
Appendices
A Review of error analysis for matrix cross approximation

We first review the following result which establishes an element-wise approximation guarantee for a
particular cross approximation.

Theorem 5 [53] For any A ∈ Rm×n, if U = A(I, J) is an r × r submatrix of maximal volume
(maximum absolute value of the determinant), then∥∥A−CU †R

∥∥
max

≤ (r + 1)σr+1(A),

where ∥A∥max = maxij |aij |.

On one hand, similar to Theorem 1, Theorem 5 ensures no approximation error when A is low-rank.
On the other hand, when A is approximately low-rank, Theorem 5 ensures that cross approximation
via the maximal volume principle is stable as each entry is perturbed at most proportionally to
σr+1(A) which is expected to be small. However, if we are interested in an approximation guarantee
for the entire matrix (say in the Frobenius norm) instead of each entry, then directly applying the
above result leads to the loose bound∥∥A−CU †R

∥∥
F
≤ (r + 1)

√
mn · σr+1(A),

which could be much worse than the best rank-r approximation. The recent work [58] provides a
much tighter approximation guarantee in the Frobenius norm for cross approximation.

Theorem 6 [58] For any A ∈ Rm×n, there exist indices I ∈ [m], J ∈ [n] such that the cross
approximation (1) satisfies ∥∥A−CU †R

∥∥
F
≤ (r + 1) ∥A−Ar∥F ,

where Ar denotes the best rank-r approximation of A measured by the Frobenius norm.

Theorem 6 shows that cross approximation could be stable and have approximation error comparable
to the best rank-r approximation up to a factor of (r + 1). Theorem 6 is proved by viewing
I ∈ [m] and J ∈ [n] with |I| = |J | = r as random variables and studying the expectation
of
∥∥A−CU †R

∥∥
F

over all (I, J). Note that Theorem 6 is not valid for cross approximations
constructed using submatrices of maximum volume. In other words, one [58] could construct a
counter-example A for which the cross approximations CU−1R constructed using submatrices of
maximum volume have approximation error larger than

√
max(m,n) ∥A−Ar∥F . On the other

hand, ignoring the worst-case examples, the work [59] establishes a similar guarantee for cross
approximations constructed using submatrices of maximum projective volume for random matrices.
Finally, we note that a derandomized algorithm is proposed in [60] that finds a cross approximation
achieving the bound in Theorem 6. The work [62, Corollary 4.3] studies the approximation guarantee
of cross approximation for the best rank-r Ar with any selected rows and columns. Below we extend
this result for A.

Theorem 7 Let A ∈ Rm×n be an approximately low-rank matrix that can be decomposed as
A = Ar + F . Then the cross approximation (1) with rank(Ar(I, J)) = r satisfies

∥A−CU †R∥F ≤ (∥W †(I, :)∥2 + ∥V †(J, :)∥2 + 3∥W †(I, :)∥2∥V †(J, :)∥2 + 1)∥F ∥F
+(∥W †(I, :)∥2 + ∥V †(J, :)∥2 + ∥W †(I, :)∥2∥V †(J, :)∥2 + 1)∥U †∥2∥F ∥2F ,(13)

where Ar = WΣV ⊤ is the compact SVD of Ar.

Note that (13) holds for any cross approximation as long as Ar(I, J) has rank r, but the quality
of the cross approximation depends on the matrix A as well as the selected rows and columns as
reflected by ∥W †(I, :)∥2, ∥V †(J, :)∥2, and ∥U †∥2. For example, on one hand, ∥W †(I, :)∥2 and
∥V †(J, :)∥2 can achieve their smallest possible value 1 when the singular vectors W and V are
the canonical basis. On the other hand, one may construct examples with large ∥W †(I, :)∥2 and
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∥V †(J, :)∥2. Nevertheless, these quantities can be upper bounded by selecting appropriate rows and
columns [62, Proposition 5.1]. In particular, for any orthonormal matrix W , if we select I such that
W (I, :) has maximal volume among all |I| × r submatrices of W , then we can always upper bound

∥W †(I, :)∥2 by
√
1 + r(m−|I|)

|I|−r+1 . A similar result also holds for ∥V †(J, :)∥2. Likewise, according to

[62, Proposition 5.1], ∥U †∥2 can be upper bounded by
√

1 + r(m−|I|)
|I|−r+1

√
1 + r(n−|J|)

|J|−r+1 ∥A
†∥2.

Proof (of Theorem 7)

First note that

∥A−CU †R∥F ≤ ∥A−Ar∥F + ∥Ar −CU †R∥F = ∥F ∥F + ∥Ar −CU †R∥F .

The proof is then completed by invoking [62, Corollary 4.3]:

∥Ar −CU †R∥F ≤ (∥W †(I, :)∥2 + ∥V †(J, :)∥2 + 3∥W †(I, :)∥2∥V †(J, :)∥2)∥F ∥F
+ (∥W †(I, :)∥2 + ∥V †(J, :)∥2 + ∥W †(I, :)∥2∥V †(J, :)∥2 + 1)∥U †∥2∥F ∥2F .

B Proof of Theorem 2

B.1 Overview of the Analysis

To bound the difference between T and T̂ , we use a similar approach as in [65] that exploits the
approximate low-rankness in T and the same structures within T and T̂ . The point of departure is
the fact that according to the expression for T̂ in (4), if we let T̂ ⟨k⟩ be the k-th unfolding of T̂ , then
there exist Ĉ and R̂ such that T̂ ⟨k⟩ = Ĉ[T ⟨k⟩(I≤k, I>k)]†τkR̂. Note that Ĉ and R̂ depend on k,
but we omit such dependence to simplify the notation. On the other hand, T ⟨k⟩ (the k-th unfolding
matrix of T ) is approximately low-rank, and thus can be approximated by the cross approximation in
the form of C[T ⟨k⟩(I≤k, I>k)]†τkR. Therefore, the difference between T̂ ⟨k⟩ and T ⟨k⟩ is controlled
by the differences between C and Ĉ and R and R̂. We can then adopt the same approach to bound
the difference between C and Ĉ by noting that C = T ⟨k⟩(:, I>k) contains selected columns of T ⟨k⟩,
which if reshaped to another matrix (corresponding to another unfolding matrix T̂ ⟨k′⟩ with k′ > k)
is also low-rank as shown in Figure 2. The difference between R and R̂ can also be analyzed by
the same approach. We can repeat the above step several times until the ground level where the
associated matrices C and R are equal to Ĉ and R̂, respectively.

Each step of the recursive procedure may amplify the approximation error. To reduce the total number
of steps, we use the balanced canonical dimension tree [79, 65]. As an example, in Figure 4 (a modifi-
cation of [65, Figure 1]), we illustrate the above mentioned interpolation steps with balanced canonical
dimension tree. Since

∥∥∥T − T̂
∥∥∥
F
=
∥∥∥T ⟨4⟩ − T̂ ⟨4⟩

∥∥∥
F

, in the top level (i.e., 3-rd level) of the figure,

we split the multi-index {d1, . . . , d8} in two parts {d1, . . . , d4} and {d5, . . . , d8}. Recall that I≤k and
{d1 · · · dk} (both have size r′4) denote the selected row indices from the multi-index and column in-
dices from the multi-index {dk+1 · · · dN}, respectively. Since T̂ ⟨4⟩ = Ĉ(4)[T

⟨4⟩(I≤k, I>k)]†τkR̂(4)

and T ⟨4⟩ ≈ C(4)[T
⟨4⟩(I≤k, I>k)]†τkR(4), where Ĉ(4) = T̂ ⟨4⟩(:, I>4) and R̂(4) = T̂ ⟨4⟩(I≤4, :)

(similarly for C(4) and R(4)), the task of analyzing
∥∥∥T ⟨4⟩ − T̂ ⟨4⟩

∥∥∥
F

can be reduced to analyzing

∥Ĉ(4)−C(4)∥F and ∥R̂(4)−R(4)∥F . Taking ∥Ĉ(4)−C(4)∥F as an example, we can represent C(4)

through the 2-nd unfolding matrix T̂ ⟨2⟩, i.e., C(4) = T ⟨4⟩(:, I>4) contains the same entries as T ⟨2⟩
:,I>4,

where T
⟨2⟩
:,I>4 is a submatrix of T ⟨2⟩ with the multi-index d5 · · · d8 restricted to I>4. Here T ⟨2⟩

:,I>4 has

size d1d2 × d3d4r
′
4 but is low-rank, and thus can be approximated by C(2)[T

⟨2⟩
:,I>4(I

≤2, I>2)]†τkR(2),

where C(2) = T
⟨2⟩
:,I>4(:, I

>2) and R(2) = T
⟨2⟩
:,I>4(I

≤2, :). Therefore, ∥Ĉ(4) − C(4)∥F can also

be bounded through ∥Ĉ(2) − C(2)∥F and ∥R̂(2) − R(2)∥F , where Ĉ(2) = T̂
⟨2⟩
:,I>4(:, I

>2) and
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R̂(2) = T̂
⟨2⟩
:,I>4(I

≤2, :). We can further analyze ∥Ĉ(2) − C(2)∥F by connecting these matrices to

T ⟨1⟩ and T̂ ⟨1⟩, which have the same entries in the sampled locations. A similar approach can be
applied for ∥R̂(2) −R(2)∥F by connecting to the 2-nd unfolding of the tensors. Thus, as shown in
Figure 4, the analysis for an 8-th order tensor involves a three-step decomposition until the ground
level with no errors in the sampled locations. For a general N -th order tensor, the analysis will
involve ⌈log2 N⌉ steps of such a decomposition. The main task is to study how the approximation
error depends on the previous layer.

reshape

reshape

reshape

reshape

Figure 4: Interpolation steps on the balanced canonical dimension tree.

In a nutshell, the analysis mainly involves the following two procedures:

• Error bound for how approximation error transfers to next level: For any 1 ≤ p < k < q ≤ N ,
we first define T ⟨k⟩

I≤p−1,I>q as a submatrix of T ⟨k⟩ when row and column indices I≤p−1 and I>q are
respectively chosen from the multi-index {d1 · · · dp−1} and {dq+1 · · · dN}. Following the above
discussion, T ⟨k⟩

I≤p−1,I>q ≈ C[U ]†τkR since T
⟨k⟩
I≤p−1,I>q is low-rank and T̂

⟨k⟩
I≤p−1,I>q = Ĉ[U ]†τkR̂

according to (4), where C = T
⟨k⟩
I≤p−1,I>q (:, I

>k), R = T
⟨k⟩
I≤p−1,I>q (I

≤k, :), U = T ⟨k⟩(I≤k, I>k)

as T ⟨k⟩(I≤k, I>k) is the same as T ⟨k⟩
I≤p−1,I>q (I

≤k, I>k), and same notation holds for Ĉ and R̂.

We will bound ∥T ⟨k⟩
I≤p−1,I>q − T̂

⟨k⟩
I≤p−1,I>q∥F from above in the form of

∥T ⟨k⟩
I≤p−1,I>q − T̂

⟨k⟩
I≤p−1,I>q∥F ≤ h1 + h2(∥EC∥F , ∥ER∥F ), (14)

where
EC = C − Ĉ, ER = R− R̂. (15)

In (14), h1 is independent to EC and ER, while h2(∥EC∥F , ∥ER∥F ) highlights how the approxi-
mation error depends on the previous layer, or how the error transfers to next layer.

• Error bound for the entire tensor: We can then recursively apply (14) at most ⌈log2 N⌉ times to
get the bound for ∥T − T̂ ∥F . In particular, let eℓ denote the largest approximation error of ∥EC∥F
and ∥ER∥F in the l-th layer as in Figure 4. Then (14) implies that

el+1 ≤ h1 + h2(el, el). (16)

Using e0 = 0, we recursively apply the above equation to get the bound for e⌈log2 N⌉, which

corresponds to
∥∥∥T − T̂

∥∥∥
F

.

17



B.2 Main Proofs

Proof We now prove Theorem 2 by following the above two procedures.

Error bound for how approximation error transfers to next level: Our goal is to derive (14) with
τk = 0. Since T

⟨k⟩
I≤p−1,I>q is a submatrix of T ⟨k⟩ and the latter satisfies ϵk = ∥T ⟨k⟩ − T

⟨k⟩
rk ∥F , it

follows that T ⟨k⟩
I≤p−1,I>q is also approximately low-rank with

∥∥∥T ⟨k⟩
I≤p−1,I>q − T

⟨k⟩
rk,I≤p−1,I>q

∥∥∥
F
≤ ϵk.

Thus, Theorem 6 ensures that there exist indices I≤k and I>k such that∥∥∥T ⟨k⟩
I≤p−1,I>q −CU−1R

∥∥∥
F
≤ (r + 1)ϵ, (17)

where ϵ = maxk=1,...,N−1 ϵk and r = maxk=1,...,N−1 rk, C = T
⟨k⟩
I≤p−1,I>q (:, I

>k).

We now bound the difference between T
⟨k⟩
I≤p−1,I>q and T̂

⟨k⟩
I≤p−1,I>q by∥∥∥T ⟨k⟩

I≤p−1,I>q − T̂
⟨k⟩
I≤p−1,I>q

∥∥∥
F

=
∥∥∥T ⟨k⟩

I≤p−1,I>q − (C −EC)U
−1 (R−ER)

∥∥∥
F

≤
∥∥∥T ⟨k⟩

I≤p−1,I>q −CU−1R
∥∥∥
F
+
∥∥ECU

−1R
∥∥
F
+
∥∥CU−1ER

∥∥
F
+
∥∥ECU

−1ER

∥∥
F

≤ (r + 1)ϵ+ ∥EC∥F ∥U−1R∥2 + ∥CU−1∥2 ∥ER∥F + ∥ECU
−1∥2 ∥ER∥F

≤ (r + 1)ϵ+ κ ∥EC∥F + κ ∥ER∥F + κ ∥ER∥F
≤ (r + 1)ϵ+ 3κmax{∥EC∥F , ∥ER∥F }, (18)

where the third inequality follows because C = T
⟨k⟩
I≤p−1,I>q (:, I

>k) is a submatrix of T ⟨k⟩(:, I>k)

which implies that ∥CU−1∥2 ≤
∥∥∥T ⟨k⟩

I≤p−1,I>q (:, I
>k) · T ⟨k⟩(I≤k, I>k)−1

∥∥∥
2
≤ κ and by a similar

argument we have
∥∥U−1R

∥∥
2
≤ κ and

∥∥ECU
−1
∥∥
2
≤ κ.

Error bound for the entire tensor: Following the same notation as (16), (18) shows that

el+1 ≤ (r + 1)ϵ+ 3κel, (19)

which together with e0 = 0 implies that∥∥∥T − T̂
∥∥∥
F
= e⌈log2 N⌉ ≤

(3κ)⌈log2 N⌉ − 1

3κ− 1
(r + 1)ϵ. (20)

C Proof of Theorem 3

Before proving Theorem 3, we provide several useful results.

Lemma 1 [62, Proposition 6.4] For any rank-r A ∈ Rm×n with compact SVD A = WΣV ⊤

where W ∈ Rm×r,Σ ∈ Rr×r, and V ∈ Rn×r, suppose CU †R is its CUR decomposition with
selected row indices I and column indices J . Then∥∥CU †∥∥

2
=
∥∥W †(I, :)

∥∥
2
,
∥∥U †R

∥∥
2
=
∥∥V †(J, :)

∥∥
2
.

Noting that T ⟨k⟩
I≤p−1,I>q is a submatrix of T ⟨k⟩ which is approximately low-rank, we can approximate

T
⟨k⟩
I≤p−1,I>q by cross approximation. In particular, using Theorem 7 and Lemma 1 for T ⟨k⟩

I≤p−1,I>q ,
we can obtain the following result.

Lemma 2 Suppose T
⟨k⟩
rk is the best rank rk approximation of the k-th unfolding matrix T ⟨k⟩, such

that T ⟨k⟩ = T
⟨k⟩
rk + F ⟨k⟩. For any 1 ≤ p < k < q ≤ N and indices I≤p−1 and I>q, we have
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T
⟨k⟩
I≤p−1,I>q = T

⟨k⟩
rk,I≤p−1,I>q + F

⟨k⟩
I≤p−1,I>q , where T

⟨k⟩
I≤p−1,I>q , T ⟨k⟩

rk,I≤p−1,I>q and F
⟨k⟩
I≤p−1,I>q are

respectively submatrices of T ⟨k⟩, T ⟨k⟩
rk and F ⟨k⟩. Let T ⟨k⟩

rk = W(k)Σ(k)V(k)
T be the compact SVD

of T ⟨k⟩
rk . Then for any (I≤k, I>k) as long as rank(T ⟨k⟩

rk (I≤k, I>k)) = rk, we have∥∥∥T ⟨k⟩
I≤p−1,I>q − T

⟨k⟩
I≤p−1,I>q (:, I

>k)[T ⟨k⟩(I≤k, I>k)]†T
⟨k⟩
I≤p−1,I>q (I

≤k, :)
∥∥∥
F

≤∥F ⟨k⟩∥F

(
∥[W(k)(I

≤k, :)]†∥2+∥[V(k)(I
>k, :)]†∥2+3∥[W(k)(I

≤k, :)]†∥2∥[V(k)(I
>k, :)]†∥2+1

+ d
(
∥[W(k)(I

≤k, :)]†∥2+∥[V(k)(I
>k, :)]†∥2+∥[W(k)(I

≤k, :)]†∥2∥[V(k)(I
>k, :)]†∥2 + 1

))
,

where d = ∥[T ⟨k⟩(I≤k, I>k)]†∥2.

The following result extends Lemma 1 to the case where the matrix is only approximately low-rank.

Lemma 3 Suppose A is approximately low-rank of the form A = Ar + F = WΣV ⊤ + F , where
Ar has rank r with compact SVD Ar = WΣV ⊤. Then for any selected row and column indices
I, J , and τ ≥ 0, we have∥∥A(:, J)[A(I, J)]†τ

∥∥
2
≤
∥∥W †(I, :)

∥∥
2
+
(
1 + ∥W †(I, :)∥2

) ∥∥[A(I, J)]†τ
∥∥
2
∥F (:, J)∥F , (21)

and∥∥[A(I, J)]†τA(I, :)
∥∥
2
≤ ∥V †(J, :)∥2 +

(
1 + ∥V †(J, :)∥2

) ∥∥[A(I, J)]†τ
∥∥
2
∥F (I, :)∥F . (22)

Proof Noting that A(:, J) = Ar(:, J) + F (; , J) and A(I, :) = Ar(I, :) + F (I, :), we have∥∥A(:, J)[A(I, J)]†τ
∥∥
2

= ∥(Ar(:, J) + F (; , J))[A(I, J)]†τ∥2
≤ ∥Ar(:, J)[A(I, J)]†τ∥2 + ∥F (; , J)[A(I, J)]†τ∥2
≤ ∥Ar(:, J)A

†
r(I, J)Ar(I, J)[A(I, J)]†τ∥2 + ∥F (; , J)∥2∥[A(I, J)]†τ∥2

≤ ∥Ar(:, J)A
†
r(I, J)∥2∥(A(I, J)− F (I, J))[A(I, J)]†τ∥2 + ∥F (; , J)∥2∥[A(I, J)]†τ∥2

≤ ∥Ar(:, J)A
†
r(I, J)∥2(1 + ∥F (I, J)∥2∥[A(I, J)]†τ∥2) + ∥F (; , J)∥2∥[A(I, J)]†τ∥2

≤
∥∥W †(I, :)

∥∥
2
+
(
1 + ∥W †(I, :)∥2

) ∥∥[A(I, J)]†τ
∥∥
2
∥F (:, J)∥F , (23)

where the penultimate line follows because ∥A(I, J)[A(I, J)]†τ∥2 ≤ 1 and in the last line we use
Lemma 1. Likewise, we can obtain (22) with a similar argument.

We are now ready to prove Theorem 3.

Proof (of Theorem 3)

Recall the following definitions that will be used to simplify the presentation:

a = max
k=1,...,N−1

∥[W(k)(I
≤k, :)]†∥2, b = max

k=1,...,N−1
∥[V(k)(I

>k, :)]†∥2,

c = max
k=1,...,N−1

∥[T ⟨k⟩(I≤k, I>k)]†∥2 r = max
k=1,...,N−1

rk, ϵ = max
k=1,...,N−1

∥F ⟨k⟩∥F .

Error bound for how approximation error transfers to next level: To derive (14), we first exploit
the approximate low-rankness of T ⟨k⟩

I≤p−1,I>q to write it as

T
⟨k⟩
I≤p−1,I>q = C[U ]†τkR+H

⟨k⟩
I≤p−1,I>q , (24)

where H
⟨k⟩
I≤p−1,I>q is the residual of the cross approximation.
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Furthermore, by the construction of T̂
⟨k⟩
I≤p−1,I>q , we can also express it by the following cross

approximation

T̂
⟨k⟩
I≤p−1,I>q = Ĉ[U ]†τkR̂. (25)

We now quantify the difference between T
⟨k⟩
I≤p−1,I>q and T̂

⟨k⟩
I≤p−1,I>q as

∥T ⟨k⟩
I≤p−1,I>q − T̂

⟨k⟩
I≤p−1,I>q∥F

=∥C[U ]†τkR+H
⟨k⟩
I≤p−1,I>q − Ĉ[U ]†τkR̂∥F

≤∥H⟨k⟩
I≤p−1,I>q∥F + ∥C[U ]†τkR− Ĉ[U ]†τkR̂∥F

=∥H⟨k⟩
I≤p−1,I>q∥F + ∥C[U ]†τkR− (C −EC)[U ]†τk(R−ER)∥F

≤∥H⟨k⟩
I≤p−1,I>q∥F + ∥C[U ]†τkER∥F + ∥EC [U ]†τkER∥F + ∥EC [U ]†τkR∥F .

(26)

Below we provide upper bounds for the four terms in the above equation. First, utilizing Lemma 3
gives

∥C[U ]†τkER∥F
≤ ∥C[U ]†τk∥2∥ER∥F ≤ ∥T ⟨k⟩(:, I>k)[T ⟨k⟩(I≤k, I>k)]†τk∥2∥ER∥F
≤ (∥[W(k)(I

≤k, :)]†∥2+(1+∥[W(k)(I
≤k, :)]†∥2)∥[T ⟨k⟩(I≤k, I>k)]†τk∥2∥F

⟨k⟩
rk

(:, I>k)∥F )∥ER∥F
≤ (a+ (1 + a)cϵ)∥ER∥F . (27)

With the same argument, we have

∥EC [U ]†τkR∥F ≤ (b+ (1 + b)cϵ)∥EC∥F . (28)

Also, noting that ∥[U ]†τk∥2 ≤ 1
τk

, we get

∥EC [U ]†τkER∥F ≤ ∥[U ]†τk∥2∥EC∥F ∥ER∥F ≤ 1

τk
∥EC∥F ∥ER∥F . (29)

The term ∥H⟨k⟩
I≤p−1,I>q∥F can be upper bounded as

∥H⟨k⟩
I≤p−1,I>q∥F

= ∥T ⟨k⟩
I≤p−1,I>q −CU †R+CU †R−C[U ]†τkR∥F

≤ ∥T ⟨k⟩
I≤p−1,I>q −CU †R∥F + ∥CU †R−C[U ]†τkR∥F

= ∥T ⟨k⟩
I≤p−1,I>q −CU †R∥F + ∥CU †U(U † − [U ]†τk)UU †R∥F

= ∥T ⟨k⟩
I≤p−1,I>q −CU †R∥F + ∥CU †(U − [U ]τk)U

†R∥F
≤ ∥T ⟨k⟩(:, I>k)[T ⟨k⟩(I≤k, I>k)]†∥2∥U − [U ]τk∥F ∥[T ⟨k⟩(I≤k, I>k)]†T ⟨k⟩(I≤k, :)∥2

+ ∥T ⟨k⟩
I≤p−1,I>q −CU †R∥F

≤
√
∥F ⟨k⟩(I≤k, I>k)∥2F + r2kτ

2
k∥T

⟨k⟩(:, I>k)[T ⟨k⟩(I≤k, I>k)]†∥2∥[T ⟨k⟩(I≤k, I>k)]†T ⟨k⟩(I≤k, :)∥2

+ ∥T ⟨k⟩
I≤p−1,I>q −CU †R∥F

≤ (∥F ⟨k⟩∥F + rkτk)∥T ⟨k⟩(:, I>k)[T ⟨k⟩(I≤k, I>k)]†∥2∥[T ⟨k⟩(I≤k, I>k)]†T ⟨k⟩(I≤k, :)∥2
+ ∥T ⟨k⟩

I≤p−1,I>q −CU †R∥F
≤ (a+ b+ 3ab+ 1)ϵ+ (a+ b+ ab+ 1)cϵ2 + (ϵ+ rτk)(a+ (1 + a)cϵ)(b+ (1 + b)cϵ), (30)

where C = CU †U , R = UU †R and U [U ]†τkU = [U ]τk are respectively used in the second and

third equality, the third inequality follows because ∥U − [U ]τk∥F ≤
√
∥F ⟨k⟩(I≤k, I>k)∥2F + r2kτ

2
k ,

and the last line uses Lemma 2 and Lemma 3.
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Plugging (27), (28), (29), and (30) into (26) gives

∥T ⟨k⟩
I≤p−1,I>q − T̂

⟨k⟩
I≤p−1,I>q∥F

≤ (a+ b+ 3ab+ 1)ϵ+ (a+ b+ ab+ 1)cϵ2 + (ϵ+ rτk)(a+ (1 + a)cϵ)(b+ (1 + b)cϵ)

+ (a+ (1 + a)cϵ)∥ER∥F + (b+ (1 + b)cϵ)∥EC∥F +
1

τk
∥EC∥F ∥ER∥F . (31)

Error bound for the entire tensor: Following the same notation as (16), (31) shows that (by setting
τk = el for the l-th level)

el+1 ≤ (a+ b+ 3ab+ 1)ϵ+ (a+ b+ ab+ 1)cϵ2 + ϵ(a+ (1 + a)cϵ)(b+ (1 + b)cϵ)

+ (1 + a+ b+ (1 + a)cϵ+ (1 + b)cϵ+ r(a+ (1 + a)cϵ)(b+ (1 + b)cϵ))el

= (a+ b+ 4ab+ 1)ϵ+ (2a+ 2b+ 3ab+ 1)cϵ2 + (1 + a+ b+ ab)c2ϵ3

+

(
1 + a+ b+ rab+ (2 + a+ b+ ar + br + 2abr)cϵ+ r(1 + a+ b+ ab)c2ϵ2

)
el,

(32)
which together with e0 = 0 implies that

∥T − T̂ ∥F = e⌈log2 N⌉ ≤
α1(a, b, c, ϵ, r)

⌈log2 N⌉ − 1

α1(a, b, c, ϵ, r)− 1
β1(a, b, c, ϵ),

where
α1(a, b, c, ϵ, r) = 1 + a+ b+ rab+ (2 + a+ b+ ar + br + 2abr)cϵ+ r(1 + a+ b+ ab)c2ϵ2,

β1(a, b, c, ϵ) = (a+ b+ 4ab+ 1)ϵ+ (2a+ 2b+ 3ab+ 1)cϵ2 + (1 + a+ b+ ab)c2ϵ3.

D Proof of Theorem 4

The proof is similar to the proof of Theorem 3. We include the proof for the sake of completeness.

Before deriving Theorem 4, we first consider matrix cross approximation with measurement error. In
this case, we obtain noisy columns C̃, rows R̃, and intersection matrix Ũ . To simplify the notation,
we describe the measurement error in the selected rows I and columns J by E ∈ Rm×n such that
E has non-zero elements only in the rows I or columns J corresponding to the noise. We can then
rewrite

Ã = A+E, C̃ = Ã(:, J), Ũ = Ã(I, J), R̃ = Ã(I, :) (33)

and C̃Ũ †R̃ can be viewed as cross approximation for Ã. However, we note that here we want to
ensure C̃Ũ †R̃ is a stable approximation to A rather than Ã. Thus, we extend Theorem 7 to this case.

Theorem 8 Let A ∈ Rm×n be an approximately low-rank matrix that can be decomposed as
A = Ar + F , where Ar is rank-r. Let Ar = WΣV T be the compact SVD of Ar. Then the noisy
cross approximation defined in C̃Ũ †R̃ (33) with rank(Ar(I, J)) = r satisfies

∥A− C̃Ũ †R̃∥F
≤ (∥W †(I, :)∥2 + ∥V †(J, :)∥2 + 3∥W †(I, :)∥2∥V †(J, :)∥2)∥E∥F +

(∥W †(I, :)∥2 + ∥V †(J, :)∥2 + 3∥W †(I, :)∥2∥V †(J, :)∥2 + 1)∥F ∥F +

(∥W †(I, :)∥2 + ∥V †(J, :)∥2 + ∥W †(I, :)∥2∥V †(J, :)∥2 + 1)∥Ũ †∥2(∥E∥F + ∥F ∥F )2. (34)

Proof In order to bound ∥A− C̃Ũ †R̃∥F , similar to the derivation of Theorem 7, we first get

∥Ar − C̃Ũ †R̃∥F
≤ (∥W †(I, :)∥2 + ∥V †(J, :)∥2 + 3∥W †(I, :)∥2∥V †(J, :)∥2)∥E∥F +

(∥W †(I, :)∥2 + ∥V †(J, :)∥2 + 3∥W †(I, :)∥2∥V †(J, :)∥2)∥F ∥F +

(∥W †(I, :)∥2 + ∥V †(J, :)∥2 + ∥W †(I, :)∥2∥V †(J, :)∥2 + 1)∥Ũ †∥2(∥E∥F + ∥F ∥F )2. (35)
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Combing ∥A− C̃Ũ †R̃∥F ≤ ∥F ∥F + ∥Ar − C̃Ũ †R̃∥F and (35), we have (34).

The following result extends Lemma 2 to the case with measurement error.

Lemma 4 For any 1 ≤ p < k < q ≤ N , a low-rank model with the measurement error
T̃

⟨k⟩
I≤p−1,I>q = T

⟨k⟩
rk,I≤p−1,I>q + E

⟨k⟩
I≤p−1,I>q + F

⟨k⟩
I≤p−1,I>q is constructed where T̃

⟨k⟩
I≤p−1,I>q is a

submatrix of T̃ ⟨k⟩. When rank(T
⟨k⟩
rk (I≤k, I>k)) = rk is satisfied, we have

∥T ⟨k⟩
I≤p−1,I>q − T̃

⟨k⟩
I≤p−1,I>q (:, I

>k)[T̃ ⟨k⟩(I≤k, I>k)]†T̃
⟨k⟩
I≤p−1,I>q (I

≤k, :)∥F
≤ (∥[W(k)(I

≤k, :)]†∥2 + ∥[V(k)(I
>k, :)]†∥2 + 3∥[W(k)(I

≤k, :)]†∥2∥[V(k)(I
>k, :)]†∥2)∥E⟨k⟩∥F

+(∥[W(k)(I
≤k, :)]†∥2+∥[V(k)(I

>k, :)]†∥2+3∥[W(k)(I
≤k, :)]†∥2∥[V(k)(I

>k, :)]†∥2+1)∥F ⟨k⟩
rk

∥F
+(∥[W(k)(I

≤k, :)]†∥2 + ∥[V(k)(I
>k, :)]†∥2 + ∥[W(k)(I

≤k, :)]†∥2∥[V(k)(I
>k, :)]†∥2 + 1)

· ∥[T̃ ⟨k⟩(I≤k, I>k)]†∥2(∥E⟨k⟩∥F + ∥F ⟨k⟩
rk

∥F )2, (36)

where T
⟨k⟩
I≤p−1,I>q is a submatrix of T ⟨k⟩ and T

⟨k⟩
rk = W(k)Σ(k)V(k)

T is the SVD of T ⟨k⟩
rk .

Likewise, we extend Lemma 3 to the measurement noise case.

Lemma 5 Given I and J , we set a low-rank model as Ã = Ar +E + F = WΣV T +E + F .
For τ ≥ 0, we have∥∥∥Ã(:, J)[Ã(I, J)]†τ

∥∥∥
2
≤
∥∥W †(I, :)

∥∥
2
+
(
1 + ∥W †(I, :)∥2

) ∥∥∥[Ã(I, J)]†τ

∥∥∥
2
(∥E(:, J)∥F + ∥F (:, J)∥F ),∥∥∥[Ã(I, J)]†τ Ã(I, :)

∥∥∥
2
≤
∥∥V †(J, :)

∥∥
2
+ (1 +

∥∥V †(J, :)
∥∥
2
)
∥∥∥[Ã(I, J)]†τ

∥∥∥
2
(∥E(:, J)∥F + ∥F (:, J)∥F ).

We are now ready to prove Theorem 4.

Proof (of Theorem 4)

Error bound for how approximation error transfers to next level: To derive (14), we first exploit
the approximate low-rankness of T ⟨k⟩

I≤p−1,I>q to write it as

T
⟨k⟩
I≤p−1,I>q = C̃[Ũ ]†τkR̃+H

⟨k⟩
I≤p−1,I>q , (37)

where C̃ = T̃
⟨k⟩
I≤p−1,I>q (:, I

>k), R̃ = T̃
⟨k⟩
I≤p−1,I>q (I

≤k, :) and Ũ = T̃
⟨k⟩
I≤p−1,I>q (I

≤k, I>k) =

T̃ ⟨k⟩(I≤k, I>k). In addition, T̂ ⟨k⟩
I≤p−1,I>q can be written as

T̂
⟨k⟩
I≤p−1,I>q = Ĉ[Ũ ]†τkR̂. (38)

Denote by EC = C̃ − Ĉ and ER = R̃− R̂. Now using Lemma 5 and ∥[Ũ ]†τk∥2 ≤ 1
τk

, we obtain

∥C̃[Ũ ]†τkER∥F
≤ ∥T̃ ⟨k⟩(:, I>k)[T̃ ⟨k⟩(I≤k, I>k)]†τk∥2∥ER∥F

≤
(
∥[W(k)(I

≤k, :)]†∥2 + (1 + ∥[W(k)(I
≤k, :)]†∥2)∥[T̃ ⟨k⟩(I≤k, I>k)]†∥2

·(∥E⟨k⟩(:, I>k)∥2 + ∥F ⟨k⟩(:, I>k)∥2)
)
∥ER∥F

≤ (a+ (1 + a)c(ξ + ϵ))∥ER∥F , (39)

where we restate that

ξ = ∥E⟨k⟩∥F , a = max
k=1,...,N−1

∥[W(k)(I
≤k, :)]†∥2, b = max

k=1,...,N−1
∥[V(k)(I

>k, :)]†∥2,

c = max
k=1,...,N−1

∥[T̃ ⟨k⟩(I≤k, I>k)]†∥2, r = max
k=1,...,N−1

rk, ϵ = max
k=1,...,N−1

∥F ⟨k⟩∥F .
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With the same argument, we can obtain

∥EC [Ũ ]†τkR̃∥F ≤ (b+ (1 + b)c(ξ + ϵ))∥EC∥F , (40)
and

∥EC [Ũ ]†τkER∥F ≤ ∥[Ũ ]†τk∥2∥EC∥F ∥ER∥F ≤ 1

τk
∥EC∥F ∥ER∥F . (41)

Furthermore, it follows from Lemma 4 and Lemma 5 that

∥H⟨k⟩
I≤p−1,I>q∥F

≤ ∥T ⟨k⟩
I≤p−1,I>q − C̃Ũ †R̃∥F + ∥C̃Ũ †R̃− C̃[Ũ ]†τkR̃∥F

= ∥T ⟨k⟩
I≤p−1,I>q − C̃Ũ †R̃∥F + ∥C̃Ũ †Ũ(Ũ † − [Ũ ]†τk)ŨŨ †R̃∥F

= ∥T ⟨k⟩
I≤p−1,I>q − C̃Ũ †R̃∥F + ∥C̃Ũ †(Ũ − [Ũ ]τk)Ũ

†R̃∥F

≤ ∥T̃ ⟨k⟩(:, I>k)[T̃ ⟨k⟩(I≤k, I>k)]†∥2∥Ũ − [Ũ ]τk∥F ∥[T̃ ⟨k⟩(I≤k, I>k)]†T̃ ⟨k⟩(I≤k, :)∥2
+∥T ⟨k⟩

I≤p−1,I>q − C̃Ũ †R̃∥F

≤
√

∥E⟨k⟩(I≤k, I>k) + F ⟨k⟩(I≤k, I>k)∥2F + r2kτ
2
k∥T̃

⟨k⟩(:, I>k)[T̃ ⟨k⟩(I≤k, I>k)]†∥2

·∥[T̃ ⟨k⟩(I≤k, I>k)]†T̃ ⟨k⟩(I≤k, :)∥2 + ∥T ⟨k⟩
I≤p−1,I>q − C̃Ũ †R̃∥F

≤ (∥E⟨k⟩∥F + ∥F ⟨k⟩∥F + rkτk)∥T̃ ⟨k⟩(:, I>k)[T̃ ⟨k⟩(I≤k, I>k)]†∥2
·∥[T̃ ⟨k⟩(I≤k, I>k)]†T̃ ⟨k⟩(I≤k, :)∥2 + ∥T ⟨k⟩

I≤p−1,I>q − C̃Ũ †R̃∥F
≤ ϵ+ (ξ + ϵ+ rkτk)(a+ (1 + a)c(ξ + ϵ))(b+ (1 + b)c(ξ + ϵ))

+(a+ b+ 3ab)(ξ + ϵ) + (a+ b+ ab+ 1)c(ξ + ϵ)2. (42)

Combining (39)-(42), we can obtain

∥T ⟨k⟩
I≤p−1,I>q − T̂

⟨k⟩
I≤p−1,I>q∥F = ∥C̃[Ũ ]†τkR̃+H

⟨k⟩
I≤p−1,I>q − Ĉ[Ũ ]†τkR̂∥F

≤ ∥H⟨k⟩
I≤p−1,I>q∥F + ∥C̃[Ũ ]†τkR̃− (C̃ −EC)[Ũ ]†τk(R̃−ER)∥F

≤ ∥H⟨k⟩
I≤p−1,I>q∥F + ∥C̃[Ũ ]†τkER∥F + ∥EC [Ũ ]†τkER∥F + ∥EC [Ũ ]†τkR̃∥F

≤ ϵ+ (ξ + ϵ+ rkτk)(a+ (1 + a)c(ξ + ϵ))(b+ (1 + b)c(ξ + ϵ)) + (a+ b+ 3ab)(ξ + ϵ)

+ (a+ b+ ab+ 1)c(ξ + ϵ)2 + (a+ (1 + a)c(ξ + ϵ))∥ER∥F + (b+ (1 + b)c(ξ + ϵ))∥EC∥F

+
1

τk
∥EC∥F ∥ER∥F . (43)

Error bound for the entire tensor: Similar to the derivation of Theorem 3, (43) implies that (by
setting τk = el in the l-th layer)
el+1 ≤ϵ+ (a+ b+ 4ab)(ξ + ϵ) + (2a+ 2b+ 3ab+ 1)c(ξ + ϵ)2 + (1 + a+ b+ ab)c2(ξ + ϵ)3

+

(
1 + a+ b+ rab+ (2 + (a+ b)(1 + r) + 2abr)c(ξ + ϵ) + r(1 + a+ b+ ab)c2(ξ + ϵ)2

)
el,

which together with e0 = 0 implies that

∥T − T̂ ∥F =
α2(a, b, c, ϵ, ξ, r)

⌈log2 N⌉ − 1

α2(a, b, c, ϵ, ξ, r)− 1
β2(a, b, c, ϵ, ξ), (44)

where
α2(a, b, c, ϵ, ξ, r) =1 + a+ b+ rab+ (2 + a+ b+ ar + br + 2abr)c(ξ + ϵ)

+ r(1 + a+ b+ ab)c2(ξ + ϵ)2,

β2(a, b, c, ϵ, ξ) =ϵ+ (a+ b+ 4ab)(ξ + ϵ) + (2a+ 2b+ 3ab+ 1)c(ξ + ϵ)2

+ (1 + a+ b+ ab)c2(ξ + ϵ)3.
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