
Rare Gems: Finding Lottery Tickets at Initialization

Kartik Sreenivasan∗w, Jy-yong Sohn∗w, Liu Yangw, Matthew Grindew
Alliot Naglew, Hongyi Wangc, Eric Xingmcp, Kangwook Leew, Dimitris Papailiopoulosw

c Carnegie Mellon University m Mohamed Bin Zayed University of Artificial Intelligence
pPetuum, Inc. w University of Wisconsin-Madison

Abstract

Large neural networks can be pruned to a small fraction of their original size,
with little loss in accuracy, by following a time-consuming “train, prune, re-train”
approach. Frankle & Carbin [9] conjecture that we can avoid this by training lottery
tickets, i.e., special sparse subnetworks found at initialization, that can be trained
to high accuracy. However, a subsequent line of work [11, 41] presents concrete
evidence that current algorithms for finding trainable networks at initialization, fail
simple baseline comparisons, e.g., against training random sparse subnetworks.
Finding lottery tickets that train to better accuracy compared to simple baselines
remains an open problem. In this work, we resolve this open problem by proposing
GEM-MINER which finds lottery tickets at initialization that beat current baselines.
GEM-MINER finds lottery tickets trainable to accuracy competitive or better than
Iterative Magnitude Pruning (IMP), and does so up to 19× faster.

1 Introduction

A large body of research since the 1980s empirically observed that large neural networks can be
compressed or sparsified to a small fraction of their original size while maintaining their predictive
accuracy [14–16, 20, 23, 29, 45]. Although several pruning methods have been proposed during the
past few decades, many of them follow the “train, prune, re-train” paradigm. Although the above
methods result in very sparse, accurate models, they typically require several rounds of re-training,
which is computationally intensive.

Frankle & Carbin [9] suggest that this computational burden may be avoidable. They conjecture
that given a randomly initialized network, one can find a sparse subnetwork that can be trained to
accuracy comparable to that of its fully trained dense counterpart. This trainable subnetwork found at
initialization is referred to as a lottery ticket. The study above introduced iterative magnitude pruning
(IMP) as a means of finding these lottery tickets. Their experimental findings laid the groundwork for
what is now known as the Lottery Ticket Hypothesis (LTH).

Although Frankle & Carbin [9] establish that the LTH is true for tasks like image classification on
MNIST, they were not able to get satisfactory results for more complex datasets like CIFAR-10 and
ImageNet when using deeper networks, such as VGG and ResNets [10]. In fact, subsequent work
brought the effectiveness of IMP into question. Su et al. [41] showed that even randomly sampled
sparse subnetworks at initialization can beat lottery tickets found by IMP as long as the layerwise
sparsities are chosen carefully. Gale et al. [12] showed that methods like IMP which train tickets
from initialization cannot compete with the accuracy of a model trained with pruning as part of the
optimization process.

Frankle et al. [10] explain the failures of IMP using the concept of linear mode connectivity which
measures the stability of these subnetworks to SGD noise. Extensive follow-up studies propose

∗Authors contributed equally to this paper.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Randomly
Initialized
Network

Partially trained
Dense Network

IMP

Gem-Miner

88.8%
accuracy

Iteratively Prune
and retrain

59.3%
accuracy

90.5%
accuracy

Trained 99.5% Sparse
Subnetwork

Prune at initialization

99.5% sparse
Subnetwork at
Initialization Finetune

31.88%
accuracy

Warmup

99.5% sparse
Subnetwork at Warm

Initialization Finetune

Trained 99.5% Sparse
Subnetwork

10%
accuracy

Figure 1: Conceptual visualization of GEM-MINER vs IMP with warmup. The accuracies listed are on a 99.5%
sparse VGG-16 trained on CIFAR-10. Given a randomly initialized network, both methods output a subnetwork
which is then finetuned. IMP requires warmup i.e., few epochs of training before it can find a sparse subnetwork.
GEM-MINER finds a rare gem, a subnetwork at initialization that achieves high accuracy both before and after
weight training.

several heuristics for finding trainable sparse subnetworks at initialization [24, 42, 43]. However,
subsequent work by Frankle et al. [11], Su et al. [41] show experimentally that all of these methods
fail simple sanity checks. Most methods seem to merely identify good sparsities at each layer, but
given those, random sparse subnetworks can be trained to similar or better accuracy.

Frankle et al. [10] show that with a small modification, IMP can beat these sanity checks; the caveat is
that it no longer finds these subnetworks at initialization, but after a few epochs of warm-up training.
Since these subnetworks are found after initialization, IMP with warmup does not find lottery
tickets.

As noted in the original work by Frankle & Carbin [9], the importance of finding trainable subnetworks
at initialization is computational efficiency. It is far preferable to train a sparse model from scratch,
rather than having to deal with a large dense model, even if that is for a few epochs (which is what
IMP with warmup does). To the best of our knowledge, the empirical validity of the Lottery Ticket
Hypothesis, i.e., the hunt for subnetworks at initialization trainable to SOTA accuracy, remains an
open problem.

Our Contributions. We resolve this open problem by developing GEM-MINER, an algorithm
that finds sparse subnetworks at initialization, trainable to accuracy comparable or better than IMP
with warm-up. GEM-MINER does so by first discovering rare gems. Rare gems are subnetworks at
initialization that attain accuracy far above random guessing, even before training. Rare gems can
then be refined to achieve near state-of-the-art accuracy. Simply put, rare gems are lottery tickets that
also have high accuracy at initialization.

High accuracy at initialization is not a requirement for a network to be defined as a lottery ticket.
However, if our end goal is high accuracy after training, then having high accuracy at initialization
likely helps.

Rare gems found by GEM-MINER are the first lottery tickets to beat all baselines in [11, 41]. In
Fig. 1 we give a sketch of how GEM-MINER compares with IMP with warm start. GEM-MINER
finds subnetworks at initialization and is up to 19× faster than IMP which needs warmup.

2 Related Work

Lottery ticket hypothesis. Following the pioneering work of Frankle & Carbin [9], the search
for lottery tickets has grown across several applications, such as language tasks, graph neural
networks and federated learning [3, 4, 13, 25]. Savarese et al. [37] propose an alternative to IMP
which is significantly faster given enough parallel computing resources. While the LTH itself has
yet to be proven mathematically, the so-called strong LTH has been derived which shows that
any target network can be approximated by pruning a randomly initialized network with minimal
overparameterization [28, 30, 32]. Recently, it has been shown that for such approximation results it
suffices to prune a random binary network with slightly larger overparameterization [6, 40].

Pruning at initialization. While network pruning has been studied since the 1980s, finding sparse
subnetworks at initialization is a more recently explored approach. Lee et al. [24] propose SNIP,

2

Table 1: We compare the different popular pruning methods in the literature on whether they prune at initialization,
are finetunable and pass sanity checks. We also list the amount of computation they need to find a 98.6% sparse
subnetwork on ResNet-20, CIFAR-10. For consistency, we do not include the time required to finetune this
subnetwork to full accuracy as it would be equal for all methods. For single-shot pruning method we list it as 1
epoch but this depends on the choice of batch-size. Learning Rate Rewinding which we label Renda et al. [34] is
a pruning after training algorithm and just outputs a high accuracy subnetwork and hence the sanity checks do
not apply to it.

Pruning Method Prunes at initialization Finetunable Passes sanity checks Computation to reach 98.6% sparsity

IMP [9] ✗ ✓ ✓ 2850 epochs
SNIP [24] ✓ ✓ ✗ 1 epoch
GraSP [43] ✓ ✓ ✗ 1 epoch

SynFlow [42] ✓ ✓ ✗ 1 epoch
Edge-popup [33] ✓ ✗ ✗ 150 epochs
Smart Ratio [41] ✓ ✓ – O(1)

Learning Rate Rewinding [34] ✗ – – 3000 epochs
GEM-MINER ✓ ✓ ✓ 150 epochs

which prunes based on a heuristic that approximates the importance of a connection. Tanaka et al.
[42] propose SynFlow which prunes the network to a target sparsity without ever looking at the data.
Wang et al. [43] propose GraSP which computes the importance of a weight based on the Hessian
gradient product. Patil & Dovrolis [31] propose PHEW which is based on the decomposition of
the Neural Tangent Kernel. Lubana & Dick [26] create an interesting theoretical framework based
on gradient flow that justifies the successes and failures of several of these algorithms. The goal of
these algorithms is to find a subnetwork that can be trained to high accuracy. Ramanujan et al. [33]
propose Edge-Popup (EP) which finds a subnetwork at initialization that has high accuracy to begin
with. Unfortunately, they also note that in most cases, these subnetworks are not conducive to further
finetuning.

The above algorithms are all based on the idea that one can assign a “score” to each weight to measure
its importance. Once such a score is assigned, one simply keeps the top fraction of these scores based
on the desired target sparsity. This may be done by sorting the scores layer-wise or globally across
the network. Additionally, this can be done in one-shot (SNIP, GraSP) or iteratively (SynFlow). Note
that IMP can also be fit into the above framework by defining the “score” to be the magnitude of the
weights and then pruning globally across the network iteratively.

More recently, Alizadeh et al. [1] propose ProsPr which utilizes the idea of meta-gradients through
the first few steps of optimization to determine which weights to prune. Their intuition is that this
will lead to masks at initialization that are more amenable to training to high accuracy. While it finds
high accuracy subnetworks, we show in Section 4.2 that it fails to pass the sanity checks in [11, 41].
Sanity checks for lottery tickets. A natural question that arises with pruning at initialization is
whether these algorithms are truly finding interesting and nontrivial subnetworks, or if their perfor-
mance after finetuning can be matched by simply training equally sparse, yet random subnetworks.
Ma et al. [27] propose more rigorous definitions of winning tickets and study IMP under several
settings with careful tuning of hyperparameters. Frankle et al. [11] and Su et al. [41] introduce several
sanity checks (i) Random shuffling (ii) Weight reinitialization (iii) Score inversion and (iv) Random
Tickets. Even at their best performance, they show that SNIP, GraSP and SynFlow merely find a good
sparsity ratio in each layer and fail to surpass, in term of accuracy, fully trained randomly selected
subnetworks, whose sparsity per layer is similarly tuned. Frankle et al. [11] show through extensive
experiments that none of these methods show accuracy deterioration after random reshuffling. We
explain the sanity checks in detail in Section 4 and use them as baselines to test our own algorithm.
Pruning during/after training. While the above algorithms prune at/near initialization, there
exists a rich literature on algorithms which prune during/after training. Unlike IMP, algorithms in
this category do not rewind the weights. They continue training and pruning iteratively. Frankle
et al. [11] and Gale et al. [12] show that pruning at initialization cannot hope to compete with these
algorithms. While they do not find lottery tickets, they do find high accuracy sparse networks. Zhu &
Gupta [45] propose a gradual pruning schedule where the smallest fraction of weights are pruned
at a predefined frequency. They show that this results in models up to 95% sparsity with negligible
loss in performance on language as well as image processing tasks. Gale et al. [12] and Frankle et al.
[11] also study this as a baseline under the name magnitude pruning after training. Renda et al. [34]
show that rewinding the learning rate as opposed to weights(like in IMP) leads to the best performing

3

sparse networks. The closest among these to GEM-MINER is Movement Pruning by Sanh et al. [36]
which also computes the mask as a quantized version of the scores in its soft variant. However,
it is important to remark that these algorithms do not find Lottery Tickets, merely high accuracy
sparse networks. We contrast these different methods in Table 1 in terms of whether they prune at
initialization, their finetunability, whether they pass sanity checks as well as their computational
costs.

Finally, we note that identifying a good pruning mask can be thought of as training a binary network
where the loss is computed over the element-wise product of the original network with the mask.
This has been explored in the quantization during training literature [5, 19, 38].

3 GEM-MINER: Discovering Rare Gems

Setting and notation. Let S = {(xi, yi)}ni=1 be a given training dataset for a k-classification
problem, where xi ∈ Rd0 denotes a feature vector and label yi ∈ {1, . . . , k} denotes its label.
Typically, we wish to train a neural network classifier f(w;x) : Rd0 → {1, . . . , k}, where w ∈ Rd

denotes the set of weight parameters of this neural network. The goal of a pruning algorithm is
to extract a mask m = {0, 1}d, so that the pruned network is denoted by f(w ⊙m;x), where ⊙
denotes the element-wise product. We define the sparsity of this network to be the fraction of weights
that have been pruned: s = (1− ∥m∥0/d) following the convention set by Frankle et al. [11]. The
loss of a classifier on a single sample (x, y) is denoted by ℓ(f(w ⊙ m;x), y), which captures a
measure of discrepancy between prediction and reality. In what follows, we will denote by w0 ∈ Rd

to be the set of random initial weights. The type of randomness will be explicitly mentioned when
necessary.

On the path to rare gems; first stop: Maximize pre-training accuracy. A rare gem needs to
satisfy three conditions: (i) sparsity, (ii) non-trivial pre-training accuracy, and (iii) that it can be
finetuned to achieve accuracy close to that of the fully trained dense network. This is not an easy task
as we have two different objectives in terms of accuracy (pre-training and post-training), and it is
unclear if a good subnetwork for one objective is also good for the other. However, since pre-training
accuracy serves as a lower bound on the final performace, we focus on maximizing that first, and
then attempt to further improve it by finetuning.

100 200 300 400 500 600
Epoch

99

95

50

Sp
ar

sit
y

(%
)

GM: (84.62, 87.37)
EP: (10.0, 10.0)
GM: (87.95, 89.51)
EP: (70.69, 84.34)

GM: (73.38, 89.32)
EP: (90.06, 90.93)

GM: (87.6, 90.67)
EP: (91.37, 92.07)

GM (=0)
EP (s=50%)

GM (=3e-6)
EP (s=80%)

GM (=7e-6)
EP (s=95%)

GM (=1.5e-5)
EP (s=98.3%)

Figure 2: The sparsity of intermediate results, the ac-
curacy of the final output, and the accuracy after fine-
tuning on MobileNet-V2, CIFAR-10. For GEM-MINER
(GM), we also visualize the sparsity upper bounds as
dotted lines. As λ increases, note that the sparsity of
GEM-MINER’s output increases. Forλ = 3 · 10−6, the
iterative freezing algorithm kicks in around epoch 220,
regularizing the sparsity thereafter. The gem found by
GEM-MINER(λ = 1.5 · 10−5) achieves an accuracy of
84.62% before finetuning and 87.37% after finetuning,
while EP is unable to achieve non-trivial accuracy before
or after finetuning at 98.3% sparsity.

Our algorithm is inspired by Edge-Popup
(EP) [33]. EP successfully finds subnetworks
with high pre-training accuracy but it has two
major limitations: (i) it does not work well in
the high sparsity regime (e.g., > 95%), and (ii)
most importantly, the subnetworks it finds are
typically not conducive to further finetuning in
that the final accuracy does not approach the
performance of IMP.

In the following, we take GEM-MINER apart
and describe the components that allow it to
surpass these issues.

GEM-MINER without sparsity control.
Much like EP, GEM-MINER employs a form of
backpropagation, and works as follows. Each
of the random weights [w0]i in the original
network is associated with a normalized score
pi ∈ [0, 1]. These normalized scores become
our optimization variables and are responsible
for computing the supermask m, i.e., the pruning pattern of the network at initialization.

For a given set of weights w and scores p, GEM-MINER sets the effective weights as weff = w⊙r(p),
where r(·) is an element-wise rounding function, and m = r(p) is the resulting supermask. The
rounding function can be changed, e.g., r can perform randomized rounding, in which case pi would
be the probability of keeping weight wi in m. In our case, we found that simple deterministic
rounding, i.e., r(pi) = 1pi≥0.5 works well.

4

At every iteration GEM-MINER samples a batch of training data and performs backpropagation on
the loss of the effective weights, with respect to the scores p, while projecting back to [0, 1] when
needed. During the forward pass, due to the rounding function, the effective network used is indeed
a subnetwork of the given network. Here, since r(p) is a non-differentiable operation we use the
Straight Through Estimator (STE) [2] which backpropagates through the indicator function as though
it were the identity function. Therefore, even pruned scores can receive non-zero gradients which
allows them to revive over the course of training.

Note that this vanilla version of GEM-MINER is unable to exercise control over the final sparsity of
the model. For reasons that will become evident in below, we will call this version of our algorithm
GEM-MINER(0). There is already a stark difference from EP: GEM-MINER(0) will automatically
find the optimal sparsity, while EP requires the target sparsity s as an input parameter.

However, at the same time, this also significantly limits the applicability of GEM-MINER(0) as
one cannot obtain a highly sparse gem. Shown as a dark blue curve in Fig. 2 is the sparsity of
GEM-MINER(0). Here, we run GEM-MINER with a randomly initialized MobileNet-V2 network on
CIFAR-10. Note that the sparsity stays around 50% throughout the run, which is consistent with the
observation by Ramanujan et al. [33] that accuracy of subnetworks at initialization is maximized at
around 50% sparsity.
Algorithm 1: GEM-MINER

Input: Dataset D = {(xi, yi)}, learning rate η,
rounding function r(·), number of epochs
E, freezing period T , target sparsity
s ∈ [0, 1]

Output: Mask m = r(p)⊙ q ∈ {0, 1}d

1 c← 1
E
ln

(
1

1−s

)
, q ← 1d

2 w,p← random vector in Rd,
3 random vector in [0, 1]d

4 for j in 1, 2, . . . , E do
5 for (xi, yi) ∈ D do
6 weff ← (w ⊙ q)⊙ r(p)
7 p← p− η∇p ℓ(f(weff ;xi), yi)
8 /* STE */
9 p← proj[0,1]d p

10 if mod(j, T) = 0 then
11 I1 ← {i : qi = 1}
12 psorted ← sort(pi∈I1)

13 pbottom ← Bottom-(1− e−cj) fraction
14 of psorted

15 q ← q ⊙ 1pi /∈pbottom

Regularization and Iterative freezing. GEM-
MINER(0) is a good baseline algorithm for find-
ing accurate subnetworks at initialization, but it
cannot be used to find rare gems, which need
to be sparse and trainable. To overcome this
limitation, we apply a standard trick – we add a
regularization term to encourage sparsity. Thus,
in addition to the task loss computed with the
effective weights, we also compute the L2 or L1

norm of the score vector p and optimize over
the total regularized loss. More formally, we
minimize ℓ := ℓtask + λℓreg, where λ is the hy-
perparameter and ℓreg is either L2 or L1 norm
of the score vector p.

We call this variant GEM-MINER(λ), where λ
denotes the regularization weight. This naming
convention should explain why we called the
initial version GEM-MINER(0).

The experimental results in Fig. 2 show that this
simple modification indeed allows us to control
the sparsity of the solution. We chose to use
the L2 regularizer, however preliminary exper-
iments showed that L1 performs almost identi-

cally. By varying λ from λ = 0 to λ = 7 · 10−6 and λ = 1.5 · 10−5, the final sparsity of the gem
found by GEM-MINER(λ) becomes 97.5% and 98.6%, respectively.

One drawback of this regularization approach is that it only indirectly controls the sparsity. If we
have a target sparsity s, then there is no easy way of finding the appropriate value of λ such that the
resulting subnetwork is s-sparse. If we choose λ to be too large, then it will give us a gem that is way
too sparse; too small a λ and we will end up with a denser gem than what is needed. As a simple
heuristic, we employ iterative freezing, which is widely used in several existing pruning algorithms,
including IMP [9, 12, 45]. More specifically, we can design an exponential function s(j) = 1− e−cj

for some c > 0, which will serve as the upper bound on the sparsity. If the total number of epochs is
E and the target sparsity is s, we have s(E) = 1− e−cE = s. Thus, we have c = 1

E ln
(

1
1−s

)
.

Once this sparsity upper bound is designed, the iterative freezing mechanism regularly checks the
current sparsity to see if the lower bound is violated or not. If the sparsity bound is violated, it finds
the smallest scores, zeros them out, and freezes their values thereafter. By doing so, we can guarantee
the final sparsity even when λ was not sufficiently large. To see this freezing mechanism in action,
refer the blue curve in Fig. 2. Here, the sparsity lower bounds (decreasing exponential functions) are
visualized as dotted lines. Note that for the case of λ = 3 · 10−6, the sparsity of the network does

5

not decay as fast as desired, so it touches the sparsity lower bound around epoch 220. The iterative
freezing scheme kicks in here, and the sparsity decay is controlled by the lower bound thereafter,
achieving the specified target sparsity at the end.

The full pseudocode of GEM-MINER is provided in Algorithm 1. There are two minor implementation
details which differ from the explanation above: (i) we impose the iterative freezing every T epochs,
not every epoch and (ii) iterative freezing is imposed even when the sparsity bound is not violated.

50.0 5.0 2.0
Fraction of Remaining Weights (%)

10
20
30
40
50
60
70
80
90

Te
st

 A
cc

ur
ac

y
(%

)

Weight training
GM

Renda et al.
GM (reinit weight)

IMP (with warmup)
GM (shuffle mask)

EP
GM (invert score)

SR

ResNet-20

50 80 95 97.598.6 99.5
Sparsity (%)

50
60
70
80
90

Te
st

 A
cc

. (
%

)

MobileNet-V2

50 80 95 97.5 98.6
Sparsity (%)

50
60
70
80
90

VGG-16

50 80 95 97.598.6 99.5
Sparsity (%)

50
60
70
80
90

WideResNet-28-2

50 80 95 97.5 98.6
Sparsity (%)

50
60
70
80
90

50 80 95 97.598.6 99.5
Sparsity (%)

50
60
70
80
90

Te
st

 A
cc

. (
%

)

50 80 95 97.5 98.6
Sparsity (%)

50
60
70
80
90

50 80 95 97.598.6 99.5
Sparsity (%)

50
60
70
80
90

50 80 95 97.5 98.6
Sparsity (%)

50
60
70
80
90

Figure 3: Performance of different pruning algorithms on CIFAR-10 for benchmark networks. Top: post-finetune
accuracy; Bottom: sanity check methods suggested in Frankle et al. [11] applied on GEM-MINER (GM). Note
that GM achieves similar post-finetune accuracy as IMP, and typically outperforms it in the sparse regime. GM
has higher post-finetune accuracy than EP and Smart Ratio (SR). GM also passes the sanity checks suggested
in Frankle et al. [11]. Finally, GM (which prunes at init) nearly achieves the performance of Renda et al. (which
is a pruning after training method) in the sparse regime, e.g., 98.6% sparsity in ResNet-20.

4 Experiments

In this section, we present the experimental results2 for the performance of GEM-MINER across
various tasks.

Tasks. We evaluate our algorithm on (Task 1) CIFAR-10 classification, on ResNet-20, MobileNet-
V2, VGG-16, and WideResNet-28-2, (Task 2) TinyImageNet classification on ResNet-18 and
ResNet-50, (Task 3) Finetuning on the Caltech-101 [7] dataset using a ResNet-50 pretrained on
ImageNet, and (Task 4) CIFAR-100 classification using ResNet-32. The detailed description of the
datasets, networks and hyperparameters can be found in Section A of the Appendix.

Proposed scheme. We run GEM-MINER with an L2 regularizer. If a network reaches its best
accuracy after E epochs of dense training, then we run GEM-MINER for E epochs from random init
to get a sparse subnetwork at initialization, and then run weight training on the sparse subnetwork for
another E epochs.

Comparisons. We tested our method against the following baselines: dense weight training and
four pruning algorithms: (i) IMP [10], (ii) Learning rate rewinding [34], denoted by Renda et al., (iii)
Edge-Popup (EP) [33], and (iv) Smart-Ratio (SR) which is the random pruning method proposed by
Su et al. [41].

We also ran the following sanity checks, proposed by Frankle et al. [11]: (i) (Random shuffling): To
test if the algorithm prunes specific connections, we randomly shuffle the mask at every layer. (ii)
(Weight reinitialization): To test if the final mask is specific to the weight initialization, we reinitialize
the weights from the original distribution. (iii) (Score inversion): Since most pruning algorithms
use a heuristic/score function as a proxy to measure the importance of different weights, we invert
the scoring function to check whether it is a valid proxy. More precisely, this test involves pruning
the weights which have the smallest scores rather than the largest. In all of the above tests, if the
accuracy after finetuning the new subnetwork does not deteriorate significantly, then the algorithm is
merely identifying optimal layerwise sparsities.

2Our codebase can be found at https://github.com/ksreenivasan/pruning_is_enough.

6

https://github.com/ksreenivasan/pruning_is_enough

50.0 5.0 2.0
Fraction of Remaining Weights (%)

10
20
30
40
50
60
70
80
90

Te
st

 A
cc

ur
ac

y
(%

)

Weight training
GM

Renda et al.
GM (reinit weight)

IMP (with warmup)
GM (shuffle mask)

EP
GM (invert score)

SR

TinyImageNet, ResNet-18

50 80 95 97.598.6 99.5
Sparsity (%)

0

20

40

60

Te
st

 A
cc

. (
%

)

TinyImageNet, ResNet-50

50 80 95 97.598.6 99.5
Sparsity (%)

30

40

50

60

Caltech-101, ResNet-50

50 80 95 97.5
Sparsity (%)

60

80

100

CIFAR-100, ResNet-32

50 80 95 97.598.6 99.5
Sparsity (%)

20
30
40
50
60
70
80

50 80 95 97.598.6 99.5
Sparsity (%)

20

40

60

Te
st

 A
cc

. (
%

)

50 80 95 97.598.6 99.5
Sparsity (%)

0
10
20
30
40
50
60

50 80 95 98
Sparsity (%)

20
40
60
80

100

50 80 95 97.598.6 99.5
Sparsity (%)

20
30
40
50
60
70
80

Figure 4: Accuracy on image classification tasks on TinyImageNet, Caltech-101 and CIFAR-100. For Caltech-
101, we pruned a pre-trained ImageNet model (ResNet-50). Top: post-finetune accuracy, bottom: sanity check
methods suggested in Frankle et al. [11] applied on GEM-MINER.

4.1 Rare gems obtained by GEM-MINER

Task 1. Fig. 3 shows the sparsity-accuracy tradeoff for various pruning methods trained on CIFAR-
10 using ResNet-20, MobileNet-V2, VGG-16 and WideResNet-28-2. For each column (network),
we compare IMP, IMP with learning rate rewinding (Renda et al.), GEM-MINER, EP, and SR in two
performance metrics: the top row shows the accuracy of the subnetwork after weight training and
bottom row shows the result of the sanity checks on GEM-MINER.

As shown in the top row of Fig. 3, GEM-MINER finds a lottery ticket at initialization. It reaches
accuracy similar to IMP after weight training. Moreover, in the sparse regime (e.g., above 98.6% for
ResNet-20 and MobileNet-V2), GEM-MINER outperforms IMP in terms of post-finetune accuracy.
The bottom row of Fig. 3 shows that GEM-MINER passes the sanity check methods. For all networks,
the performance in the sparse regime (98.6% sparsity or above) shows that the suggested GEM-
MINER algorithm enjoys 3–10% accuracy gap with the best performance among variants. The results
in the top row show that GEM-MINER far outperforms the random network with smart ratio (SR).

100 200 300 400 500 600
Epoch

10
30
50
70
90

Te
st

 A
cc

ur
ac

y
(%

)

Weight training (at 300 epoch)
IMP (at 6000 epoch)
GM
EP

Figure 5: Convergence plot for CIFAR-10,
MobileNet-V2 experiments, where we ap-
ply GEM-MINER for 300 epochs and then
finetune the sparse model for another 300
epochs, to reach 98.6% sparse model. We
include the accuracy of dense weight train-
ing, IMP and EP (98.6% sparse model) as
references. Note that the comparison is with
300 epochs of weight training, and IMP us-
ing 20 rounds of iterative pruning, i.e., 300
× 20 = 6000 epochs, to reach 98.6% spar-
sity. GEM-MINER achieves a higher accu-
racy than IMP despite its 19× shorter run-
time to find a sparse subnetwork.

Tasks 2–4. Fig. 4 shows the sparsity-accuracy tradeoff
for Tasks 2–4. Similar to Fig. 3, the top row reports the ac-
curacy after weight training, and the bottom row contains
the results of the sanity checks.

As shown in Fig. 4a and Fig. 4b, the results for Task 2
show that (i) GEM-MINER achieves accuracy comparable
to IMP as well as Renda et al. (IMP with learning rate
rewinding) even in the sparse regime, (ii) GEM-MINER has
non-trivial accuracy before finetuning (iii) GEM-MINER
passes all the sanity checks, and (iv) GEM-MINER outper-
forms EP and SR. These results show that GEM-MINER
successfully finds rare gems even in the sparse regime for
Task 2.

Fig. 4c shows the result for Task 3. Unlike other tasks,
GEM-MINER does not reach the post-finetune accuracy
of IMP, but GEM-MINER enjoys over an 8% accuracy
gap compared with EP and SR. Moreover, the bottom row
shows that GEM-MINER has over 20% higher accuracy
than the sanity checks above 95% sparsity showing that
the subnetwork found by GEM-MINER is unique in this
sparse regime.

Fig. 4d shows the result for Task 4 where once again, GEM-MINER is comparable to IMP throughout
and outperforms it in the sparse regime.

7

Table 2: We compare ProsPr [1] vs GEM-MINER on ResNet-20, CIFAR-10 and run the random shuffling as well
as the weight reinit sanity checks. Note that GEM-MINER produces a subnetwork that is higher accuracy despite
being more sparse. Moreover, ProsPr does not show significant decay in performance after the sanity checks
while GEM-MINER does. Therefore, it is likely that ProsPr is merely identifying good layerwise sparsity ratios.

Algorithm Sparsity Accuracy after finetune Accuracy after Random shuffling Accuracy after Weight reinitialization

ProsPr 95% 82.67% 82.15% 81.64%
GEM-MINER 96.28% 83.4% 78.73% 78.6%

4.2 Comparison to ProsPr

Alizadeh et al. [1] recently proposed a pruning at init method called ProsPr which utilizes meta-
gradients through the first few steps of optimization to determine which weights to prune, thereby
accounting for the “trainability” of the resulting subnetwork. In Table 2 we compare it against GEM-
MINER on ResNet-20, CIFAR-10 and also run the (i) Random shuffling and (ii) Weight reinitialization
sanity checks from Frankle et al. [11]. We were unable to get ProsPr using their publicly available
codebase to generate subnetworks at sparsity above 95% and therefore chose that sparsity. Note
that GEM-MINER produces a subnetwork that is higher accuracy despite being more sparse. After
finetuning for 150 epochs, our subnetwork reaches 83.4% accuracy while the subnetwork found by
ProsPr only reaches 82.67% after training for 200 epochs. More importantly, ProsPr does not show
significant decay in performance after the random reshuffling or weight reinitialization sanity checks.
Therefore, as Frankle et al. [11] remark, it is likely that it is identifying good layerwise sparsity ratios,
rather than a mask specific to the initialized weights.

4.3 Observations on GEM-MINER

Convergence of accuracy and sparsity. Fig. 5 shows how the accuracy of GEM-MINER improves
as training progresses, for MobileNet-V2 on CIFAR-10 at sparsity 98.6%. This shows that GEM-
MINER, reaches high accuracy even early in training, and can be finetuned to accuracy higher than
that of IMP (which requires 19× the runtime than our algorithm). EP remains at random-guessing
throughout as it typically does not work well in the sparse regime.

50.0 5.0 2.0
Fraction of Remaining Weights (%)

10
20
30
40
50
60
70
80
90

Te
st

 A
cc

ur
ac

y
(%

)

Weight training
GM

Renda et al.
GM (reinit weight)

IMP (with warmup)
GM (shuffle mask)

EP
GM (invert score)

SR

ResNet-20

50 80 95 97.598.6 99.5
Sparsity (%)

10

30

50

70

90

Te
st

 A
cc

. (
%

)

MobileNet-V2

50 80 95 97.5 98.6
Sparsity (%)

10

30

50

70

90

VGG-16

50 80 95 97.598.6 99.5
Sparsity (%)

10

30

50

70

90

WideResNet-28-2

50 80 95 97.5 98.6
Sparsity (%)

10

30

50

70

90

Figure 6: Performance of different pruning algorithms before finetuning on CIFAR-10 for benchmark networks.
GEM-MINER finds subnetworks that already have reasonably high accuracy even before weight training. Note
that, while IMP and SR have scarcely better than random guessing at initialization, subnetworks found by
GEM-MINER typically perform even better than EP, especially in the sparse regime.

High pre-finetune accuracy. As shown in Fig. 6, GEM-MINER finds subnetworks at initialization
that have a reasonably high accuracy even before the weight training, e.g., above 90% accuracy for
98.6% sparsity in VGG-16, and 85% accuracy for 98.6% sparsity in MobileNet-V2. Note that, in
contrast, IMP and SR have accuracy scarcely better than random guessing at initialization. Clearly,
GEM-MINER fulfills its objective in maximizing accuracy before finetuning and therefore finds rare
gems – lottery tickets at initialization which already have high accuracy.

Limitations of GEM-MINER. We observed that in the dense regime (50% sparsity, 80% sparsity),
GEM-MINER sometimes performs worse than IMP. While we believe that this can be resolved by
appropriately tuning the hyperparameters, we chose to focus our attention on the sparse regime. We
would also like to remark that GEM-MINER is fairly sensitive to the choice of hyperparameters and
for some models, we had to choose different hyperparameters for each sparsity to ensure optimal
performance. Though this occurs rarely, we also find that an extremely aggressive choice of λ can

8

Table 3: We construct different variants of EP and compare their performance with GEM-MINER, for ResNet-20,
CIFAR-10, 99.41% sparsity. We establish that having a global score metric and gradually pruning is key to
improved performance.

Pruning
Method EP Global EP

Global EP with
Gradual Pruning

Global EP with
Gradual Pruning and Regularization GEM-MINER

Pre-finetune acc (%) 19.57 22.22 31.56 19.67 45.30
Post-finetune acc (%) 24.47 34.42 63.54 63.72 66.15

lead to layer-collapse where one or more layers gets pruned completely. This happens when all the
scores p of that layer drop below 0.5.

1 6 11 16 20
Layer ID

50

100

Pe
r L

ay
er

 S
pa

rs
ity

 (%
)

GM IMP Smart Ratio EP

50% Sparsity

0

20K

1 6 11 16 20
Layer ID

0

50

Sp
ar

sit
y

(%
)

96.28% Sparsity

0

20K

Nu
m

 P
ar

am

1 6 11 16 20
Layer ID

60

80

100

98.6% Sparsity

0

20K

1 6 11 16 20
Layer ID

60

80

100
Sp

ar
sit

y
(%

)
99.41% Sparsity

0

20K

Nu
m

 P
ar

am

1 6 11 16 20
Layer ID

80

100

Figure 7: The layerwise sparsity for ResNet-20 pruned
by GEM-MINER, IMP, Smart Ratio, and EP. The dark
bar is the layerwise number of parameters. Both GEM-
MINER and IMP utilize most of the sparsity budget for
the first and last layers.

Layer-wise sparsity. We compare the layer-
wise sparsities of different algorithms for
ResNet-20 on CIFAR-10 in Fig. 7. Both GEM-
MINER and IMP spend most of their sparsity
budget on the first and last layers. SR assigns
70% sparsity to the last layer and the sparsity
increases smoothly across the others. EP main-
tains the target sparsity ratio at each layer and
therefore is always a horizontal line.

How does GEM-MINER resolve EP’s failings?
An open problem from Ramanujan et al. [33] is
why most subnetworks found by EP are not fine-
tunable. While GEM-MINER is significantly
different from EP, it is reasonable to ask which
modification allowed it to find lottery tickets
without forgoing high accuracy at initialization.
Table 3 explores this question for ResNet-20,
CIFAR-10 at 99.41% sparsity. Here, we com-
pare EP, GEM-MINER, as well as three EP vari-
ants that we construct. (i) (Global EP) is a modification where the bottom-k scores are pruned
globally, not layer-wise. This allows the algorithm to trade-off sparsity in one layer for another. (ii)
(Gradual pruning) reduces the parameter k gradually as opposed to setting it to the target sparsity
from the beginning. (iii) (Regularization): we add an L2 term on the score p of the weights to encour-
age sparsity. The results indicate that global pruning and gradual pruning significantly improve both
the pre and post-finetune accuracies of EP. Adding regularization does not improve the performance
significantly. Finally, adding all three features to EP allows it to achieve 63.72% accuracy, while
GEM-MINER reaches 66.15% accuracy. It is important to note that even with all three features, EP is
inherently different from GEM-MINER in how it computes the supermask based on the scores. But
we conjecture that aggressive, layerwise pruning is the key reason for EP’s failings.

Ablation study on GEM-MINER. To better understand the relative importance of the different
components of the algorithm, we do a more thorough ablation study in the same vein as the above
analysis. We consider the setting of ResNet-20, CIFAR-10 at a sparsity of 98.56% and evaluate the
performance of (i) GEM-MINER, (ii) GEM-MINER without regularization and (iii) GEM-MINER
without regularization and without global pruning. As shown in Table 4, GEM-MINER outperforms
all of its ablated versions. In fact, GEM-MINER without regularization works extremely poorly, and
the final variant is barely above random guessing. Note that when we ablate global pruning, the
algorithm chooses the bottom−k weights in each layer much like EP.

Table 4: Ablation study of GEM-MINER on ResNet-20, CIFAR-10 at 98.56% sparsity. GM outperforms all of its
variants and in fact, when we ablate regularization and global pruning, the performance is barely above random
guessing. (GM - Regularization) denotes GM without regularization.

GEM-MINER variant Accuracy before FT (%) Accuracy after FT (%)

GM 61.23 77.12
GM - Regularization 10.18 27.41

GM - Regularization - Global Pruning 10.08 11.6

9

Table 5: Comparison of GEM-MINER and its longer version, for ResNet-20, CIFAR-10 at 98.6% sparsity. LONG
GM, when given the same number of epochs rivals the performance of Renda et al. [34]

Method GM (cold) Long GM (cold) IMP (warm) Renda et al. (pruning after training)

Number of Epochs 300 3000 3000 3000
Accuracy (%) 77.89 79.50 74.52 80.21

Applying GEM-MINER for longer periods. Recall that GEM-MINER uses 19 × fewer epochs
than methods like IMP [10] and Learning rate rewinding (Renda et al. [34]), to find a subnetwork
at 98.6% sparsity which can then be trained to high accuracy. Here, we consider a long version of
GEM-MINER to see if it can benefit if it is allowed to run for longer. Table 5 shows the comparison
of post-finetune accuracy for GEM-MINER, LONG GEM-MINER, IMP and Renda et al. [34] tested
on ResNet-20, CIFAR-10 at 98.5% sparsity. Regular GEM-MINER, applies iterative freezing every 5
epochs to arrive at the target sparsity in 150 epochs. LONG GEM-MINER instead prunes every 150
epochs and therefore reaches the target sparsity in 3000 epochs. We find that applying GEM-MINER
for longer periods improves the post-finetune accuracy in this regime by 1.5%. This shows that given
equal number of epochs, GEM-MINER, which prunes at initialization, can close the gap to Learning
rate rewinding [34] which is a prune-after-training method.

5 Conclusion

In this work, we resolve the open problem of pruning at initialization by proposing GEM-MINER, an
algorithm that finds rare gems – lottery tickets at initialization that have non-trivial accuracy even
before finetuning, and accuracy rivaling prune-after-train methods after finetuning. Unlike other
methods, subnetworks found by GEM-MINER pass all known sanity checks and baselines. Moreover,
we show that GEM-MINER is competitive with IMP despite not using warmup and up to 19× faster.

Acknowledgements

The authors would like to thank Jeff Linderoth for early discussions on viewing pruning as an integer
programming problem. This research was supported by ONR Grant No. N00014-21-1-2806 and
NSF/Intel Partnership on Machine Learning for Wireless Networking Program under Grant No.
CNS-2003129.

References
[1] Alizadeh, M., Tailor, S. A., Zintgraf, L. M., van Amersfoort, J., Farquhar, S., Lane, N. D., and

Gal, Y. Prospect pruning: Finding trainable weights at initialization using meta-gradients. In
International Conference on Learning Representations, 2021. 3, 8

[2] Bengio, Y., Léonard, N., and Courville, A. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013. 5

[3] Chen, T., Frankle, J., Chang, S., Liu, S., Zhang, Y., Wang, Z., and Carbin, M. The lottery ticket
hypothesis for pre-trained bert networks. arXiv preprint arXiv:2007.12223, 2020. 2

[4] Chen, T., Sui, Y., Chen, X., Zhang, A., and Wang, Z. A unified lottery ticket hypothesis for
graph neural networks. In International Conference on Machine Learning, pp. 1695–1706.
PMLR, 2021. 2

[5] Courbariaux, M., Bengio, Y., and David, J.-P. Binaryconnect: Training deep neural networks
with binary weights during propagations. In Advances in neural information processing systems,
pp. 3123–3131, 2015. 4

[6] Diffenderfer, J. and Kailkhura, B. Multi-prize lottery ticket hypothesis: Finding accurate binary
neural networks by pruning a randomly weighted network. In International Conference on
Learning Representations, 2020. 2

[7] Fei-Fei, L., Fergus, R., and Perona, P. Learning generative visual models from few training ex-
amples: An incremental bayesian approach tested on 101 object categories. In 2004 conference
on computer vision and pattern recognition workshop, pp. 178–178. IEEE, 2004. 6, 14

10

[8] Fischer, J. and Burkholz, R. Towards strong pruning for lottery tickets with non-zero biases.
arXiv preprint arXiv:2110.11150, 2021. 14

[9] Frankle, J. and Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018. 1, 2, 3, 5

[10] Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Linear mode connectivity and the lottery
ticket hypothesis. In International Conference on Machine Learning, pp. 3259–3269. PMLR,
2020. 1, 2, 6, 10, 15, 21

[11] Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M. Pruning neural networks at initializa-
tion: Why are we missing the mark? arXiv preprint arXiv:2009.08576, 2020. 1, 2, 3, 4, 6, 7, 8,
15, 16, 20

[12] Gale, T., Elsen, E., and Hooker, S. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019. 1, 3, 5

[13] Girish, S., Maiya, S. R., Gupta, K., Chen, H., Davis, L. S., and Shrivastava, A. The lottery ticket
hypothesis for object recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 762–771, 2021. 2

[14] Han, S., Pool, J., Tran, J., and Dally, W. Learning both weights and connections for efficient
neural network. In Advances in neural information processing systems, pp. 1135–1143, 2015. 1

[15] Han, S., Mao, H., and Dally, W. J. Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding. arXiv:1510.00149 [cs], February
2016. URL http://arxiv.org/abs/1510.00149.

[16] Hassibi, B. and Stork, D. G. Second order derivatives for network pruning: Optimal Brain
Surgeon. In Hanson, S. J., Cowan, J. D., and Giles, C. L. (eds.), Advances in Neural Information
Processing Systems 5, pp. 164–171. Morgan-Kaufmann, 1993. 1

[17] He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pp. 1026–1034, 2015. 15

[18] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,
2016. 15

[19] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. Binarized neural networks.
In Advances in neural information processing systems, pp. 4107–4115, 2016. 4

[20] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. Quantized neural
networks: Training neural networks with low precision weights and activations. The Journal of
Machine Learning Research, 18(1):6869–6898, 2017. 1

[21] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 16

[22] Krizhevsky, A. et al. Learning multiple layers of features from tiny images. 2009. 14

[23] LeCun, Y., Denker, J. S., and Solla, S. A. Optimal Brain Damage. In Touretzky, D. S. (ed.),
Advances in Neural Information Processing Systems 2, pp. 598–605. Morgan-Kaufmann, 1990.
URL http://papers.nips.cc/paper/250-optimal-brain-damage.pdf. 1

[24] Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot network pruning based on connection
sensitivity. arXiv preprint arXiv:1810.02340, 2018. 2, 3

[25] Li, A., Sun, J., Wang, B., Duan, L., Li, S., Chen, Y., and Li, H. Lotteryfl: Personalized and
communication-efficient federated learning with lottery ticket hypothesis on non-iid datasets.
arXiv preprint arXiv:2008.03371, 2020. 2

[26] Lubana, E. S. and Dick, R. A gradient flow framework for analyzing network pruning. In
International Conference on Learning Representations, 2020. 3

11

http://arxiv.org/abs/1510.00149
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf

[27] Ma, X., Yuan, G., Shen, X., Chen, T., Chen, X., Chen, X., Liu, N., Qin, M., Liu, S., Wang,
Z., et al. Sanity checks for lottery tickets: Does your winning ticket really win the jackpot?
Advances in Neural Information Processing Systems, 34, 2021. 3

[28] Malach, E., Yehudai, G., Shalev-Schwartz, S., and Shamir, O. Proving the lottery ticket
hypothesis: Pruning is all you need. In International Conference on Machine Learning, pp.
6682–6691. PMLR, 2020. 2

[29] Mozer, M. C. and Smolensky, P. Skeletonization: A Technique for Trimming the Fat from a
Network via Relevance Assessment. In Touretzky, D. S. (ed.), Advances in Neural Information
Processing Systems 1, pp. 107–115. Morgan-Kaufmann, 1989. 1

[30] Orseau, L., Hutter, M., and Rivasplata, O. Logarithmic pruning is all you need. Advances in
Neural Information Processing Systems, 33, 2020. 2

[31] Patil, S. M. and Dovrolis, C. Phew: Constructing sparse networks that learn fast and generalize
well without training data. In International Conference on Machine Learning, pp. 8432–8442.
PMLR, 2021. 3

[32] Pensia, A., Rajput, S., Nagle, A., Vishwakarma, H., and Papailiopoulos, D. Optimal lottery
tickets via subsetsum: Logarithmic over-parameterization is sufficient. Advances in neural
information processing systems, 2020. 2

[33] Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., and Rastegari, M. What’s hidden
in a randomly weighted neural network? In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11893–11902, 2020. 3, 4, 5, 6, 9, 14, 21

[34] Renda, A., Frankle, J., and Carbin, M. Comparing rewinding and fine-tuning in neural network
pruning. arXiv preprint arXiv:2003.02389, 2020. 3, 6, 10

[35] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4510–4520, 2018. 15

[36] Sanh, V., Wolf, T., and Rush, A. Movement pruning: Adaptive sparsity by fine-tuning. Advances
in Neural Information Processing Systems, 33:20378–20389, 2020. 4

[37] Savarese, P., Silva, H., and Maire, M. Winning the lottery with continuous sparsification.
Advances in Neural Information Processing Systems, 33:11380–11390, 2020. 2

[38] Simons, T. and Lee, D.-J. A review of binarized neural networks. Electronics, 8(6):661, 2019. 4

[39] Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014. 15

[40] Sreenivasan, K., Rajput, S., Sohn, J.-y., and Papailiopoulos, D. Finding everything within
random binary networks. arXiv preprint arXiv:2110.08996, 2021. 2

[41] Su, J., Chen, Y., Cai, T., Wu, T., Gao, R., Wang, L., and Lee, J. D. Sanity-checking pruning
methods: Random tickets can win the jackpot. arXiv preprint arXiv:2009.11094, 2020. 1, 2, 3,
6, 19, 20

[42] Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Pruning neural networks without any data
by iteratively conserving synaptic flow. Advances in Neural Information Processing Systems,
33, 2020. 2, 3

[43] Wang, C., Zhang, G., and Grosse, R. Picking winning tickets before training by preserving
gradient flow. In International Conference on Learning Representations, 2019. 2, 3

[44] Zagoruyko, S. and Komodakis, N. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016. 15

[45] Zhu, M. and Gupta, S. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017. 1, 3, 5

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Refer Section 4.3
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Our codebase
can be found at https://github.com/ksreenivasan/pruning_is_enough

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Refer the appendix

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Wherever it was computationally feasible, we ran 3 trials
and report the plots with an error bar

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Refer the appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the original

papers that introduced ResNets, VGGs etc.
(b) Did you mention the license of the assets? [Yes] We cite the original papers that

introduced CIFAR-10, TinyImagenet etc.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

https://github.com/ksreenivasan/pruning_is_enough

Contents of the Appendix
A Experimental Setup 14

A.1 Dataset . 14
A.2 Model . 14
A.3 Hyper-Parameter Configuration . 15

A.3.1 GEM-MINER Training . 16
A.3.2 Finetuning the Rare Gems . 16

B Additional Experiments 16

A Experimental Setup

In this section, we introduce the datasets (A.1) and models (A.2) that we used in the experiments.
We also report the detailed hyperparameter choices (A.3) of GEM-MINER each network and sparsity
level. For competing methods, we used hyperparameters used by the original authors whenever
possible. In other cases, we tried SGD (with momentum) and Adam optimizers, initial learning rate
(LR) of η, 0.1η, 10η, and cosine/multi- step LR decay, where η is the best LR for weight training. All
of our experiments are run using PyTorch 1.11 on Nvidia 3090 TIs and Nvidia V100s.

A.1 Dataset
In the experiments, we demonstrate the performance of GEM-MINER across various datasets. For
each dataset, we optimize the training loss, and tune hyperparameters based on the validation accuracy.
The test accuracy is reported for the best model chosen based on the validation accuracy.
CIFAR-10. CIFAR-10 consists of 60, 000 images from 10 classes, each with size 32×32, of which
50000 images are used for training, and 10, 000 images are for testing [22]. For data processing, we
follow the standard augmentation: normalize channel-wise, randomly horizontally flip, and random
cropping. For hyperparameter tuning we randomly split the train set into 45000 train images and
retain 5000 images as the validation set. Once the hyperparameters are chosen, we retrain on the full
train set and report test accuracy.
TinyImageNet. TinyImageNet contains 100000 images of 200 classes (500 each class), which are
downsized to 64× 64 colored images. Each class has 500 training images, 50 validation images and
50 test images. Augmentation includes normalizing, random rotation and random flip. Train set,
validation set, and test set are provided.
Caltech-101. Caltech-101 contains figures of objects from 101 categories. There are around 40
to 800 images per category, and most categories have about 50 images [7]. The size of each image
is roughly 300× 200 pixels. When processing the image, we resize each figure to 224× 224, and
normalize it across channels. We split 20% of the data to be test set, and in the remaining training set,
we retain 25% as the validation set, giving us train/val/test = 60%/20%/20% split.
CIFAR-100. The CIFAR-100 dataset is just like CIFAR-10 except that it has 100 classes containing
600 images each. Therefore, it has 60, 000 images from 100 classes, each with size 32× 32, of which
50000 images are used for training, and 10, 000 images are for testing [22]. For data processing, we
follow the standard augmentation: normalize channel-wise, randomly horizontally flip, and random
cropping. For hyperparameter tuning we randomly split the train set into 45000 train images and
retain 5000 images as the validation set. Once the hyperparameters are chosen, we retrain on the full
train set and report test accuracy.

A.2 Model
Unless otherwise specified, in all of our experiments experiments, we use Non-Affine BatchNorm,
and disable bias for all the convolution and linear layers. We find that most implementations of
pruning algorithms instead use them and merely ignore them while pruning and while computing
sparsity. While they do not alter sparsity by much (since there are few parameters when compared to
weights), we still find this to be inaccurate. Moreover, it is not obvious how to prune biases – should
they be treated as weight? Should they be treated as a different set of parameters? In order to make
sure we compare all the baselines on the same platform, we decided that eliminating them was the
fair choice (As [8] describe, pruning with biases is an interesting problem but needs to be handled
slightly carefully). We use uniform initialization for scores, signed constant initialization [33] for

14

weight parameters for GEM-MINER while dense training initializes the weights using the standard
Kaiming normal initializaiton [17].

The networks that we used in our experiments are summarized as follows.

ResNet-18, ResNet-20, ResNet-32 and ResNet-50 [18]. We follow the standard ResNet archi-
tecture. ResNet-20 is designed for CIFAR-10, ResNet-32 is for CIFAR-100, while ResNet-18 and
ResNet-50 are for ImageNet. In Table 6, we use the convention [kernel × kernel, output]×(times
repeated) for the convolution layers found in ResNet blocks. We base our implementation on the
following GitHub repository3.

WideResNet-28-2 [44]. We base our implementation on the following GitHub repository4. Archi-
tecture details can be found in Table 6.

Table 6: ResNet architecture used in our experiments. The output layer of the network is changed according to
the dataset. For example, ResNet50 is used for both TinyImageNet and ImageNet so we changed the output
dimension to 200 and 1000 respectively.

Layer ResNet-20 ResNet-18 ResNet-50 WideResNet-28-2

Conv 1
3×3, 16 3×3, 64 7×7, 64 3×3, 16

padding 1 padding 3 padding 3 padding 1
stride 1 stride 2 stride 2 stride 1

Max Pool, kernel size 3, stride 2, padding 1

Layer
stack 1

[
3×3, 16
3×3, 16

]
×3

[
3×3, 64
3×3, 64

]
×2

[
1×1, 64
3×3, 64
1×1, 256

]
×3

[
3×3, 32
3×3, 32

]
×4

Layer
stack 2

[
3×3, 32
3×3, 32

]
×3

[
3×3, 128
3×3, 128

]
×2

[
1×1, 128
3×3, 128
1×1, 512

]
×4

[
3×3, 64
3×3, 64

]
×4

Layer
stack 3

[
3×3, 64
3×3, 64

]
×3

[
3×3, 256
3×3, 256

]
×2

[
1×1, 256
3×3, 256
1×1, 1024

]
×6

[
3×3, 128
3×3, 128

]
×4

Layer
stack 4

[
3×3, 512
3×3, 512

]
×2

[
1×1, 512
3×3, 512
1×1, 2048

]
×3- -

FC Avg Pool, kernel size 8 Adaptive Avg Pool, output size (1, 1) Avg Pool, kernel size 8
64× N_CLASSES 512× N_CLASSES 2048× N_CLASSES 128× N_CLASSES

VGG-16 [39]. In the original VGG-16 network, there are 13 convolution layers and 3 FC layers
(including the last linear classification layer). We follow the VGG-16 architectures used in [10, 11]
to remove the first two FC layers while keeping the last linear classification layer. This finally leads
to a 14-layer architecture, but we still call it VGG-16 as it is modified from the original VGG-16
architectural design. Detailed architecture is shown in Table 7. We base our implementation on the
GitHub repository5.

MobileNet-V2 [35]. We base our implementation on the GitHub repository.6 Details of the
architecture is shown in Table 8.

A.3 Hyper-Parameter Configuration

In this section, we will state the hyperparameter configuration for GEM-MINER and finetuning lottery
tickets. For each dataset, model and different target sparsity, we tuned our hyperparameters for
GEM-MINER by trying out different values of learning rate and L2 regularization weight λ. We also

3https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py
4https://github.com/xternalz/WideResNet-pytorch/blob/master/wideresnet.py
5https://github.com/kuangliu/pytorch-cifar/blob/master/models/vgg.py
6https://github.com/kuangliu/pytorch-cifar/blob/master/models/mobilenetv2.py

15

https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py
https://github.com/xternalz/WideResNet-pytorch/blob/master/wideresnet.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/vgg.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/mobilenetv2.py

Table 7: Detailed architecture of the VGG-16 architecture used in our experiments. We have a non-affine
batchnnorm layer followed by a ReLU activation after each convolutional layer (omitted in the table). The
shapes for convolution layers follow (cin, cout, k, k).

Parameter Shape Layer hyper-parameter

layer1.conv1.weight 3 × 64 × 3 × 3 stride:1;padding:1

layer2.conv2.weight 64 × 64 × 3 × 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer3.conv3.weight 64 × 128 × 3 × 3 stride:1;padding:1

layer4.conv4.weight 128 × 128 × 3 × 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer5.conv5.weight 128 × 256 × 3 × 3 stride:1;padding:1

layer6.conv6.weight 256 × 256 × 3 × 3 stride:1;padding:1

layer7.conv7.weight 256 × 256 × 3 × 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer8.conv9.weight 256 × 512 × 3 × 3 stride:1;padding:1

layer9.conv10.weight 512 × 512 × 3 × 3 stride:1;padding:1

layer10.conv11.weight 512 × 512 × 3 × 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer11.conv11.weight 512 × 512 × 3 × 3 stride:1;padding:1

layer12.conv12.weight 512 × 512 × 3 × 3 stride:1;padding:1

layer13.conv13.weight 512 × 512 × 3 × 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

pooling.avg N/A kernel size:1;stride:1

layer14.conv14.weight 512 × 10 × 1 × 1 stride:1;padding:1

test different pruning periods of 5, 8, and 10 epochs. Finally, we also tried ADAM [21] and SGD.
While SGD usually comes out on top, there were some settings where ADAM performed better.

A.3.1 GEM-MINER Training

We tested the CIFAR-10 dataset on the following architectures: i) ResNet-20 ii) MobileNet-V2
iii) VGG-16 iv) WideResNet-28-2. For TinyImageNet, we test on the architectures: i) ResNet-18
ii) ResNet-50. We tested the transfer learning on pretrained ImageNet model, where the target task
is classification on Caltech-101 dataset with 101 classes. We first loaded the ResNet-50 model
pretrained for ImageNet7 and changed the last layer to a single fully-connected network having size
2048 × 101. To match the performance of the pretrained model, we used Affine BatchNorm. For
CIFAR-100, we test on ResNet-32. The hyperparameter choices for each network, dataset and their
corresponding sparsities are listed in Tables (9, 10, 11, 12, 13, 14, 15, 16)

A.3.2 Finetuning the Rare Gems

The details of the hyperparameter we used in finetuning the rare gems we find is shown in Table 17.

B Additional Experiments

We repeated the comparison of GEM-MINER with the baselines on MobileNet-V2 on TinyImagenet
as well as ResNet-18 on CIFAR-10. We show the results in Fig. 8. Similar to our earlier experiments,
we have the following observations. Note that GEM-MINER outperforms IMP (with warmup) in the
sparse regime. Also, as is expected, GEM-MINER has non-trivial accuracy before finetune, which is
higher than both EP and significantly higher than IMP. GEM-MINER shows a significant deterioration
in performance when subjected to the sanity checks suggested in Frankle et al. [11]. Therefore,
GEM-MINER is considered to pass the sanity checks. Finally GEM-MINER (at initialization) nearly

7https://pytorch.org/vision/stable/models.html

16

https://pytorch.org/vision/stable/models.html

Table 8: The MobileNet-V2 structure that we use. Each layer consists of 3 total SubnetConv layer which
correspond to the respective matrix. Inside the matrix is [kernal×kernal, Cout]×(number of times to repeat).

Layer Name MobileNet-V2

Conv1 3×3, 32, stride 1, padding 1

Conv2

[
1×1, 32
3×3, 32
1×1, 16

]
×1

Conv3

[
1×1, 96
3×3, 96
1×1, 24

]
×1

Conv4

[
1×1, 144
3×3, 144
1×1, 24

]
×1

Conv5

[
1×1, 144
3×3, 144
1×1, 32

]
×1

Conv6

[
1×1, 192
3×3, 192
1×1, 32

]
×2

Conv7

[
1×1, 192
3×3, 192
1×1, 64

]
×1

Conv8

[
1×1, 384
3×3, 384
1×1, 64

]
×3

Conv9

[
1×1, 384
3×3, 384
1×1, 96

]
×1

Conv10

[
1×1, 576
3×3, 576
1×1, 96

]
×2

Conv11

[
1×1, 576
3×3, 576
1×1, 160

]
×1

Conv12

[
1×1, 960
3×3, 960
1×1, 160

]
×2

Conv13

[
1×1, 960
3×3, 960
1×1, 320

]
×1

FC1 320×1280
FC2 1280×10

Table 9: Hyper Parameters used for different sparsities for GEM-MINER on ResNet-20 on CIFAR-10.

Network/Dataset Sparsity Pruning Period Optimizer LR Lambda

ResNet-20
CIFAR-10

50% 8 SGD 0.05 10−8

86.26% 5 SGD 0.1 10−5

96.27% 5 SGD 0.1 3× 10−5

98.56% 5 SGD 0.1 10−4

99.41% 5 SGD 0.1 10−4

17

Table 10: Hyper Parameters used for different sparsities for GEM-MINER on MobileNet-V2 on CIFAR-10.

Network/Dataset Sparsity Pruning Period Optimizer LR Lambda

MobileNet-V2
CIFAR-10

50% 5 SGD 0.05 0
80% 5 SGD 0.1 3× 10−6

95% 5 SGD 0.1 7× 10−6

98.56% 5 SGD 0.1 10−4

Table 11: Hyper Parameters used for different sparsities for GEM-MINER on VGG-16 on CIFAR-10.

Network/Dataset Sparsity Pruning Period Optimizer LR Lambda

VGG-16
CIFAR-10

50% 5 SGD 0.01 0
95% 5 SGD 0.01 10−6

97.5% 5 SGD 0.01 10−6

98.6% 5 SGD 0.01 10−6

99.5% 5 SGD 0.01 10−6

Table 12: Hyper Parameters used for different sparsities for GEM-MINER on WideResNet-28-2 on CIFAR-10.

Network/Dataset Sparsity Pruning Period Optimizer LR Lambda

WideResNet-28-2
CIFAR-10

50% 5 SGD 0.1 0
80% 10 SGD 0.1 10−5

95% 10 SGD 0.1 10−5

98.56% 10 SGD 0.1 10−5

99.5% 10 SGD 0.1 10−5

Table 13: Hyper Parameters used for different sparsities for GEM-MINER on ResNet-18 on TinyImageNet.

Network/Dataset Sparsity Pruning Period Optimizer LR Lambda

ResNet-18
TinyImageNet

50% 10 SGD 0.1 0
95% 5 SGD 0.001 8× 10−6

98.6% 5 SGD 0.001 5× 10−6

99.5% 5 SGD 0.001 10−5

Table 14: Hyper Parameters used for different sparsities for GEM-MINER on ResNet-50 on TinyImageNet.

Network/Dataset Sparsity Pruning Period Optimizer LR Lambda

ResNet-50
TinyImageNet

50% 5 ADAM 0.01 0
95% 5 ADAM 0.01 10−6

98.6% 5 ADAM 0.01 10−6

99.5% 5 ADAM 0.01 10−6

Table 15: Hyper Parameters used for different sparsities for GEM-MINER on ResNet-50 on Caltech101.

Network/Dataset Sparsity Pruning Period Optimizer LR Lambda

ResNet-50
Caltech101

50% 5 ADAM 0.01 0
95% 5 ADAM 0.01 10−6

98.6% 5 ADAM 0.01 10−6

99.5% 5 ADAM 0.01 10−6

achieves the performance of Renda et al. (Learning rate rewinding) in the sparse regime. This is
particularly impressive given that Renda et al. is a pruning-after-training method i.e., it prunes and
trains iteratively, never finding a subnetwork at or even near initiailization.

18

Table 16: Hyper Parameters used for different sparsities for GEM-MINER on ResNet-32 on CIFAR-100.

Network/Dataset Sparsity Pruning Period Optimizer LR Lambda

ResNet-32
CIFAR-100

50% 5 SGD 0.1 10−7

80% 5 SGD 0.1 10−6

95% 5 SGD 0.1 10−5

98% 5 SGD 0.1 10−5

99.5% 5 SGD 0.1 5× 10−5

Table 17: Hyperparameters used for finetuning. We use the same number of epochs for GEM-MINER and
finetuning.

Model Dataset Sparsity Epochs Batch Size LR LR-Schedule Milestones

ResNet-20 CIFAR-10 50% 150 128 0.1 [80, 120]
CIFAR-10 others 150 128 0.01 [80, 120]

MobileNet-V2 CIFAR-10 all 300 128 0.1 [150, 250]

VGG-16 CIFAR-10 all 200 128 0.05 [100, 150]

WideResNet-28-2 CIFAR-10 50% 150 128 0.1 [80, 120]
CIFAR-10 others 150 128 0.01 [80, 120]

ResNet-18 TinyImageNet all 200 256 0.1 [100, 150]

ResNet-50 TinyImageNet all 150 256 0.1 [80, 120]

ResNet-50 (Pretrained) Caltech-101 all 50 16 0.0001 [20, 40]

ResNet-32 CIFAR-100 all 150 64 0.01 [80, 120]

How far can we take random pruning? Recall that subnetworks identified by GEM-MINER
outperform random subnetworks found by sampling based on smart ratio (SR) [41]. However, SR
performs surprisingly well given that it is still random pruning. Therefore, we tried improving SR
to see how far we could take random pruning. For simplicity, we call these different versions of
SR starting with v1 which is the original algorithm suggested by Su et al. [41]. Table 18 compares
the post-finetune accuracy of subnetworks found by training randomly initialized subnetworks at
initialization, each using “smart ratios” found by increasingly sophisticated means. Given L-layer
network, each version of SR uses its own sparsity pattern p = [p1, · · · , pL] to generate random
subnetwork, where each layer randomly picks 0 < pl ≤ 1 fraction of weights to use. The sparsity
patterns are identified as follows:

• SR-v1: vanilla SR suggested in [41]

• SR-v2: set pl = pSRl for 2 ≤ l ≤ L− 1 and pl = pGM
l for l ∈ {1, L}

• SR-v3: set pl = pSRl for 2 ≤ l ≤ L− 1 and pl = 1 for l ∈ {1, L}
• SR-v4: start with pIMP and search sparsity patterns in a small ball around it.

• SR-v5: start with the sparsity pattern of v2, and tune pl using Eq (1)

• SR-v6: start with the sparsity pattern of v4, and tune pl using Eq (1)

The vanilla SR proposed by Su et al. [41] is denoted by SR-v1. Motivated by the fact that (i) GEM-
MINER outperforms SR and (ii) GEM-MINER and SR primarily differ in the layerwise sparsity pl
for the first and the last layers (refer Figure 7), we construct SR-v2. It uses the layerwise sparsity of
SR-v1 for intermediate layers (2 ≤ l ≤ L) and layerwise sparsity of GEM-MINER for l ∈ {1, L}. As
a simple variant of SR-v2, we also considered using full dense layer (pl = 1) for the first and the last
layer, which is denoted by SR-v3. This was because we observed that the first and last layers found
by GEM-MINER were relatively dense compared to SR-v1. SR-v4 searches a few points around the
sparsity pattern of IMP and chooses the best option. We chose only a few options based on intuition
to make the search computationally tractable.

Finally, we tried to formulate finding the optimal random pruning method by writing it as an
optimization problem in pl as follows:

19

50.0 5.0 2.0
Fraction of Remaining Weights (%)

10
20
30
40
50
60
70
80
90

Te
st

 A
cc

ur
ac

y
(%

)

Weight training
GM

Renda et al.
GM (reinit weight)

IMP (with warmup)
GM (shuffle mask)

EP
GM (invert score)

SR

CIFAR-10, ResNet-18

95 98 99.5
Sparsity (%)

50
60
70
80
90

Te
st

 A
cc

. (
%

)

TinyImageNet, MobileNet-V2

50 20 5 2.5 1.4
Sparsity (%)

20

40

60

Te
st

 A
cc

. (
%

)

95 97.5 98.6 99.5
Sparsity (%)

10

30

50

70

90

Te
st

 A
cc

. (
%

)

0 50 80 95 98 99
Sparsity (%)

0

20

40

60

95 97.5 98.6 99.5
Sparsity (%)

10
30
50
70
90

Te
st

 A
cc

. (
%

)

0 50 80 95 98 99
Sparsity (%)

20

40

60

Figure 8: Additional experimental results on comparing different pruning algorithms. Top: post-finetune
accuracy, Middle: pre-finetune accuracy, Bottom: sanity check methods suggested in Frankle et al. [11] applied
on GEM-MINER. Similar to earlier experiments, we find that GEM-MINER outperforms IMP (with warmup) in
the sparse regime in terms of both post finetune as well as pre-finetune accuracy. We also note that GEM-MINER
passes all of the sanity checks.

Table 18: Performance comparison of GEM-MINER and variants of Smart Ratio (SR), for ResNet-20 trained for
CIFAR-10 classification task, for target sparsity 98.56%. We denoted the vanilla SR in [41] as SR-v1 and tested
five additional variants, from SR-v2 to SR-v6. The detailed description of the variants are given in Paragraph B.

Schemes Gem-Miner SR (v1) [41] SR (v2) SR (v3) SR (v4) SR (v5) SR (v6)

Sparsity (%) 98.56 98.56 98.53 98.25 98.56 98.47 98.53
Accuracy (%) 77.89 65.61 68.59 69.78 69.92 69.01 69.08

min
pl

∑
(x,y)∈S

ℓ(f(wl ⊙ Bern(pl);x), y) (1)

Intuitively, this is equivalent to choosing pl such that the loss of the random subnetwork generated by
sampling the mask of layer l with probability pl is minimized.

In order to make the problem more tractable, we set the output of previous versions as the initial
value of pl. Choosing p

(0)
l as the pSR-v2

l and then applying SGD on Eq 1 gives us SR-v5. Repeating
this with p

(0)
l = pSR-v4

l results in SR-v6.

The results of Table 18 show that different strategies in random pruning can improve the performance
of random pruning, but GEM-MINER still has an 8% accuracy gap with the best random network we
found for ResNet-20, CIFAR-10 classification, when the target sparsity is 98.56%.

Relationship between pre-finetune accuracy and post-finetune accuracy. Recall that rare gems
need to have not only high post-finetune accuracy but also non-trivial pre-finetune accuracy.

20

10 20 30 40 50 60 70 80 90 100
Pre-finetune Acc (%)

40
50
60
70
80
90

100

Po
st

-fi
ne

tu
ne

 A
cc

 (%
)

GM (1.4%), lr=1e-2
GM (1.4%), lr=1e-3
GM (1.4%), lr=1e-4
GM (1.4%), lr=1e-5

GM (0.5%), lr=1e-2
GM (0.5%), lr=1e-3
GM (0.5%), lr=1e-4
GM (0.5%), lr=1e-5

SR (98.6%)
SR (99.5%)
EP (98.6%)
EP (99.5%)

10 20 30 40 50 60 70 80 90 100
Pre-finetune Acc (%)

40
50
60
70
80
90

100

Po
st

-fi
ne

tu
ne

 A
cc

 (%
)

Figure 9: Relationship between pre-finetune accuracy
and post-finetune accuracy, on CIFAR-10, VGG-16, for
GEM-MINER (GM), edge-popup (EP), and smart ratio
(SR). For both 98.6% and 99.5% sparsity, GEM-MINER
typically shows higher post-finetune accuracy when it
has higher pre-finetune acuracy. As noted by Ramanujan
et al. [33], subnetworks found by EP are not finetunable.

Since the latter is a lower bound on post-finetune
accuracy, we design GEM-MINER to just max-
imize the accuracy at initialization. However, it
is not clear that this actually maximizes post-
finetune accuracy. In fact, the performance
of EP and IMP clearly show that it is neither
a necessary nor sufficient condition. Fig. 9
shows both pre and post finetune accuracies
for GEM-MINER (GM), edge-popup (EP), and
smart ratio (SR), at both 98.6% and 99.5% spar-
sity, for CIFAR-10 classification using VGG-
16. For GEM-MINER, we show the results
of using four different learning rates η =
0.01, 0.001, 0.0001, 0.00001 for 200 epochs us-
ing lighter colors to indicate lower learning rates.
It turns out that η = 0.01 has the best pre
and post-finetune accuracies for both sparsities.
Moreover, it shows that there is some correlation
between pre-finetune and post-finetune accuracy
i.e., subnetworks that have higher pre-finetune
accuracies typically have higher accuracy after finetuning as well. However, comparing GEM-
MINER’s results for 99.5% sparsity with η = 0.0001 and η = 0.00001 shows that this pattern does
not always hold. With η = 0.00001, GEM-MINER achieves a higher pre-finetune accuracy but ends
up with lower accuracy after finetuning. Therefore, we conclude that while pre-finetune accuracy
is a reasonable proxy for accuracy after finetuning, it does not guarantee it in any way. Note that
both points for EP have “post-finetune accuracy” ≃ “pre-finetune accuracy”, which confirms the
observation by Ramanujan et al. [33] that subnetworks found by EP are not lottery tickets i.e., they
are not conducive to further training.

Discussions on the need of warmup for IMP. For completeness, we also tried different variants
of IMP. We refer to it as “cold” IMP when the weights are rewound to initialization, while “warm”
IMP rewinds to some early iteration, i.e., after training for a few epochs. Further, we classify it
depending on the number of epochs per magnitude pruning. We say IMP is “short” if it only trains
for a few epochs (e.g., 8 epochs for ResNet-20 on CIFAR-10) before pruning, and “long” if it takes a
considerably larger number of epochs before pruning (e.g., 160 epochs for ResNet-20 on CIFAR-10).
Regardless of “long” or “short”, the number of epochs to finetune the pruned model are the same.

With these informal definitions, we can categorize IMP into four different versions: a) short-cold
IMP, b) short-warm IMP, c) long-cold IMP, and d) long-warm IMP.

100.026.216.871.80.47
Fraction of Remaining Weights (%)

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

) long cold IMP
long warm IMP

short cold IMP
short warm IMP

GM

Before Finetuning

0.0 73.8 93.1 98.2 99.5
Sparsity (%)

25
50
75

Te
st

 A
cc

. (
%

)

After Finetuning

0.0 73.8 93.1 98.2 99.5
Sparsity (%)

60

80

Te
st

 A
cc

. (
%

)

Figure 10: Test accuracy before (left) and after (right)
finetuning for ResNet-20 on CIFAR-10. The “short” ver-
sion of IMP achieves the same accuracy-sparsity tradeoff
as long-warm IMP in the sparse regime. However, com-
paring the before finetuning accuracy (left) shows that
GEM-MINER is capable of finding rare gems at initial-
ization, whereas short-cold IMP can only find lottery
tickets.

In the literature, only long variants have been
studied thoroughly. Frankle et al. [10] noted that
for large networks and difficult tasks, long-cold
IMP fails to find lottery tickets, which is why
they introduce long-warm IMP.

Somewhat surprisingly, as shown in Fig. 10, we
find that short versions of IMP can achieve the
same or an even better accuracy-sparsity trade-
off especially in the sparse regime. In particu-
lar, short-cold IMP matches the performance of
long-warm one without any warmup, i.e., short-
cold IMP can find lottery-tickets at initialization.
However, note that short-cold IMP only finds
lottery tickets, not rare gems in that the sub-
networks it finds have accuracy close to that of
random guessing.

21

	Experimental Setup
	Dataset
	Model
	Hyper-Parameter Configuration
	Gem-Miner Training
	Finetuning the Rare Gems

	Additional Experiments

