for Resnet18 and Bert.

.

5M2E. In order to facilitate visual comparison of MSE values of different magnitude we plot SQNR
which is defined as follows:

10 log10

0

@ E
⇥
W 2

⇤
E
⇥
X2

⇤

E
h
(WX �Q↵(W)Q�(X))2

i

1

A . (37)

B.2 Comparison of the analytical and empirical rounding error.

In this section we compare the expected rounding error computed analytically to the empirical
rounding error. The results are given on fig. 8 Note that, for visual purposes, we plot the signal-to-
quantization-noise ratio (SQNR) instead of MSE in these plots. SQNR is log-proportional to MSE;
i.e. a value that minimizes MSE will maximize SQNR. SQNR for an input tensor X is defined as:

10 log10

0

@ E
⇥
X2

⇤

E
h
(X �Q↵(X))2

i

1

A . (38)

C Examples of tensors in Bert

In this section we give examples of strong outliers in the tensors in Bert (fig. 9).

17

(a) (b)

(c) (d)

Figure 9: Examples of tensors in the forward pass of Bert. The plots (b) and (d) are scaled versions of
the plots (a) and (b) respectively. The tails in the distributions contain significant amount of outliers.

D Importance of the outliers

In this ablation we demonstrate influence of the outliers on the choice of the optimal floating point
format. The experiment is based on the analytical computation of the rounding error. We consider
a Student’s-t distribution with ⌫ = 2 with increasing quantization range. Min-max quantizer range
estimator is used, the distribution is clipped at the quantization range. The results are given on fig. 10.
While the quantization range is being increased, the optimal exponent bit-width values grows starting
from zero (INT8 format) to 5-bit exponent.

Figure 10: SQNR for Student’s-t distribution with ⌫ = 2 for different quantizer range. Optimal
exponent bit-width values increases while the quantization range is being expanded.

18

E MSE-based mantissa bits and bias

In our quantization setup, each tensor has an individual quantizer. The quantizers can use per-tensor
or per-channel quantization. In case per-channel quantization is used, each channel has its own
clipping value c (and thus its own value for bb), while the number of mantissa bits is set for a full
tensor, and is thus shared across all channels.

During quantizer initialization we use the input weight tensor or one batch of activations, both referred
to as X , and find values for m and c that minimize reconstruction MSE. In order to do so, we perform
a grid search over values of m and values of c. For m we consider 1, 2, 3, 4, 5, and 6 bits. For c we
find the absolute maximum value � of X (or, in case of per-channel quantization, each channel in
X), and run the grid search over 111 evenly spaced values between 0.1� and 1.2�. We then record
the values of m and c that minimize MSE and initialize the quantizer with these values.

In case per-channel quantzation is used, we run this procedure for each channel individually. On each
channel, for each value of m, we store the value of c that minimized quantization on that channel.
We then choose a per-tensor value of m by majority vote, i.e. the value of m that occurred most often
over all channels. In case of a tie we choose the value of m that has lowest cumulative MSE. Lastly,
we set c to the value that minimized MSE for the per-tensor value of m. We also experimented with
choosing m based on lowest cumulative MSE directly, but found negligible difference in resulting
accuracy. We decided to use majority vote to ensure channels with relatively large magnitude to
dominate the choice of m. Figures 11 and 12 show a per-layer analysis of the bitwidth choices that
minimize MSE.

Figure 11: SQNR per layer for ResNet18.

Figure 12: SQNR per layer for BERT (split up into weights and activations).

F Correlation between MSE in the output activations and the model

accuracy

In this section we provide an example of a correlation between MSE in output activations of a layer
and the full model accuracy. We take a pre-trained Resnet18 model, and consider one if its layers. We
inject Gaussian noise of increasing amplitude in its weight values, and measure MSE in the output
activations of the layer, and the final top-1 classification accuracy. The results are shown in figure 13.
The MSE value and the final accuracy exhibit strong correlation, i.e. the normalized correlation
coefficient value for this experiment is 0.98.

G Full experimental details

For our QAT experiments, we initialized our models using the settings that gave the best results for
the fixed format, the flexible bias format, and the fully flexible format. See Table 1 and the tables in I
for details. We then trained ResNet18 for 20 epochs, and MobileNetV2 for 10. We used the Adam
[25] to optimize the weights. We considered starting learning rates of 10�5 and 10�6 as these gave

19

Figure 13: An ablation performed on one layer of Resnet18 pre-trained on ImageNet. Gaussian noise
of increasing amplitude is added to the weights of the layer. The MSE in the output activations has
strong correlation in the drop in top-1 accuracy of the model.

best results in a pilot experiments. Learning rates were decayed to a factor of 10�2 of the starting
learning using cosine decay.

In experiments where FP8 parameters (c and m) were learned as well, we used SGD without
momentum. We considered learning rates 10�2, 10�3, 10�4, and 10�5. No weight decay was
applied to any of the models.

Baseline INT8 QAT results followed the procedure as described in [34].

H Gradients of the FP8 quantizer

As stated previously, the FP8 quantizer gives the ‘straight-through’ gradient [3] w.r.t. the values to be
quantized:

@

@xi
F (xi,m, c) =

⇢
1, if � c xi c

0, otherwise.
(39)

The gradient w.r.t. c is as follows:

@

@c
F (xi,m, c) =

8
>>>>>><

>>>>>>:

2pi

c

⇣jxc

s

m
� xc

s

⌘
, if

j
log2|xi|+bb

k
> 1 and � c xi c,

1

c ln(2)
, if

j
log2|xi|+bb

k
 1 and � c xi c,

�1, if xi < �c,

1, if xi > c,

(40)

Lastly, the gradient w.r.t. m is as follows:

@

@m
F (xi,m, c) = 2pi ln(2)

⇣jxc

s

m
� xc

s

⌘✓
27�bme +

2�m

(2� 2�m)

◆
(41)

I PTQ results

The best results for INT8, FP8 with fixed bias (per Mantissa/Exponent division), FP8 with flexible
bias, and fully flexible FP8, on all models considered in Section 5.2 are shown in Table 3.

Per-task BERT results are included in Table 4.

J DeepLabV3 weight distribution

DeepLabV3 shows a larger degradation in the ’fixed format’ PTQ setting than other models con-
sidered. Figure 14 shows the distribution of the values in each weight tensor in DeepLabV3. We

20

FP32 INT8 Fixed bias Flex bias Flex
5M2E 4M3E 3M4E 5M2E 4M3E 3M4E 2M5E

ResNet18 69.72 69.64 27.25 68.35 68.44 69.66 69.45 68.57 64.92 69.64
MobileNetV2 71.70 70.94 20.35 68.49 66.50 71.06 70.62 66.05 49.51 71.28

ViT 77.75 76.41 51.05 76.97 77.37 77.30 77.71 77.56 76.69 77.62
DeepLabV3 72.91 71.24 3.27 3.27 9.42 72.58 71.28 37.93 6.53 72.72

BERT 83.06 71.03 N/A 78.65 83.06 80.31 82.61 82.80 82.81 83.02
SalsaNext 55.80 54.22 22.24 55.79 54.92 55.52 55.67 55.12 53.08 55.02
HRNet 81.05 80.93 N/A 80.71 0.48 81.03 81.04 80.77 80.14 81.06

Table 3: PTQ Results on all models. Fixed bias: best results over all fixed bias values for each
Mantissa / Exponent division. Flex bias: best results over all initialization methods for each Mantissa
/ Exponent division. Bold numbers mark best results per model for all Fixed bias and Flex bias
results, respectively. Bold numbers in the ‘Flexible’ column indicate results where ‘Flexible’ PTQ
outperforms other PTQ methods.

Format CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Macro avg.
FP32 57.27 93.12 88.36 89.09 89.72 84.91 91.58 70.40 83.06
INT8 54.74 92.55 88.53 81.02 83.81 50.31 52.32 64.98 71.03
5M2E flex 58.92 91.86 87.49 88.50 89.21 81.69 80.52 64.62 80.31
4M3E flex 56.51 92.32 88.16 88.99 89.79 84.87 91.69 68.59 82.61
3M4E flex 57.29 93.12 87.35 88.87 89.76 84.87 91.51 69.68 82.80

2M5E flex 60.01 92.43 88.38 88.00 89.61 84.14 91.31 68.59 82.81

Table 4: Per task results for BERT for all GLUE tasks. Best quantized result for each task is marked
in boldface.

believe the low performance on fixed format PTQ to be due to the fact that some layers in early
the DeepLabV3 backbone have relatively large outliers (e.g. backbone.features.2.conv.0.weight,
row 1 column 4), necessitating a relatively large number of exponent bits, while some layers
later in the backbone and in the decoder have distributions that require few exponent bits (e.g.
backbone.high_level_features.15.conv.3.weight; backbone.high_level_features.16.conv.3.weight; de-
coder.last_conv.8.weight). This discrepancy is present in other networks, most notably MobileNetV2,
however, it is not as prominent as in this network.

21

Figure 14: A plot showing the distributions for each weight tensor in the DeepLabV3 model instance
used in our experiments.

22

	Introduction
	Background
	Integer quantization
	Floating point number system
	Assumptions and extensions

	Expected quantization error
	Expected quantization error
	Scalar product quantization error

	FP8 quantization simulation
	FP8 simulated quantization formulation
	Quantization-aware training with FP8
	Toy experiment: Learning minimal MSE on common distributions

	Experiments
	Baselines and experimental setup
	Post-training quantization results
	Quantization-aware training

	Related work
	Impact and Limitations
	Conclusion
	Analytical computation of the expected quantization error
	Input quantization error.
	Scalar product quantization error.
	Formulas for integrals I_x(a,b,x_0) and I_w(a,b,x_0).

	Ablations
	Quantization error ablation
	Comparison of the analytical and empirical rounding error.

	Examples of tensors in Bert
	Importance of the outliers
	MSE-based mantissa bits and bias
	Correlation between MSE in the output activations and the model accuracy
	Full experimental details
	Gradients of the FP8 quantizer
	PTQ results
	DeepLabV3 weight distribution

