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A Appendix

We present additional analysis, experiments and details for various components in the main manuscript.
We perform detailed ablations on different loss function and analysis of using varying σ for the
proposed MGW-Loss, which provides detailed explanation for effect of σ on performance and
validates our choice of σ for all experiments in the main paper. We also explain the potential social
impact our work can have (positive and negative) in detail.

B Potential Social Impact

This work can have positive and negative impact on future learning task related to complex video
understanding by reducing the amount of annotations needed for training a model. On the positive
side, while the iterative selection can take longer initially, it will save multiple hours on annotation
for a large scale dataset. A negative impact of this approach is its use to select and annotate data for
surveillance and intrusive monitoring. However, this can improve general video understanding at
large since the cost of annotating large dataset will be significantly less with this approach.

C Loss function details

The proposed MGW-Loss formulation is able to handle sparse annotations via interpolation of known
ground truth annotations and a Gaussian based weight estimation. Interpolation gives the in-between
annotation frames for a clip with sparse ground truth annotation, which allows the use of traditional
loss computation directly. However, since interpolation can be of low quality and not necessarily
on the correct region of frame, using it as is affects the network’s learning process due to adverse
noise. While we could directly mask frames with ground truth annotation and only use those for
loss computation, it is not able to train a model with low loss for initial frame selection algorithm.
Table 1 and 2 shows the performance gap for model trained with different loss types (masking,
interpolation and MGW loss). To utilize the ground truth annotated frames fully while giving only
partial importance to the interpolated frames, we propose our Max-Gaussian Weighted Loss which
uses a Gaussian distribution to give weight to the neighboring interpolated annotations. The Gaussian
is fixed around each ground truth annotation and the value for each frame is used as its weight
during loss computation. So an annotated frame further away from actual ground truth will have
very low weight compared to one near to the actual ground truth. Figure 1 visually demonstrates the
annotations for loss computation using masking, interpolation and proposed Gaussian interpolation
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Table 1: Comparison between different loss functions in UCF-101 for different percent of annotated
frames per video. For each setting, we train the model using the masking loss, the interpolation loss
and the proposed MGW loss with σ = 1.3.

Annotation Loss Type v-mAP@ f-mAP@
Percent 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

1% Masking 97.89 93.45 86.53 59.4 91.04 88.25 83.54 60.10
1% Interpolation 97.99 94.24 87.69 63.71 91.14 88.45 83.69 64.04
1% MGW 98.07 95.37 89.01 63.94 91.28 88.41 83.85 64.69
5% Masking 98.01 95.10 89.98 67.60 93.18 90.07 87.78 66.50
5% Interpolation 98.05 95.30 90.28 69.41 93.21 91.30 88.16 68.41
5% MGW 98.12 96.01 90.95 71.89 93.38 91.28 88.71 70.91
10% Masking 98.1 95.84 90.23 69.90 94.02 92.05 88.30 69.30
10% Interpolation 98.18 96.43 91.12 71.52 94.07 92.07 88.10 70.57
10% MGW 98.14 96.46 91.12 73.20 94.05 92.03 88.72 71.75

Table 2: Comparison between different loss functions in JHMDB for different percent of annotated
frames per video. For each setting, we train the model using the masking loss, the interpolation loss
and the proposed MGW loss with σ = 1.3.

Annotation Loss Type v-mAP@ f-mAP@
Percent 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

3% Masking 98.01 96.18 90.26 57.81 95.10 92.39 86.84 59.74
3% Interpolation 98.80 96.70 95.03 65.47 95.40 93.55 89.02 68.48
3% MGW 98.80 96.77 95.15 65.56 95.38 93.54 89.94 68.78
6% Masking 98.71 96.25 91.04 63.78 95.26 92.32 88.26 67.53
6% Interpolation 98.89 97.98 95.09 68.41 97.10 95.80 92.85 71.48
6% MGW 98.90 97.94 95.20 70.75 97.09 95.78 93.09 74.09
9% Masking 99.10 98.01 93.18 69.22 95.91 93.96 90.17 69.81
9% Interpolation 99.22 98.35 95.42 72.35 96.30 94.51 92.48 72.57
9% MGW 99.18 98.41 95.58 74.01 96.32 94.53 92.67 74.49

variation in the MGW-Loss function. We also show that the Gaussian weighted interpolation gives
best performance in table 1 and 2.

C.1 Selection of sigma (σ)

To further illustrate the effects of varying values of sigma (σ) in the proposed MGW-Loss function, we
evaluate the same loss function at different sigmas in table 3. We show different weight distributions
for various sigma values in figure 2, with the loss behaving as masking loss at very low sigma
(σ < 0.01) and as interpolation loss at high sigma (σ > 5). Since MGW-Loss will consider weights
for the interpolation based pseudo-labeled neighboring frames based on their distance from the
annotated frame, the value of σ will affect it significantly. Low sigma will give little to no weight
to neighbor frames while very high sigma will give all pseudo-labeled frames equal weights, which
might be incorrect with sparse annotations. Based on this, we prefer to pick a moderate sigma value
that gives partial weight to neighboring frames. We conduct our experiments with sigma values of
σ = 1.3 and σ = 2.5 in table 3. It is found that a leaner distribution using σ = 1.3 gives better
initialization with sparse frames than σ = 2.5 since interpolated annotations are not as trustworthy in
the beginning. Due to a stronger initialization, σ = 1.3 stays ahead and gives best scores for higher
annotation percentages as well.

C.2 Influence of Lambda λ

We perform an experiment to study the influence of λ on Eq. 3. The effect of different values of λ
is shown in table 4. We observe that giving higher weight to uncertainty (λ = 0.75) reduces overall
score as it ignores proximity value. Having lower weight on uncertainty (λ = 0.25) on the other hand
promotes more distance and performs better than λ = 0.75. Although λ = 0.25 has higher f-mAP @
0.5, we do not optimize this hyperparameter and use equal weight in the paper (λ = 0.5).
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Table 3: Results of using various values for σ in the proposed MGW-Loss in UCF-101. The effect of
MGW-Loss changes for different values of σ, with it behaving as masking loss at σ = 0, interpolation
loss at σ >= 5 and MGW loss at 0 < σ < 5.

Annotation Sigma v-mAP@ f-mAP@
Percent σ 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

1% 0 97.89 93.45 86.53 59.4 91.04 88.25 83.54 60.1
1% 1.3 98.07 95.37 89.01 63.94 91.28 88.41 83.85 64.69
1% 2.5 98.01 95.17 89.00 63.79 91.20 88.35 83.69 64.38
1% 5 97.99 94.24 87.69 63.71 91.14 88.45 83.69 64.04
5% 0 98.01 95.1 89.98 67.6 93.18 90.07 87.78 66.50
5% 1.3 98.12 96.01 90.95 71.89 93.38 91.28 88.71 70.91
5% 2.5 98.1 95.89 90.78 71.55 93.3 91.25 88.56 70.26
5% 5 98.05 95.3 90.28 69.41 93.21 91.3 88.16 68.41
10% 0 98.10 95.84 90.23 69.9 94.02 92.05 88.30 69.30
10% 1.3 98.14 96.46 91.12 73.2 94.05 92.03 88.72 71.75
10% 2.5 98.10 96.45 91.11 73.07 94.05 92.02 88.68 71.59
10% 5 98.18 96.43 91.12 71.52 94.07 92.07 88.10 70.57

Figure 1: Representation of using different σ values for MGW-Loss computation. Row 1: Ground
truth annotation (sparse) for a single video clip. Row 2: MGW with σ = 0 (equivalent to masking
out frames with GT present for loss computation). Row 3: MGW with high σ (High weight given to
all neighboring frames, equivalent to using interpolated ground truth annotations). Row 4: MGW
with σ = 1.3 (Max Gaussian value used as weight for each interpolated annotation).

C.3 Influence of Tau τ in non-activity suppression

As the model is very certain on most background pixels early on in the training, we observed that this
gives us a large margin between the true background pixel confidence value and the uncertain pixel
confidence value. We perform ablation with different τ values and show them in table 4. We observe
that changing τ affects the results slightly and hyperparameter tuning can affect the final results with
small margin. We did not perform hyperparameter tuning for τ in our proposed method.

D Comparison to prior supervised approach

We compare our proposed approach with prior supervised methods in Table 5 on UCF-101 and
J-HMDB dataset. Using only 10% of annotation on both datasets, our APU+MGW-Loss based
approach performs comparably with the same backbone using 100% annotation. Our 10% model’s
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Figure 2: Weight distribution for different values of sigma σ for the MGW-Loss function. Horizontal
axis shows the frames for a sample clip (with ground truth annotation at frame 4) and vertical axis
shows the weights given to each frame based on MGW-Loss with varying σ. The weights for σ from
0.01 till 5 is shown here, with σ < 0.01 acting as masking loss and σ > 5 acting as interpolation loss
and the values in between representing MGW loss.

Table 4: Influence of λ and τ in the training. We evaluate the effect of using different value of λ and
τ on UCF-101 using the proposed APU to increase annotations from 5% to 10%.
Lambda v-mAP@ f-mAP@ Tau v-mAP@ f-mAP@

(λ) 0.3 0.5 0.3 0.5 (τ ) 0.3 0.5 0.3 0.5
0.5 91.12 73.20 88.72 71.75 0.3 90.96 72.42 88.24 71.65

0.25 92.34 72.59 88.65 71.83 0.4 91.12 73.20 88.72 71.75
0.75 90.99 72.09 88.06 71.67 0.5 91.24 73.15 88.55 71.77

f-mAP@0.5 and v-mAP@0.5 is closer to multiple prior supervised models and can be trained with a
simpler end-to-end method.

Table 5: Comparison with prior state-of-the-art supervised methods on UCF-101 and J-HMDB. We
evaluate our full approach on v-mAP and f-mAP scores using only 10% annotation data. f@ denotes
f-mAP@. † is trained in weakly-supervised manner.

UCF-101 J-HMDB
Method Annot f@ v-mAP@ f@ v-mAP@

Percent 0.5 0.1 0.2 0.3 0.5 0.5 0.1 0.2 0.3 0.5
Peng et al. [1] 100% 65.7 77.3 72.9 65.7 35.9 58.5 - 74.3 - 73.1
TCNN [2] 100% 67.3 77.9 73.1 69.4 - 61.3 - 78.4 - -
Gu et al. [3] 100% 76.3 - - - 59.9 73.3 - - - -
ACT [4] 100% 69.5 - 76.5 - - - - 74.2 - 73.7
STEP [5] 100% 75.0 83.1 76.6 - - - - - - -
Rel. Graph [6] 100% 77.9 - - - - - - - - -
AIA [7] 100% 78.8 - - - - - - - - -
VidsCapsNet [8] 100% 78.6 98.6 97.1 93.7 80.3 64.6 98.4 95.1 89.1 61.9
Ours 100% 74.0 98.3 96.9 91.5 75.2 74.9 99.2 99.2 96.4 75.8
Ours † 10% 71.7 98.1 96.5 91.1 73.2 74.5 99.2 98.4 95.6 74.0

E Frame selection details

E.1 Uncertainty using dropout

We follow [9] to use dropout for generating uncertainty during inference. We apply 3D Dropout
with a dropout probability of 0.5 before the final convolution layer in the decoder network from
[8]. This dropout layer is enabled during inference, enabling uncertainty in the output by avoiding
memorization. We pass the same clip 10 times in the network with dropout enabled and collect the
output for uncertainty based scoring for each frame.
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Figure 3: Visualization of frames selected using different cost functions for (Left) Soccer Juggling,
(Right) Dog Walking. We show results for Our, random, equidistant, G*: Gal et al. [9] and A*:
Aghdam et al. [10], with all methods using same detection backbone for fair comparison. We visualize
two videos with long continuous actions, where our global ranking based frame selection approach
selects only few frames for annotation which are well spaced. Both baseline active learning methods
(G*, A*) end up selecting more frames since they don’t have global ranking in their formulation.
Non-active learning baseline (random, equidistant) select frames without any utility information.
Our method has better cost utilization by reducing redundant samples while maintaining better
performance than any other baseline method.

Table 6: Comparison between frame selection with different step size in UCF-101. For each setting,
we use the MGW-Loss with σ = 1.3 for consistency. We use the the proposed APU frame selection
method. We start with an initial random seed annotation and increase annotations by given step size
in each iteration.
Annotation v-mAP@ f-mAP@

Percent 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5
Step size 1%

1% 98.07 95.37 89.01 63.94 91.28 88.41 83.85 64.69
2% 98.07 95.41 89.42 66.4 92.14 88.65 84.20 67.10
3% 98.08 95.68 90.01 69.52 93.84 89.05 86.11 69.02
4% 98.12 95.89 90.72 71.00 94.04 89.89 87.51 70.00
5% 98.12 96.10 91.03 72.20 94.10 91.35 88.62 70.99
6% 98.15 96.18 91.03 72.70 94.12 91.52 88.73 71.31
7% 98.14 96.27 91.12 73.05 94.10 91.68 88.85 71.55
8% 98.15 96.32 91.15 73.21 94.14 91.84 88.80 72.47
9% 98.19 96.45 91.22 73.82 94.15 92.10 88.84 72.76

10% 98.22 96.58 91.22 73.94 94.15 92.10 88.89 72.91
Step size 5%

1% 98.07 95.37 89.01 63.94 91.28 88.41 83.85 64.69
5% 98.12 96.01 90.95 71.89 93.38 91.28 88.71 70.91

10% 98.14 96.46 91.12 73.20 94.05 92.03 88.72 71.75

E.2 Selection step size

Another crucial factor that can affect learning process initially is the frame selection step size. This
is directly related to the time needed for training. Larger step size will take shorter time as fewer
selection iterations are needed to expand the dataset while shorter step size will need multiple
selection iterations and can take longer as a result. Table 6 shows the difference of slow increment vs
fast increment vs random selection. While doing a larger step size of 5%, our final result is already
significantly better than random selection. When we perform annotation improvement for smaller
step size of 1%, we notice that the performance is consistently better than larger step size. With a
slow step size, our 10% data variant significantly outperforms both 10% with large step size and 10%
random frame selection.

E.3 Local vs Global frame selection

Frame selection can be done locally per each video or globally across all videos. While local
frame selection will select top K% frames with highest utility score for a given video, it might
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Table 7: Comparison between different frame selection method (Global selection vs Local selection)
in JHMDB. For each setting, we train the model using the MGW-Loss with σ = 1.3.

Annotation v-mAP@ f-mAP@
Percent 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5
Global

3% 98.81 96.77 95.15 65.56 95.38 93.54 89.94 68.78
6% 98.97 97.94 95.2 70.75 97.09 95.78 93.09 74.09
9% 99.18 98.41 95.58 74.01 96.32 94.53 92.67 74.50

Local
3% 98.81 96.77 95.15 65.56 95.38 93.54 89.94 68.78
6% 98.82 97.12 95.18 69.44 96.21 94.04 91.87 72.81
9% 99.15 98.08 95.19 72.83 96.25 94.73 92.48 73.55

Table 8: Per class score for Global vs Local frame selection method on JHMDB dataset. We report
the number of frames selected and the score for video level AP and frame level AP at IoU @ 0.5 for
global selection method and local selection method.

Class Frame selection Global scores Local scores
Global Local video-AP frame-AP video-AP frame-AP

brush_hair 391 232 0.75 0.68 0.67 0.60
catch 155 272 0.21 0.14 0.00 0.06
clap 382 248 1.00 0.90 0.85 0.86

climb_stairs 123 224 0.00 0.00 0.00 0.06
golf 240 240 0.00 0.10 0.00 0.05
jump 68 216 0.08 0.14 0.08 0.12

kick_ball 72 200 0.00 0.00 0.00 0.00
pick 110 224 0.08 0.22 0.33 0.24
pour 404 312 0.94 0.89 1.00 0.87

pullup 405 312 0.19 0.20 0.13 0.22
push 108 240 0.17 0.22 0.08 0.15
run 89 232 0.27 0.27 0.27 0.25

shoot_ball 133 232 0.00 0.02 0.00 0.01
shoot_bow 458 304 1.00 0.72 1.00 0.89
shoot_gun 343 312 0.25 0.30 0.25 0.19

sit 284 216 0.58 0.53 0.58 0.52
stand 254 200 0.64 0.65 0.64 0.68

swing_baseball 332 312 0.00 0.05 0.00 0.17
throw 430 280 0.27 0.17 0.18 0.15
walk 166 232 0.17 0.14 0.17 0.18
wave 333 240 0.92 0.93 0.67 0.66

not take into account similar frames across other videos for same class. This poses a possibility
for redundant information in the annotation. Since our goal is to reduce annotation budget while
increasing information for fewest annotations possible, we want to utilize our annotation budget
wisely. A possible solution is to globally rank the frames based on utility across all videos, while
still maintaining distance based scoring. We propose the global frame selection process, where we
score the frames for each video based on Gaussian distance from closest annotated frame in that
video, but rank them globally across all videos. Once a frame is selected, we update the score for
all other frames nearby based on distance and re-rank them. The score updating is only done for
distance based factors of the equation and does not need running of the frames through the model
again, reducing any significant extra time compared to local frame selection. Table 7 shows the
difference between doing local selection vs global selection, where the network learns better from
annotations curated using the global selection method. We further evaluate the per class score for
frame selection method in table 8. We can see the difference in number of frames selected for each
class in global and local method, which shows that global selection prioritizes frame selection over
certain classes while local selection tries to pick same number of sample for each of the video. We
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Table 9: Comparison between the proposed frame selection method and sample selection method in
UCF-101. Sample selection method selects entire video for annotation at the given percentage.

Annotation v-mAP@ f-mAP@
Percent 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

Our (Frame)
1% 98.07 95.37 89.01 63.94 91.28 88.41 83.85 64.69
5% 98.12 96.01 90.95 71.89 93.38 91.28 88.71 70.91
10% 98.14 96.46 91.12 73.20 94.05 92.03 88.72 71.75

Sample
1% 89.48 76.81 61.02 23.42 76.47 69.37 58.64 31.65
5% 91.81 82.88 70.85 36.24 81.41 75.02 66.43 42.68
10% 95.94 88.89 79.35 48.21 86.71 81.33 73.87 50.37

Table 10: Comparison between the proposed frame selection method and sample selection method in
JHMDB. Sample selection method selects entire video for annotation at the given percentage.

Annotation v-mAP@ f-mAP@
Percent 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

Our (Frame)
3% 98.81 96.77 95.15 65.56 95.38 93.54 89.94 68.78
6% 98.97 97.94 95.2 70.75 97.09 95.78 93.09 74.09
9% 99.18 98.41 95.58 74.01 96.32 94.53 92.67 74.50

Sample
3% 87.36 86.94 81.05 47.42 87.98 86.22 80.11 50.09
6% 92.05 90.45 88.24 53.69 90.36 89.74 85.88 56.32
9% 94.15 92.18 90.76 57.33 93.68 91.85 90.30 58.85

observe that for most classes which global selection picks more frames from are scoring higher than
the local selection counterpart.

E.4 Frame vs Sample selection

We evaluate the alternate sampling technique in which we start with only a fraction of videos fully
annotated and select the videos to annotate in each active learning step. This is different to our frame
selection strategy where we assume all videos have a fraction of frames annotated and we only select
which frames to annotate from all videos in each active learning step. Sample selection is a more
costly approach as each selected video has to be fully annotated for all frames, which adds annotation
cost for little gain in knowledge. We show the results for UCF-101 and JHMDB dataset in table 9
and 10 respectively for sample selection vs our frame selection method.

E.5 Extending annotation to convergence

We extend the baselines as well as our method further in Figure 4, where we see that the baselines
eventually converge close to fully-supervised scores with additional annotations. Our APU frame
selection approach gets higher score earlier and saturates from 20% annotation while the random
baseline catches up at around 40% annotation, demonstrating APU’s need for less annotation to
achieve higher scores.

E.6 Cost function variations

Frame selection can be done through different scoring mechanisms such as random selection, uncer-
tainty based selection or our Adaptive Proximity-aware Uncertainty (APU) based selection. Each
selection method gives different set of frames for further annotation to the oracle. Our goal is to
select frames with maximum utility for further annotation such that the network can learn better from
it. Random frame selection works as the baseline method, where frames are selected at random for
annotation. We compare that against uncertainty based selection method, where each frame is scored
based on the uncertainty score as [9]. While this method highlights regions that are more uncertain
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Figure 4: Extending random baseline and our APU approach till convergence for UCF-101 (v-mAP,
f-mAP @ 0.5 IoU).

Figure 5: Active frame selection using APU scoring function. a) frame selection based on just
uncertainty, b) showing distance measure based on existing annotations, c) frame selection using
proposed APU scoring function, and d) difference between frame selection with adaptive and non-
adaptive scoring.

Algorithm 1 Active Sparse Learning (ASL) algorithm
Input: videos V; total budget b; labelled frames FL; number of trails T ; pixels per frame Ip;

current modelMc; frame annotation cost Cframe

Initialize: budget bs = 0; frames to annotate Fannot ← {}
1: for all videos v in V do
2: for all frame i in fv,u do // Iterate over each unannotated frame
3: Uncertainty(U i) = U(Mc, i) // Compute uncertainty of frame i with Eq. 1
4: while bs ≤ b do
5: APU_score← {} // Initialize empty list to store all frame’s APU score
6: for all videos v in V do
7: for all frame i in fv,u do // Iterate over each unannotated frame
8: Di = D(fv,l, i) // Compute distance score of frame i using Eq. 2
9: U i

APU = (U i, Di) // Compute frame i utility score using Eq. 3
10: Append U i

APU to APU_score
11: fmax ← max(APU_score) // Get frame with highest utility
12: Append fmax to Fannot // Add highest utility frame for annotation
13: FL ← FL ∪ fmax // Mark frame as annotated for future distance scores
14: bs ← bs + Cframe // Increment cost for each frame added to annotation

15: return FL, Fannot // Return new labelled frames and set for annotation

and need extra annotation, it fails to take into account the temporal factor for the scoring process and
ends up selecting frames from similar region. Our APU based method adapts to each new annotation
and scores nearby frames lower, thus encouraging frame selection from different regions. Figure 5
demonstrates how the proposed APU selection method picks optimum frames compared to other
techniques. We compare sample selection using APU and other baseline methods in figure 3. Unlike
uncertainty based method, our APU based selection method selects frames further from each other
and allows more variation in annotation.
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Figure 6: Evaluation of performance of the model with respect to relative area of the spatio-temporal
annotation.

E.7 Selection algorithm

We describe our selection algorithm from the main manuscipt in algorithm 1. Once we have a model
trained (Mc), we iterate over each video and get the uncertainty score for each unannotated frame.
This step requires the model output so we run it once for all the videos for each active learning cycle.
Then we need to compute the distance score for each frame, combine it with the uncertainty score for
that frame and then pick the frame among all videos with the highest utility. Since the distance score
computation has to be recomputed for each video which had a new annotation frame added, we also
recompute the total utility score for those videos. However, as the uncertainty score does not need to
be recomputed, this process is fairly fast. We keep on adding frame for annotation until we exhaust
the budget for that active learning round. At the end we return a set of frames selected based on their
utility for the oracle to annotate and add to labeled set.

E.8 Performance based on annotation area

Similar to MS-COCO dataset, we also separated the evaluation set into small, medium and large
based on each video’s average activity area with respect to the frame size [Small < 702, Medium
>= 702 and < 1302, Large >= 1302 in square pixels for UCF-101]. With this distinction, we had
267 small videos, 479 medium videos and 164 large videos. As all video classes don’t have all three
variations, some of the classes don’t exist in small and large sets. As such, we only compare the
common classes across all three sets for equivalent comparison. From Figure 6, we see that our
approach selects samples to improve small and medium sized actions more compared to random
selection baseline

F VOS task

We demonstrate the effectiveness of our approach on video object segmentation task using [11] and
[12] networks. We show the results for [12] network in table 11, where we compare with baseline
active learning methods using random, uncertainty-based [9], entropy-based [10] with our proposed
active learning method. We observe that the overall score in each incremental step is higher for
the frames selected by our active learning method compared to all baselines, further validating the
generalization of our approach on different video understanding task.

G Network implementation details

G.1 Action detection network

We use the 2D variant of video capsule network [8] for action detection task on UCF-101-24 and
JHMDB-21 dataset. The network takes an input clip of T × H ×W × C dimension [T=frames,
H=height, W=width, C=channels] and outputs T frames of H ×W × 1 dimension. It also predicts
the class prediction vector for the entire clip. The 2D capsule network takes a batch size of 8 samples
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Table 11: Comparison of the proposed method on YouTube-VOS 2019 dataset with baseline active
learning methods using LSTM based VOS network from [12]. R = Random, A = Aghdam et al. [10],
G = Gal et al. [9]. * is extended to video object segmentation using same segmentation network as
[12].

Overall JS JU FS FU

Method 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%
Random 20.9 24.5 26.3 26.6 30.2 33.4 20.1 23.4 24.5 19.8 24.1 25.9 17.0 20.5 21.4
A *[10] 22.7 26.7 34.8 30.4 34.2 41.8 20.3 23.2 30.0 22.8 28.4 39.7 17.6 21.1 27.6
G * [9] 21.7 26.0 33.3 30.2 30.4 41.2 19.7 20.3 30.2 21.0 22.8 34.4 15.9 17.6 27.3
Our 24.3 33.3 38.1 31.5 41.2 45.7 22.5 30.2 32.1 24.0 34.4 42.9 19.3 27.3 31.6
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Figure 7: Overview of the proposed action detection network. Based on [8], features are extracted
from input frames using I3D [13] architecture based encoder. We take features from Mixed_4f layer
of I3D network. This is then followed by two 2D convolutional capsule layers which outputs class
capsules. The class capsules is used for final class prediction and classification loss computation.
This is followed by series of transpose convolution layers (2D and 3D) for upscaling the feature map
and concatenation with features from intermediate layers of the I3D encoder via skip connections.
We finally obtain the localization maps of same size as input video, which is used for detection loss.

per iteration, with each sample clip of size 8 × 224 × 224 × 3 with a temporal skip rate of 2. We
follow the same input/output format as the original paper for 3D capsule network [8] for the 2D
network variant. The full architecture detail is shown in figure 7.

G.2 VOS network

We use our technique on two separate newtorks for the video object segmentation task. We use the
method by [11] that recently had state-of-the-art performance on YouTube-VOS 2019 challenge.
This network takes an input clip of 3 frames and learns up-to 2 objects segmentation across those
3 frames in training time. We also test our method in a simpler network used for VOS task based
on ConvLSTM modules [12]. It takes as input a clip of T frames of H ×W × C dimension and
the annotation mask of first frames of the clip of size H ×W × 1. The network outputs predicted
segmentation mask of size T ×H ×W ×Cclass. For both networks we use clips with frames of size
224× 224× 3 and annotation of size 224× 224× 1 as input and the networks output segmentation
clip with size 224× 224× 1. The first method [11] takes 3 frames input in the clip while the second
method [12] takes 32 frames input in the clip. The object of interest annotated in the first frame will
be segmented through the clip. During inference, we use the annotation of the last frame predicted as
the input annotation mask for the next subsequent clip. We use a batch size of 8 for this task as well.
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Table 12: Comparison between Kinetics pre-trained and Charades pre-trained weights for UCF-101
dataset. We show the f-mAP and v-mAP scores at 0.5 IoU for different annotation size.

f-mAP @ 0.5 v-mAP @ 0.5
Pre-train 1% 5% 10% 1% 5% 10%
Charades 60.7 66.5 69.3 59.2 66.4 69.9
Kinetics 60.4 66.5 69.0 59.2 66.2 69.8

G.3 Technical details

We train our model using a single 16GB Nvidia RTX 5000 GPU with Turing architecture. The frame
selection method only runs in inference mode with Dropout enabled, thus using only a fraction of
the GPU memory. Due to this, we can run multiple instances in parallel for frame selection in the
training video set, reducing the time taken for frame selection process. During each iteration, we
only select the given percentage of frames for further annotation and we retain the previous set of
annotated frames. On a 8 core 3.2 GhZ Intel CPU and 16GB Nvidia RTX 5000 GPU combination the
frame selection round takes 50 minutes for UCF-101 (432K training frames). We run a total of 2
active learning cycles for frame selection in the main experiments (1% -> 5% and 5% -> 10%). The
model training for UCF-101 takes about 15 minutes per epoch, which is trained for 40 epochs for
each set of annotations.

G.4 Interpolation:

The annotation interpolation for UCF-101 is done using linear interpolation of the bounding box
corners. The pixel-wise annotation interpolation for J-HMDB is done using CyclicGen [14]. In case
of edge frames or single frame annotations, we extrapolate the annotation to other frames.

G.5 Pre-trained weights:

While we follow prior works and use Charades pre-trained weights in our experiments, we also
compare with Kinetics-400 pre-trained weights in table 12. This shows that the pre-trained weights
selection will not affect the trend from APU selection.
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