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Abstract

Video action detection requires annotations at every frame, which drastically
increases the labeling cost. In this work, we focus on efficient labeling of videos for
action detection to minimize this cost. We propose active sparse labeling (ASL),
a novel active learning strategy for video action detection. Sparse labeling will
reduce the annotation cost but poses two main challenges; 1) how to estimate the
utility of annotating a single frame for action detection as detection is performed
at video level?, and 2) how these sparse labels can be used for action detection
which require annotations on all the frames? This work attempts to address these
challenges within a simple active learning framework. For the first challenge, we
propose a novel frame-level scoring mechanism aimed at selecting most informative
frames in a video. Next, we introduce a novel loss formulation which enables
training of action detection model with these sparsely selected frames. We evaluate
the proposed approach on two different action detection benchmark datasets, UCF-
101-24 and J-HMDB-21, and observed that active sparse labeling can be very
effective in saving annotation costs. We demonstrate that the proposed approach
performs better than random selection, outperforming all other baselines, with
performance comparable to supervised approach using merely 10% annotations.
Project details available at https://sites.google.com/view/activesparselabeling/home

1 Introduction

Video action detection is a challenging problem with lot of applications in security [1, 2], autonomous
driving [3, 4] and robotics [5, 6]. It requires spatio-temporal localization of an action in a video. This
has led to innovative methods [7, 8, 9, 10, 11, 12] in recent years which rely on annotation on every
frame of a video sample, which can be either bounding box [13] or pixel-wise [14]. This is different
from action classification where a class label for each video is sufficient for training [15]. Therefore,
it is challenging and costly to annotate an action detection dataset at a large-scale and existing datasets
are much smaller in size [13, 14] as compared with classification datasets [15, 16, 17, 18, 19].

In this work, we focus on reducing the annotation effort for video action detection. The existing
work in label efficient learning for action detection is mostly focused on semi-supervised [20, 21] or
weakly-supervised approaches [22, 23, 24, 25]. These methods rely on either video-level annotations
[25, 24], point annotations [21], pseudo-labels [20], or reduced bounding-box annotations [26] to
reduce labeling effort. They rely on separate (often external) actor detectors and tube linking methods
coupled with weakly-supervised multiple instance learning or pseudo-annotations, limiting the
practical simplicity for general use. The video-level and pseudo-label approaches trade performance
for saving annotations while the point and reduced bounding-box approach still have to annotate each
instance to improve the performance. We argue that a lack of selection criteria for annotating only
informative data is one of the limitations in these methods. Motivated by this, we propose active
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Figure 1: Comparison of our method with different annotation percent and step size against random
selection method and fully-supervised method (100% annotations) on UCF-101. Results for 1% and
5% increment at 1%, 5%, and 10% annotations are shown for our and random selection [Ran].

sparse labeling (ASL) which bridges this gap between high performance and low annotation cost.
ASL performs partial instance annotation (sparse labeling) by frame level selection where the goal is
to annotate most informative frames, which are expected to be useful for activity detection task.

Sparse labeling will address the issue of high annotation cost, but there will be some challenges. It
will require a frame level cost estimation which can determine the utility of each frame in a video.
This estimation should be based on the frame’s impact on action detection. Also, the traditional
action detection methods require annotations on all the frames [8, 9, 10], therefore existing objective
functions will not be effective with sparse labels. We propose a novel uncertainty based frame scoring
mechanism for videos, termed as Adaptive Proximity-aware Uncertainty (APU). APU estimates the
frame’s utility using the uncertainty of the detections and its proximity from existing annotations,
determining diverse set of informative frames in a video which are more effective for learning the task
of action detection. In addition, we propose a simple yet effective loss formulation, Max-Gaussian
Weighted Loss (MGW-Loss), which uses weighted pseudo-labeling for effective learning from sparse
labels. Together, the proposed cost estimation algorithm based on APU and the MGW-Loss function
helps in reducing the annotation cost while improving model performance at the same time.

We make the following contributions; 1) We propose active sparse labeling (ASL), a novel active
learning (AL) strategy for action detection where each instance is partially annotated to reduce the
labeling cost. This is the first work focused on AL for video action detection to best of our knowledge,
2) We propose a novel scoring mechanism for selecting informative and diverse set of frames, 3) We
also propose a novel training objective which helps in effectively learning from sparse labels.

We demonstrate the effectiveness of the proposed approach in optimizing annotation cost for video
action detection in two different datasets, UCF-101-24 and J-HMDB-21. We reduce the annotation
cost by ∼ 90% with marginal drop in performance (Figure 1). We also evaluate the proposed
approach for video object segmentation and demonstrate its generalization capability.

2 Related work

Recent works on action detection in videos uses a CNN based approach [27, 28, 8, 9, 29] to perform
spatio-temporal localization of actors in videos. A common and effective theme is the two-stage
approach using object detection methods [30, 28, 31, 32, 33] to detect actors per frame based on
action classification models [15, 34, 35, 36, 37, 38, 39] and combine them into tubes using temporal
aggregation [10, 8, 27, 11, 7] for classification. While some works need a separate region proposal
network to detect potential actors [8, 40], using a complicated two-stage process, other recent works
have proposed simplified single-stage approach [9, 41]. As our work is centered around AL for
selective annotation, we prefer a single-stage approach for an efficient solution.

Weak supervision: Large datasets for action detection require costly annotations, therefore in-
novative approaches have been proposed for this task with weak and semi-supervised methods.
Some of these works have been able to reduce annotation cost significantly for action detection
[20, 24, 25, 42] by using only the video-level annotation. Other methods have proposed the use
of dense point-level pseudo-annotations [21] or only few bounding-box per instance [23] with the
same objective. A common drawback of these methods is the inferior performance compared to fully
supervised methods, which limits their practical utility.
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Figure 2: Overview of proposed approach. It consists of training and selection. During training
the network is trained using existing annotations from the training set using MGW-loss to handle
the sparse annotations. During iterative APU selection phase, the trained network is used to predict
localizations on each frame of videos in the training set. Using these predictions, APU computes a
score for each frame in a video to rank them and top K frames are sent to oracle for annotation.

Active learning: Active learning has been used to iteratively select unlabeled data for assigning
labels based on certain utility factors [43, 44, 45, 46, 47]. Labeling a large set of data can often prove
to be expensive and unnecessary, which is why AL can be vital in selecting related unlabeled data
for further annotation in an iterative fashion. AL algorithms use uncertainty [46, 48, 49, 50, 51, 52],
entropy [53, 54], heuristics and mutual information [45, 55, 56], core-set selection [57, 58] to select
samples which are most likely to provide maximum utility to the learning algorithm. AL based
classification algorithms are effective for different modalities such as images [45, 46, 44], videos
[59, 60, 61], text [62, 63, 64] and speech [65]. Classification only needs class labels for an entire
sample, making the scoring easier for the algorithm. However, extending that to a complex task such
as object detection is challenging as it requires dense annotations in each sample [53, 66, 67, 68].
Extending that to videos adds extra level of complexities as it requires spatio-temporal annotations
and selecting parts of video for extra annotation via AL algorithm is challenging. [69] performs
frame selection using AL for object segmentation but does not leverage temporal aspect of video for
avoiding sequential annotation, increasing overall annotation cost. There are no existing methods
which focus on the problem of active sparse labeling in videos for spatio-temporal detection task
and existing deep AL approaches are not applicable directly for this task.

3 Proposed method

We aim at reducing the annotation cost for labeling a set of videos V = {V1, ...VN} with N videos
to learn an action detection modelM. We start with an initial set of sparse labels S0L = {Vcls, F 0

L}
that consists of annotated frames with class label Vcls, where only a small number of frames F 0

L
are annotated. This initial set of sparsely annotated videos is used to initialize an action detection
modelM0. This initialized modelM0 is then used to estimate a utility score for all the unlabeled
frames F 0

U from the set of videos V . The goal is to automatically select frames from unlabeled set
to be manually labeled and obtain new set of sparse labels S0S which is merged with S0L for a new
labeled set S1L. The number of additional frames are selected based on a total budget B and they are
annotated by an oracle (e.g. human annotator). The action detection modelM is retrained using the
new annotation set S1L and an updated modelM1 is obtained. This process is repeated until we find
a set SFL with several annotated frames in the videos V such thatMF meets the target performance
or the total budget B is exhausted. An overview of the proposed approach is shown in figure 2.

3.1 Active sparse labeling

Sparse labeling: We hypothesize that some frames will have more utility than others for learning
action detection due to several factors, such as lack of motion, variation in action dynamics, redun-
dancy in appearance or redundancy in action. In sparse labeling, we annotate only l frames fv,l in
a video v instead of labelling all of them, leaving a set of u unannotated frames fv,u. Therefore, it
avoids annotation of frames with lower utility and helps in reducing the overall labeling cost. Each
video v has a class label, denoted as vcls, for the action category and a set of l annotated frames fv,l
which indicates the localization of actions.
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Uncertainty as frame utility: In each AL cycle, our goal is to select video frames for labeling
which will have the highest utility for learning action detection. Uncertainty provides a measure to
estimate model’s confidence on its decision and has been used for selecting informative samples
in existing works [70, 71, 72, 61]. These works are focused on classification and therefore the
uncertainty is computed for the entire sample. Instead, we require informativeness of each frame
in a video which is different from these works as it is computed for partial sample. The action
detection modelM provides spatio-temporal localization for the entire video and we propose to use
the pixel-wise confidence score of localization on each frame to estimate frame-level uncertainty. We
use MC-dropout [73] to estimate the model’s uncertainty for each pixel in the video. MC-dropout is
a more efficient form of uncertainty estimation compared to using a Bayesian neural network and is
easier to implement [73, 74]. The uncertainty is estimated over T different trials and this score is
averaged over all the pixels in a frame. For a given video v with I frames, the uncertainty U i for the
ith frame over T trials is computed as,

U i∈[1,I] =
1

Ip

Ip∑
h=1

1

T

T∑
j=1

−log(P (vih, j)) (1)

where Ip is the total number of pixels in a frame, and P (vih, j) represents the model prediction for
hth pixel in the ith frame of video v during the jth trial.

Adaptive proximity-aware uncertainty: Unlike images, the motion in videos has some continuity
and it is highly likely that the frames close to each other will have similar uncertainty scores. Therefore
selecting frames merely based on uncertainty will favor adjacent frames which may have similar
utility for learning action detection. To overcome this issue, we propose a selection mechanism,
termed as Adaptive Proximity-aware Uncertainty (APU), which ensures that the selected frames have
diversity in the temporal domain. APU scoring incorporates a distance measure into cost estimation
and uses their proximity to the existing annotated frames. As we select more frames, this distance
measure should adapt to the additional selected frames. We use a normal distribution N (µ, σ2)
for distance measure D, where each annotated frame has its own distribution centered around its
temporal location in the video. Given a video with K annotated frames, the distance measure Di for
the ith frame of the video is computed as,

Di = 1−
K∑

j=1

ϕj
ie
− 1

2
(
i−µj
σ

)2 . (2)

where Di is distance measure for unannotated frame i from annotated frame j, the distribution N for
jth annotated frame is centered at frame j with µj mean and σ variance, and ϕj

i ∈ [0, 1] is the mask
to select the closest distribution for ith frame. The value of mask ϕj

i will be 1 for jth distribution if it
is closest to the ith frame, otherwise it will be 0. APU scoring uses both uncertainty and proximity
and therefore prefers frames with high uncertainty and ensures temporal diversity. The overall APU
score U i

APU for a given frame is computed as,

U i
APU = λU i + (1− λ)Di (3)

where λ is used to control the contribution from uncertainty and temporal diversity. It is set to 0.5 for
equal contribution in our formulation where U , D are both normalized in range (0,1).

Informative frame selection: Once we get UAPU score for all the frames in V videos, we select
the frame with highest score globally and then score the remaining frames again with the adapted
distance measure. The re-scoring is necessary to reduce probability of picking frames around same
region, since a region doing poorly is likely to have more frames which scored higher in the selection
process. We only need to recompute the distance measure, which is computationally inexpensive.
The entire selection algorithm is provided Appendix. Once we have Fannot frames selected as per
our budget, they are annotated by an oracle and the training set is updated with these new annotations.
This completes one AL cycle and the modelM is trained using the updated annotations.

Non-activity suppression: If all pixels in a frame are considered to compute its utility, non-
activity regions may negatively influence the score as the model easily determines background pixels
compared to the actual action region in a frame. A low uncertainty score from background pixels
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will lower the overall frame uncertainty even if the activity region has high uncertainty, especially in
videos with a relatively larger background area as compared to the actual action region. Therefore,
we ignore pixels which are predicted as background (true negatives and false negatives) with high
confidence (using a threshold τ ) when computing the frame-level uncertainty. This might exclude
some foreground pixels (false negatives) from the uncertainty estimation. However, these pixels will
not be useful even if we use them as they are predicted as background due to low uncertainty.

3.2 Learning from sparse labels

Given a video clip V ={f1, f2, ...fN} with N frames where K frames are annotated such that
K < N , we have to detect the action through the entire clip. A traditional action detection network is
trained with the help of two different objectives, a classification loss Lc for action category and a
localization loss Ll for spatio-temporal detection [8]. The classification loss Lc is computed for the
entire video clip and the localization loss is computed for every frame in the video.

Sparse labeling will not allow us to compute the localization loss Ll on every frame due to missing
annotations. The localization loss Ll with sparse labeling can be computed as, Ll =

∑N
i=1 β

iLi
l .

Here, Li
l represents localization loss in the ith frame and βi ∈ [0, 1] indicates masking, which will

be 1 for annotated frames and 0 otherwise. The masking strategy only uses the annotated frames
for learning, therefore it is not quite effective. In a contrastive approach, we can use all the frames
for learning by generating their pseudo-labels with the help of interpolation of annotations from
neighboring frames. This will allow us to use all the frames but incurs noise from the pseudo-labels.

Max-gaussian weighted loss: We propose a simple loss formulation which benefits from both,
masking and pseudo-labels. We hypothesize that the pseudo-labels close to ground-truth labels
will be more reliable. Based on this, we propose Max-Gaussian Weighted Loss (MGW-Loss) which
discounts the approximated pseudo-labels as they will not be as reliable as the actual ground-truth.
We compute localization loss for each frame using both available and pseudo-labels, where the
pseudo-labels have a varying weight in the overall loss component. The approximated annotations
will not have a similar weight as their distance from the annotated frames will vary. We use a mixture
of Gaussian distribution w ∈ {1..W} ∼ Nw(µgt, σ

2) to assign the weight to each frame, given
gt ∈ {1..K} actual ground-truth frame location as the mean of the distribution and σ is the variance
of the distribution. We define the weighted localization loss LMGW

l as,

LMGW
l =

N∑
i=1

(

K∑
j=1

φi
je
− 1

2
(
i−µj
σ

)2)Li
l. (4)

Here Li
l is the localization loss of ith frame for any video, µj is the frame location for jth annotated

frame, and φij ∈ [0, 1] is the mask to select the max distribution for ith frame. The value of mask
φij will be 1 for jth distribution if it has the maximum probability among all Gaussians at location
of ith frame, otherwise it will be 0. The value of σ controls the weighting mechanism and it has
two extremes. The high variance is equivalent to interpolation where all the frames will have equal
weights and low variance is equivalent to masking where weights of pseudo-labels will be 0. Details
on influence of σ provided in appendix C.1.

3.3 Action detection model

Video action detection is a challenging problem and the existing methods usually follow a complex
pipeline [8, 10, 75]. Region proposal based approach has been found to be exceedingly effective [40],
which has also been extended to tube proposals [8, 10]. However, training these two-step methods
is not efficient, especially when we have to develop an iterative framework for AL. We follow a
simpler approach where classification and detection can be done in an end-to-end training [9]. We
simplified VideoCapsuleNet [9] further and replaced the 3D routing with 2D routing [76] which
makes it more efficient in terms of memory and training speed. We then added dropout layers for
uncertainty and used MGW-Loss from Eq. 4 to handle sparse labels. To handle sparse labels, we get
the frame-wise weight from max-Gaussian weighted method and adjust the loss using this weight.
Following [9], the network is trained using margin-loss for classification and binary-cross entropy
loss for spatio-temporal localization.
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Table 1: Comparison between different baseline methods in UCF-101 and J-HMDB dataset for
different frame annotation percent. * is extended to video action detection using same backbone
detector network as ours. [G: Gal et al.[73], A: Aghdam et al.[53]]

UCF-101 J-HMDB
f-mAP@0.5 v-mAP@0.5 f-mAP@0.5 v-mAP@0.5

Method 1% 5% 10% 1% 5% 10% 3% 6% 9% 3% 6% 9%
Random 60.7 66.5 69.3 59.2 66.4 69.9 58.3 69.3 71.6 57.4 64.6 70.4
Equidistant 61.8 66.2 68.4 61.7 67.2 69.0 57.4 67.5 71.4 56.9 64.9 66.8
G* [73] 60.9 66.7 68.9 59.4 66.8 69.1 58.2 66.7 67.5 57.4 66.8 67.4
A* [53] 61.4 67.9 69.8 60.1 67.9 70.0 58.8 71.2 71.1 57.7 66.7 71.2
Our 64.7 70.9 71.7 63.9 71.8 73.2 68.8 74.1 74.5 65.6 70.8 74.0

4 Experiments

Datasets and evaluation metrics: We evaluate our approach on three different datasets, UCF-101
[13], J-HMDB [14] and YouTube-VOS [77]. UCF-101 has 3207 videos from 24 different classes
with spatio-temporal bounding box annotations. J-HMDB dataset contains 928 videos from 21
classes with pixel-level spatio-temporal annotations. AVA [78] is a large-scale dataset with focus
on action detection on single keyframe. This makes AVA not suitable for sparse frame selection
as it does not provide spatio-temporal annotations. Similarly, MAMA [79] is a challenging dataset
with low baseline detection scores (<1%), limiting sparse annotation study. We further evaluate
our method on YouTube-VOS [77] for video object segmentation to demonstrate its generalization
capability. YouTube-VOS consists of 3471 training videos (65 categories) with pixel-level annotation
for multi-object segmentation. Following prior action detection works [80, 22] on UCF-101 and
J-HMDB datasets, we compute the spatial IoU for each frame per class to get the frame average
precision score and compute the spatio-temporal IoU per video per class to get the video average
precision score score. This is then averaged to obtain the f-mAP and v-mAP scores over various
thresholds. For video segmentation, we evaluate the avg. IoU (J score) and the avg. boundary
similarity (Fscore) [77].

Implementation details: We implement our method in PyTorch [81]. In video action detection
architecture, we use I3D encoder head [15] with pre-trained weights from the Charades dataset [82].
We use Adam optimizer [83] with a batch size of 8 and train for 22K iterations in each active learning
cycle (details in appendix G.3). We use dropout for generating uncertainty similar to [73] by enabling
it during inference. For YouTube-VOS task, we use two existing methods [77, 84]. We use τ = 0.9
for non-active suppression and σ = 1.3 for Eq. 2 and Eq. 4, which were empirically determined
(details in appendix C).

Sparse learning settings: In the initialization stage, we assume the availability of annotations for
I% of frames in each video in V to make sparse annotation set S0L. These frames are randomly
selected for the first stage. We use 1%, 3%, and 5% initial frames for UCF-101, J-HMDB, and
Youtube-VOS respectively, determined empirically based on each dataset size. We assign annotation
cost for each frame as Cframe = Actor × Clicks based on clicks per actor (bounding box/pixels).

4.1 Baseline methods

We explore several baselines to understand their limitations on video action detection. First, we use
random and equidistant frame selection where random selection select the frames at random in each
stage, equidistant uses equal distance between the frames during selection. Next, we extend existing
AL methods used in image-based object detection [53, 73] to video action detection, where we score
each frame using their algorithm for frame selection. We improve upon the uncertainty sampling for
video level selection from [61] and compute uncertainty at pixel-level in all our baselines. We train all
baselines using same action detection backbone for a fair comparison. We have random, equidistant,
uncertainty-based [73] and entropy-based [53] approaches as baseline methods to compare against.

4.2 Results

Analysis of baseline methods: We evaluate random, equidistant, entropy-based [53] and
uncertainty-based [73] selection methods as baselines and compare with our approach in Table
1. While all baselines are effective for AL in image-based detection/classification tasks, we demon-
strate that for video action detection prior methods [53, 73] perform similar or worse than random
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Table 2: Evaluation of the proposed method on UCF-101 and J-HMDB.

UCF-101 J-HMDB
Annot v-mAP@ f-mAP@ Annot v-mAP@ f-mAP@

Percent 0.3 0.5 0.3 0.5 Percent 0.3 0.5 0.3 0.5
1% 89.01 63.94 83.85 64.69 3% 95.15 65.56 89.94 68.78
5% 90.95 71.89 88.71 70.91 6% 95.20 70.75 93.09 74.09

10% 91.12 73.20 88.72 71.75 9% 95.58 74.01 92.67 74.50
100% 91.49 75.15 89.08 74.02 100% 96.39 75.75 93.74 74.91

Table 3: Comparison with state-of-the-art methods. We evaluate our approach using v-mAP and f-
mAP scores using only 10% annotations. ‘Video’ uses video-level class annotations and ‘Partial’ uses
sparse temporal and spatial annotations. V: video labels, P: points, B: bounding box, O: off-the-shelf
detector. f@ denotes f-mAP@

UCF-101 J-HMDB
Method Annot f@ v-mAP@ f@ v-mAP@

Percent V P B O 0.5 0.1 0.2 0.3 0.5 0.5 0.1 0.2 0.3 0.5
Fully supervised
Peng et al. [7] 100% 65.7 77.3 72.9 65.7 35.9 58.5 - 74.3 - 73.1
TCNN [8] 100% 67.3 77.9 73.1 69.4 - 61.3 - 78.4 - -
Gu et al. [78] 100% 76.3 - - - 59.9 73.3 - - - -
ACT [85] 100% 69.5 - 76.5 - - - - 74.2 - 73.7
STEP [10] 100% 75.0 83.1 76.6 - - - - - - -
VidsCapsNet [9] 100% 78.6 98.6 97.1 93.7 80.3 64.6 98.4 95.1 89.1 61.9
Weakly/Semi-supervised
Mettes et al. [20] Video X X - - 37.4 - - - - - - -
Escorcia et al. [24] Video X - - 45.5 - - - - - - -
Zhang et al. [25] Video X X 30.4 62.1 45.5 - 17.3 65.9 81.5 77.3 - 50.8
Arnab et al. [42] Video X X - - 61.7 - 35.0 - - - - -
Weinz. et al. [26] Partial X X X 63.8 - 57.3 - 46.9 56.5 - - - 64.0
Mettes et al. [21] Partial X X - - 41.8 - - - - - - -
Cheron et al. [23] Partial X X - - 70.6 - 38.6 - - - - -
Kumar et al. [86] 20% X X 69.9 - 95.7 - 72.1 64.4 - 95.4 - 63.5
Ours 10% X X 71.7 98.1 96.5 91.1 73.2 74.5 99.2 98.4 95.6 74.0
Ours 100% 74.0 98.3 96.9 91.5 75.2 74.9 99.2 99.2 96.4 75.8

or equidistant methods. The lack of temporal information prohibits prior methods to select frames
effectively as videos have sequential frames in same region with high uncertainty. Our approach
accounts for the temporal continuity and outperforms all baselines including prior AL based methods
[73, 53] consistently on both dataset for all annotation percent. This demonstrates that extending
image-based methods are not well suited for video action detection task as shown in Figure 3.

Evaluation of proposed method: We evaluate our approach on UCF-101 and J-HMDB for action
detection and compare with fully-supervised training in Table 2. For UCF-101 we initialize with
1% of labelled frames and train the action detection model with a step size of 5% in each cycle.
We achieve results very close to full annotations (v-mAP@0.5, 73.20 vs 75.12) using only 10% of
annotated frames, which is a huge reduction (90%) in the annotation cost. For J-HMDB, we initialize
with 3% labels as it is a relatively smaller dataset and it is challenging to train an initial model with
just 1% labels. Here, we obtain results comparable with 100% annotations with only 9% of labels.

Comparison to prior weakly/semi-supervised approach: We compare to prior weakly/semi-
supervised action detection approach [23, 24, 21, 20, 26, 86] in Table 3 and explain their limitations.
[26] uses external human and instance detectors to build tubes aligned with 1-5 random spatially
annotated GT frames per tube. This incurs larger annotation cost without any frame selection metric
while having low performance. [20, 21, 42] follow Multi Instance Learning (MIL) approach, where
[20] uses off-the-shelf actor detectors to generate pseudo-annotations and [21] relies on user input
for point annotation for every frame, requiring large annotation cost. [42] expands on MIL approach
combined with tubelets generated by an off-the-shelf human detector. While MIL based approach
requires less oversight, it also suffers from reduced performance, even with state-of-the-art detectors.
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Figure 3: Analysis of frame selection using different methods. The x-axis represents all frames of
the video, with each row representing a baseline method. The markers for each method mark the
frames selected using that method. For both samples, our method selects distributed frames centered
around action region, Gal et al [73] [G*] selects frame around same region since there is no distance
measure and Aghdam et al. [53] [A*] selects slightly more distributed frames but those are not from
crucial action region. [G*:Gal et al[73], A*:Aghdam et al[53], Rand: Random, Equi: Equidistant]
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Figure 4: Comparison of different loss functions for UCF-101 (a-b) and J-HMDB (c-d).

[24] uses actor detector with video-level label to perform action detection, using a less involved
approach as [42], but both have high label noise and low performance. [86] uses consistency
regularization to train with unlabeled data in semi-supervised fashion. [23] uses discriminative
clustering instead of MIL to assign tubelets to action label with various level of supervision, [25] uses
combination of different actor detectors to build tube to train with video labels. They rely on multiple
off-the-shelf components to generate the tubelets and suffer from low performance. [25] and [26]
report their J-HMDB results using bounding-box annotation instead of the fine-grained pixel-wise
annotation due to their design limitation to use external bounding-box detector for tube generation.
Our approach does not rely on such detectors and can work with both bounding-box (UCF-101) and
pixel-wise (J-HMDB) annotation and is comparable to the supervised performance.

4.3 Ablations

Effect of loss function: We evaluate the effectiveness of MGW-Loss for video action detection
with sparse labels and compare it with baseline masking and interpolation based loss in figure 4. The
proposed MGW-Loss learns better in sparse label conditions due to the approximated ground truth
frames from interpolation. Without the approximated frames, the formulation in Eq. 4 will reduce
to masking loss as σ → 0. Masking computes loss only on the sparse ground truth and does not
perform as well as the MGW-loss with interpolated ground truth as seen in figure 4. Our Gaussian
based interpolation adapts better for approximated labels compared with simple interpolation due to
having different weight for each frame based on their distance from real ground truth annotation.

Effect of selection criteria: We compare how commonly used entropy and uncertainty-based
selection methods perform against proposed APU algorithm when using the same loss formulation
from Eq. 4. Figure 5 shows that APU has optimum frame selection as it encourages diverse selection
by using adaptive distance to existing frames for the scoring process. Following [53], entropy based
selection has a less effective fixed distance filter to avoid nearby frames. The uncertainty method
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Figure 5: Comparison of different frame selection methods combined with MGW-Loss showing
v-mAP and f-mAP scores for IoU @ 0.5 for (a-b) UCF-101 evaluation up to 20% (∼40k frames) data
annotation. (c-d) J-HMDB evaluation up to 18% (∼3800 frames). Our APU approach gets better
performance at a lower annotation percentage (lower annotation cost).
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Figure 6: Analysis on sample selection strategy. (a-b) Global vs local frame selection strategy using
APU on J-HMDB. (c-d) Frame vs sample selection for UCF-101 (c) and J-HMDB(d).

lacks any distance component and performs worse than random or equidistant, selecting frames from
nearby regions as seen in figure 3.

Annotating more frames We also evaluate adding additional frames until the scores start to
saturate, shown in figure 5. We see that for UCF-101 at 20% annotation (∼40k frames) all methods
score close to each other. Similarly, J-HMDB dataset has similar convergence pattern at 18%
annotation (∼3800 frames). This demonstrates that while the frame selection eventually converges
with more data, our approach gets better score at an earlier stage, saving overall annotation cost.

4.4 Discussions

Variation in budget steps: Lower budget steps enables selection of fewer frames with high utility
in each step instead of selecting more frames with low utility in higher budget steps. As the annotation
set is more curated in each step in lower steps, we end up with better frames for the same annotation
budget as higher steps. We evaluate the effect of using step size of 1% and 5% in figure 1 for UCF-101
dataset, starting from 1% till 10%. Step size of 1% has constantly better v-mAP and f-mAP score
throughout, showing that smaller steps give greater performance. However, smaller step size needs
more iterations, taking more time as a trade-off for better performance.

Local vs. global selection: The proposed approach is focused on sparse labeling where frames
with high utility within a video are selected for annotations. However, it is important to note that
videos as a whole have varying utility. To exploit this aspect, we explore two different frame selection
strategies, local selection and global selection. In local selection, each video has a fixed budget b/Nv ,
where b is budget per cycle and Nv is the total number of videos in our training set. However, frames
in global selection are taken from a global pool which includes frames from all videos, ranking
based on overall dataset utility. Figure 6 (a-b) shows that global selection outperforms local selection
strategy, emphasizing that some videos can be more informative than others as confirmed in figure 7.

Sample vs. frame selection: We follow [21] and annotate the entire sample (video) instead of
finding the most useful frames within each sample. We compute pixel level uncertainty which is
averaged over all the pixels in a frame using Eq. 1 and then averaged over all frames in a video to
get the video level score. While this approach is simpler, it has higher cost during annotation with
lower data variation. Let us assume a fixed cost of c per frame with f frames to annotate, we can
assume a budget of B = c× f . We could distribute the frames across the set by picking only few
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Figure 7: Sparse selection analysis. (a) Histogram showing number of frames selected per video
using our method on UCF-101. Videos on the right show two samples from extreme ends of this
histogram as marked in the plot. (b) Samples for cricket bowling class with APU selected frames
on red marker (APU selects only two frames for 1 action instance). (c) Samples for salsa spin class
(APU selects multiple frames (red) as each spin instance is visually diverse).

Table 4: Comparison of the proposed method on YouTube-VOS dataset with baseline AL methods
using STCN [84]. A = Aghdam et al. [53], G = Gal et al. [73]. * is extended to video object
segmentation using same network as ours.

Overall JS JU FS FU

Method 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%
Random 28.4 42.3 42.5 29.1 42.9 43.8 25.8 38.5 38.6 30.2 44.3 45.0 28.4 43.5 42.7
A * [53] 30.1 45.6 47.2 31.5 45.4 47.6 26.7 43.4 47.9 22.8 46.7 48.8 17.6 46.8 44.6
G * [73] 27.9 45.1 48.8 28.5 50.8 48.5 24.8 42.0 46.6 29.7 42.1 49.8 28.7 45.5 50.4
Our 31.7 58.6 66.7 33.6 58.2 66.7 27.8 54.3 61.5 35.2 60.6 69.1 30.1 60.9 69.7

important frames from each video, which would increase variation in the training set. However, if we
annotate entire sample, there will be many redundant annotations with little gain, which is why frame
selection performs better for action detection task as observed in figure 6 (c-d).

4.5 Generalization beyond action detection

We test generalization of proposed cost and loss function for video object segmentation task on the
YouTube-VOS 2019. Table 4 shows that our proposed selection approach gets better J and F scores
for video segmentation task compared to baseline AL methods and random frame selection method.
We provide further details in appendix F and G.2.

4.6 Limitations

As most AL methods, this approach reduces annotation cost with multiple selection iterations, being
more time consuming compared to weakly-supervised approaches. As we only measure frames
within same video, future work can focus on evaluating each video’s utility as well for the task.

5 Conclusion

In this work we present active sparse labeling (ASL), a novel approach for label-efficient video
action detection. The proposed approach uses an uncertainty-based scoring mechanism for selecting
informative and diverse set of frames for action detection. In addition, we also propose a simple
yet effective loss formulation which can be used to train a model with sparse labels. The proposed
approach is promising in saving annotation costs and we show that merely 10% of labels can achieve
performance comparable to fully supervised methods. We further demonstrate the generalization
capability of the proposed approach for video object segmentation.
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(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] Public data used.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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