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A Hypothesis Testing for Linear Regression

In this section, we review the theory of (non-private) hypothesis testing in the general linear model.
We will consider hypothesis testing in the linear model

Y = Xβ + e,

where X ∈ Rn×p is a matrix of known constants, β ∈ Rp is the parameter vector that determines the
linear relationship between X and the dependent variable Y , and e is a random vector such that for
all i ∈ [n], E[ei] = 0, var[ei] = σ2

e . Furthermore, for all i 6= j ∈ [n], cov(ei, ej) = 0.

Note that the simple linear regression model, yi = β2 + β1 · xi + ei for scalars xi, yi and ei ∀i ∈ [n],
can be cast as a linear model as follows: X ∈ Rn×2 where

X =


1 x1

1 x2

· · · · · ·
1 xn−1

1 xn

 . (4)

We will consider the general linear model: Y ∼ N (Xβ, σ2
eIn×n), where In×n is the n× n identity

matrix. Let ω be an r-dimensional linear subspace of Rp and ω0 be a q-dimensional linear subspace
of ω such that 0 ≤ q < r. We will consider hypothesis tests of the form:

1. H0: β ∈ ω0.

2. H1: β ∈ ω \ ω0.

Let β̂ and β̂N denote the least squares estimates under the alternative and null hypothesis respectively.
In other words,

β̂N = argmin
z∈ω0

‖Xz − Y ‖2, β̂ = argmin
z∈ω

‖Xz − Y ‖2.

The test statistic we will use is equivalent to the generalized likelihood ratio test statistic

T =

(
n− r
r − q

)
· ‖Y −Xβ̂

N‖2 − ‖Y −Xβ̂‖2

‖Y −Xβ̂‖2
(5)

=

(
n− r
r − q

)
· ‖Xβ̂ −Xβ̂

N‖2

‖Y −Xβ̂‖2
(6)

=
1

r − q
· ‖Xβ̂ −Xβ̂

N‖2

S2
, (7)
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where S2 = ‖Y − Xβ̂‖2/(n − r). The vectors Y − Xβ̂ and Xβ̂ − Xβ̂N can be shown to be
orthogonal, so that ‖Y −Xβ̂N‖2 = ‖Y −Xβ̂‖2 +‖Xβ̂−Xβ̂N‖2 by the Pythagorean theorem [37].

When r − q = 1, this test is uniformly most powerful unbiased and for r − q > 1, the test is most
powerful amongst all tests that satisfy certain symmetry restrictions [37].
Theorem A.1. For every n ∈ N with n > r, let X = Xn ∈ Rn×p be the design matrix. Under the
general linear model Y = Yn ∼ N (Xnβ, σ

2
eIn×n),

T = Tn ∼ Fr−q,n−r(η2
n), η2

n =
‖Xnβ −Xnβ

N‖2

σ2
e

,

where Fn,m is the F -distribution with parameters n, m, βN = E[β̂N ], q is the dimension of ω0, and
r is the dimension of ω with 0 ≤ q < r.

Furthermore,

1.
‖Yn −Xnβ̂‖2 ∼ X 2

n−rσ
2
e , ‖Xnβ̂ −Xnβ̂

N‖2 ∼ X 2
r−q(η

2
n)σ2

e .

2. If there exists η ∈ R such that ‖Xnβ−Xnβ
N‖2

σ2
e

→ η2, then

T = Tn ∼ Fr−q,n−r(η2
n)

D−→
χ2
r−q(η

2)

r − q
.

3. We have
‖Yn −Xnβ̂‖2

n− r
P−→ σ2

e .

The values β = E[β̂], βN = E[β̂N ] are the expected values of our parameter estimates under the
alternative and null hypotheses respectively.

The full statement and proof of Theorem A.1 appears as Theorem F.2 (Section F). Above, the noncen-
tral F -distribution Fn,m(λ), with parameters n,m and noncentrality parameter λ is the distribution

of χ2
n(λ)/n
χ2
m/m

, the ratio of two scaled chi-squared random variables. χ2
K(λ) is a random variable

distributed according to a chi-squared distribution with K degrees of freedom and noncentrality
parameter λ. That is, χ2

K(λ) is distributed as the squared length of a N (v, IK×K) vector where
v ∈ RK has length λ. Also, χ2

K ∼ χ2
K(0).

A.1 Testing a Linear Relationship in Simple Linear Regression Models

Consider the model: yi = β2 + β1 · xi + ei, where ei ∼ N (0, σ2
e) are i.i.d. random variables and

x1, . . . , xn are constants that form the following design matrix for our problem

X =


1 x1

1 x2

· · · · · ·
1 xn−1

1 xn

 .

In this case, ω = R2 and ω0 = {β ∈ R2 : β1 = 0}. As a result, our hypothesis is:

1. H0: β1 = 0.
2. H1: β1 6= 0.

Note that r = p = 2 and q = 1.

Furthermore, let

β =

(
β2

β1

)
, β̂ =

(
β̂2

β̂1

)
.
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We use β̂N to refer to the estimate of β when the null hypothesis is true (i.e., β1 = 0) and β̂ be the
estimate of β when the alternative hypothesis holds.

For the calculations below, let

1. x def
= (x1, x2, . . . , xn)T , y def

= (y1, y2, . . . , yn)T ,

2. x̄ def
= 1

n

∑n
i=1 xi, ȳ

def
= 1

n

∑n
i=1 yi,

3. x2 def
= 1

n

∑n
i=1 x

2
i , xy def

= 1
n

∑n
i=1 xiyi,

4. σ̂2
xy

def
= xy − x̄ · ȳ, and σ̂2

x
def
= x2 − x̄2.

We can then obtain the sufficient statistics

XTX =

(
n nx̄

nx̄ nx2

)
, XTY =

(
nȳ
nxy

)
, (8)

so that under the alternative hypothesis, the least squares estimate is

β̂ = argmin
β∈ω

‖Y −Xβ‖2 = (XTX)−1XTY,

assuming that XTX is invertible which happens iff x is not the constant vector (so that det(XTX) =
n2x2 − n2x̄2 = n2 · σ̂2

x > 0). Assuming invertibility, we have

(XTX)−1 =
1

n2x2 − n2x̄2

(
nx2 −nx̄
−nx̄ n

)
. (9)

Thus, the least squares estimate under the alternative hypothesis is

β̂ = (XTX)−1XTY

=
1

n2 · x2 − n2 · x̄2

(
n2 · x2 · ȳ − n2 · x̄ · xy
−n2 · x̄ · ȳ + n2 · xy

)
=

(
β̂2

β̂1

)
,

and further simplification results in the following slope and intercept estimates:

β̂1 =
xy − x̄ · ȳ
x2 − x̄2

=
σ̂2
xy

σ̂2
x

,

β̂2 = ȳ − β̂1x̄ =
ȳ · x2 − x̄ · xy

σ̂2
x

.

The square of residuals is ‖Y −Xβ̂‖2 and an (unbiased) estimate of σ2
e is S2 = ‖Y−Xβ̂‖2

n−2 .

Also, we can derive β̂N as follows

β̂N = argmin
β∈ω0

‖Y −Xβ‖2 =

(
ȳ
0

)
=

(
β̂N2
0

)
so that

‖Xβ̂ −Xβ̂N‖2 =

n∑
i=1

(β̂2 + β̂1xi − β̂N2 )2

=

n∑
i=1

(ȳ − β̂1x̄+ β̂1xi − ȳ)2 = β̂2
1

n∑
i=1

(xi − x̄)2

= β̂2
1 · n · σ̂2

x.
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As a result, the test statistic T is

T =

(
n− r
r − q

)
‖Xβ̂ −Xβ̂N‖2

‖Y −Xβ̂‖2
=
β̂2

1

S2
· n · σ̂2

x.

Level-α Test: Under H0, T ∼ F1,n−2 since by Theorem A.1, the centrality parameter is η2 = 0. The
level-α test will then reject the null if T is greater than the upper αth quantile of this F -distribution,
Fα,1,n−2.

In other words, we will reject the null if

β̂2
1

S2
· n · σ̂2

x > Fα,1,n−2.

We see that the chance of rejecting the null increases as:

1. β̂2
1 , the square of the slope estimate, increases.

2. σ̂2
x increases.

3. n increases.

4. S2 decreases.

Power: The power is the chance that a random variable distributed as F1,n−2(η2) exceeds Fα,1,n−2

where the centrality parameter is η2 =
β2

1

σ2
e
· n · σ̂2

x.

In other words, the power of the test is

P
[
F1,n−2

(
β2

1

σ2
e

· n · σ̂2
x

)
> Fα,1,n−2

]
,

where the probability is over the draws of the F -distribution.

A.2 Testing for Mixtures in Simple Linear Regression Models

The goal of testing mixtures is to detect the presence of sub-populations. Consider the model where
n = n1 + n2, n1, n2 > 0, β1, β2 ∈ R with the following generation model:

• yi = β1 · xi + ei for i ∈ [n1].

• yi = β2 · xi + ei for i ∈ {n1 + 1, . . . , n}.

where ei ∼ N (0, σ2
e) are i.i.d. random variables and x1, . . . , xn are constants that form the following

design matrix for our problem

X =


x1 0
· · · · · ·
xn1

0
0 xn1+1

· · · · · ·
0 xn

 .

Note that X is of full rank (except if all the xi’s are 0 either for all i ∈ [n1] or for all i ∈ {n1 +
1, . . . , n}). Furthermore, r = p = 2.

In this case, ω = R2 and ω0 = {β ∈ R2 : β1 = β2}. As a result, our hypothesis is:

1. H0: β1 = β2.

2. H1: β1 6= β2.

Furthermore, let

β =

(
β1

β2

)
, β̂ =

(
β̂1

β̂2

)
.
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We use β̂N to refer to the estimate of β when the null hypothesis is true (i.e., β1 = β2) and β̂ be the
estimate of β when the alternative hypothesis holds.

For the calculations below, let n2 = n− n1 and

• x2
1 = 1

n1

∑n1

i=1 x
2
i , x

2
2 = 1

n2

∑n
i=n1+1 x

2
i , x

2 = 1
n

∑n
i=1 x

2
i .

• xy1 = 1
n1

∑n1

i=1 xiyi, xy2 = 1
n2

∑n
i=n1+1 xiyi, xy = 1

n

∑n
i=1 xiyi.

We can then obtain

XTX =

(
n1x2

1 0

0 n2x2
2

)
, XTY =

(
n1xy1
n2xy2

)
,

so that, assuming x2
1, x2

2 > 0, we have

β̂ = (XTX)−1XTY =

(
xy1/x

2
1

xy2/x
2
2

)
.

Furthermore,

β̂N =

(
xy/x2

xy/x2

)
,

since under the null hypothesis (β1 = β2), the design matrix “collapses” to

X0 =


x1

· · ·
xn1

xn1+1

· · ·
xn

 ,

so that XT
0 X0 =

∑n
i=1 x

2
i = nx2 and XT

0 Y =
∑n
i=1 xiyi = nxy.

The squares of residuals is ‖Y −Xβ̂‖2 and an (unbiased) estimate of σ2
e is S2 = ‖Y−Xβ̂‖2

n−2 .

Lemma A.2.

‖Xβ̂ −Xβ̂N‖2 =
n1x2

1n2x2
2

nx2
(β̂1 − β̂2)2,

where X is the design matrix, β̂, β̂N are the least squares estimates under the alternative and null
hypothesis, respectively.

Proof. First, from previous calculations, we obtained

β̂ =

(
xy1/x

2
1

xy2/x
2
2

)
, β̂N =

(
xy/x2

xy/x2

)
.

Then β̂N1 = β̂N2 is a weighted average of β̂1 and β̂2:

β̂N1 =
n1x2

1

nx2
β̂1 +

n2x2
2

nx2
β̂2.

Using this calculation, we can obtain that

β̂1 − β̂N1 =
n2x2

2(β̂1 − β̂2)

nx2
, β̂2 − β̂N1 =

n1x2
1(β̂2 − β̂1)

nx2
,

so that

‖Xβ̂ −Xβ̂N‖2 =

n1∑
i=1

(xiβ̂1 − xiβ̂N1 )2 +

n∑
i=n1+1

(xiβ̂2 − xiβ̂N1 )2

= (β̂1 − βN1 )2n1x2
1 + (β̂2 − βN1 )2n2x2

2

=
n1x2

1n2x2
2

nx2
(β̂1 − β̂2)2.
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This completes the proof.

By Lemma A.2, our test statistic T is

T =

(
n− r
r − q

)
‖Xβ̂ −Xβ̂N‖2

‖Y −Xβ̂‖2
=
n1x2

1n2x2
2

S2nx2
(β̂1 − β̂2)2.

Level-α Test: Under H0, T ∼ F1,n−2 since by Theorem A.1, the centrality parameter is η2 = 0. The
level-α test will then reject the null if T is greater than the upper αth quantile of this F -distribution,
Fα,1,n−2.

In other words, we will reject the null if

n1x2
1n2x2

2

S2nx2
(β̂1 − β̂2)2 > Fα,1,n−2.

We see that the chance of rejecting the null increases as:

1. |β̂1 − β̂2| increases.
2. S2 decreases.

3. The ratio n1x2
1n2x2

2

nx2
increases, which is more likely to occur when n1x2

1 is close to n2x2
2.

Power: The power is the chance that a random variable distributed as F1,n−2(η2) exceeds Fα,1,n−2

where the centrality parameter is η2 = n1x2
1n2x2

2

σ2
enx

2
(β1 − β2)2.

In other words, the power of the test is

P

[
F1,n−2

(
n1x2

1n2x2
2

σ2
enx

2
(β1 − β2)2

)
> Fα,1,n−2

]
,

where the probability is over the draws of the F -distribution.

A.3 Generalization to Higher Dimensions

Testing for a linear relationship and for mixtures using the F -statistic can be done in the multiple
linear regression model as well. The main changes that will need to be made are:

1. We can use any general design matrix X ∈ Rn×p; and
2. The parameter to be estimated lives in Rp instead i.e., β ∈ Rp, for any p ≥ 2.

B More Preliminaries and Notation

B.1 General Hypothesis Testing

The goal of hypothesis testing is to infer, based on data, which of two hypothesis, H0 (the null
hypothesis) or H1 (the alternative hypothesis), should be rejected.

Let Pθ be a family of probability distributions parameterized by θ ∈ Ω. For some unknown parameter
θ ∈ Ω, let Z ∼ Pθ be the observed data. Then the two competing hypothesis are:

H0 : θ ∈ Ω0 vs. H1 : θ ∈ Ω1,

where (Ω0,Ω1) form a partition of Ω.

A test statistic T is random variable that is a function of the observed data Z ∼ Pθ. T can be used to
decide whether to reject or fail to reject the null hypothesis. A critical region S is the set of values
for the test statistic T (or correspondingly for the observed data) for which the null hypothesis will be
rejected. It can be used to completely determine a test of H0 versus H1 as follows: We reject H0 if
Y ∈ S and fail to reject H0 if Y /∈ S.
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Sometimes, external randomization might help with choosing between hypothesis H0 and H1

[26, 37]. By external randomness, we mean randomness not inherent in the sample or data collection
process. In order to discriminate between hypothesis H0 and H1, we can define a notion of a
critical function that can indicate the degree to which a test statistic is within a critical region. A
critical function φ with range in [0, 1] characterize randomized hypothesis tests. A nonrandomized
test with critical region S can thus be specified as φ = 1S . Conversely, if φ(y) is always 0 or 1 for
all y then the critical region is S = {y : φ(y) = 1} for this nonrandomized test. An advantage of
allowing randomization (even without DP constraints) is that convex combinations of nonrandomized
tests are not possible, but convex combinations of randomized tests are possible. i.e., if φ1, φ2 are
critical functions and t ∈ (0, 1), then tφ1 + (1 − t)φ2 is also a critical function so that the set of
all critical functions form a convex set. Furthermore, nontrivial differentially private tests must be
randomized.

For any θ ∈ Ω, the ideal test would tell us when θ ∈ Ω0 and when θ ∈ Ω1. This can be described by
a power function R(·), which gives the chance of rejecting H0 as a function of θ ∈ Ω:

R(θ) = Pθ(Y ∈ S),

for any critical region S.

A “perfect” hypothesis test would have R(θ) = 0 for every θ ∈ Ω0 and R(θ) = 1 for every θ ∈ Ω1.
But this is generally impossible given only the “noisy” observed data Z ∼ Pθ.

A significance level α can be defined as
α = sup

θ∈Ω0

Pθ(Y ∈ S).

In other words, the level α is the worst chance of incorrectly rejecting H0. Ideally, we want tests
that have a small chance of error when H0 should not be rejected. The p-value is the probability
of finding, based on observed data, test statistics at least as extreme as when the null hypothesis
holds. That is, if T is the test statistic function and t is the observed test statistic, then the (one-sided)
p-value is P[T ≥ t | H0].

B.2 Convergence and Limits

Definition B.1 (Limit of Sequence). A sequence {xn} converges toward the limit x, denoted
xn → x, if

∀ε > 0, lim
n→∞

P [|xn − x| > ε] = 0.

We will use Definition B.1 to show convergence of random variables (in probability or distribution).
Definition B.2 (Convergence in Probability). A sequence of random variables {Xn} converges in
probability toward random variable X , denoted Xn

P−→ X , if
∀ε > 0, lim

n→∞
P [|Xn −X| > ε] = 0.

Convergence in Probability (Definition B.2) for a sequence of random variables X1, X2, . . . toward
random variable X can be shown if for all ε > 0, δ > 0, there exists N(ε, δ) = N such that for all
n ≥ N , P[|Xn −X| > ε] < δ.
Definition B.3 (Convergence in Distribution). A sequence of random variables {Xn} converges in
distribution toward random variable X , denoted Xn

D−→ X , if
lim
n→∞

Fn(x) = F (x),

for all x ∈ R at which F is continuous. Fn, F are the cumulative distribution functions for Xn, X
respectively.

We can generalize Definitions B.2 and B.3 to random vectors and matrices (beyond scalars) as follows:
if A ∈ RK×L is a random vector, then An

P−→ A, An
D−→ A denotes entry-wise convergence in

probability and distribution, respectively. Also, for any distribution D (e.g., D = χ2
k), we write

An
D−→ D as a shorthand to mean that An

D−→ A for random variables An, A such that A follows D
(i.e., A ∼ D). Similarly, Dn

D−→ D implies that An
D−→ A for An ∼ Dn and A ∼ D.
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Lemma B.4. Let {Xn} and {Yn} be a sequence of random vectors and X be a random vector. Then:

1. If Xn
D−→ X and Xn − Yn

P−→ 0, then Yn
D−→ X .

2. If Xn
P−→ X , then Xn

D−→ X .

3. For a constant c ∈ R, if Xn
D−→ c, then Xn

P−→ c.

Proof. Follows from Theorem 2.7 in [48].

Lemma B.4 is a helper lemma that is useful for proving convergence results, especially on DP
estimates.

In later sections, we will show that the differentially private F -statistic converges, in distribution, to a
chi-squared distribution (as does the non-DP F -statistic). This convergence result holds under certain
conditions.

C Differentially Private Monte Carlo Tests

Since the private test statistic differs from the non-private version, we have to create new statistics to
account for the level-α Monte Carlo differentially private testing. The majority of our tests will be
based on DP sufficient statistics. In the statistics literature, a statistic is considered sufficient, with
respect to a particular model, if it provides at least as much information for the value of an unknown
parameter as any other statistic that can be calculated on a given sample [37].

Previous work [41, 49, 3] perturb the sufficient statistics for ordinary least squares and use the result
to compute a slope and intercept in a DP way. To add noise to ensure privacy, we typically have to
truncate certain random variables. We use Y |AB to mean that the random variable Y will be truncated
to have an upper bound of A and a lower bound of B.

For all our DP OLS Monte Carlo tests that sample from a continuous Gaussian, we can instead
use discrete variants (e.g., [16]). The DP OLS Monte Carlo tests below use the zero-concentrated
differential privacy definition [12].

C.1 Monte Carlo Hypothesis Testing

We now proceed to discuss our general approach for designing a Level-α test for the task of linear
regression estimation based on sufficient statistic perturbation. We rely on a sub-routine DPStats
that can produce DP statistics, given a dataset and privacy parameters, when testing. Algorithm 3 can
then be specialized to test for the presence of a linear relationship and for mixture models.

To design a Monte Carlo hypothesis test, we follow a similar route to Gaboardi, Lim, Rogers, and
Vadhan [30]. In Algorithm 3, we provide a framework to perform DP Monte Carlo tests using a
parametric bootstrap based on a test statistic. Let DPStats be a procedure that uses one or more
statistics of X,Y to produce DP statistics that can be used to reject or fail to reject the null hypothesis.
In this paper, DPStats will satisfy ρ-zCDP (Zero-Concentrated Differential Privacy). 5 T is the test
statistic computation procedure. As done in [30], for example, we will assume the dataset sizes are
public information.

Let T = T (θ̂1) be the non-private test statistic procedure given θ̂1 = θ̂1(X,Y ). The goal is to
compute T (θ̃1) where θ̃1 is an approximation of θ̂1. DPStats returns θ̃0 and θ̃1. If θ̃0 and θ̃1 is not ⊥
(⊥ is returned whenever the perturbed statistics cannot be used to simulate the null distributions), then
we use θ̃1 to compute the DP test statistic and θ̃0 to simulate the null. Pθ̃0 represents the distribution
from which we will sample from to simulate the null distribution. When (X, y) ∼ Pθ̃0 for θ0 ∈ Ω0

and we set θ̃1 = θ̃1(X,Y ) and sample (X ′, y′) ∼ Pθ̃0 , then θ̂1((X ′, y′)) has approximately the same
distribution as θ̂1((X, y)).

5 Gaussian noise addition (for privacy) was chosen because the noise in the dependent variable is also
assumed to be Gaussian. The use of the Gaussian (or truncated Gaussian) distribution for both privacy and
sampling error is a convenient choice as it could result in a clearer, more compatible, theoretical analysis.
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Algorithm 3 Monte Carlo DP Test Framework.
1: Data: X ∈ Rn×p;Y ∈ Rn
2: Input: n (dataset size); ρ (privacy-loss parameter);α (target significance);T (test statistic)
3: (θ̃0, θ̃1) = DPStats(X,Y, n, ρ)

4: if θ̃0 = θ̃1 =⊥ then
5: return Fail to Reject the null
6: end if
7: // non-DP test statistic applied to DP sufficient statistics
8: t̃ = T (θ̃1)
9: Select K > 1/α

10: for k = 1 . . .K do
11: ∀i ∈ [n], kXi,

kyi ∼ Pθ̃0
12: kθ̃1,

kθ̃0 = DPStats(kXi,
kyi, n, ρ)

13: Obtain tk from T (kθ̃1)
14: end for
15: Sort t(1) ≤ · · · ≤ t(K)

16: Compute threshold t(r) where r = d(K + 1)(1− α)e
17: if t̃ > t(r) then
18: return Reject the null
19: else
20: return Fail to Reject the null
21: end if

C.2 Testing a Linear Relationship

For testing a linear relationship in simple linear regression models, recall that in the non-private case,
we had

T (X,Y, β̂, β̂N , n, r, q) =

(
n− r
r − q

)
‖Xβ̂ −Xβ̂N‖2

‖Y −Xβ̂‖2
.

Accordingly, we define and compute T̃L(X,Y, β̂, β̂N , n, r, q, ρ,∆) = t̃, a private estimate of
T (X,Y, β̂, β̂N , n, r, q). In Algorithm 4, we give the full ρ-zCDP procedure for computing all
necessary sufficient statistics to compute T̃L(X,Y, β̂, β̂N , n, r, q, ρ,∆).

The DP estimate of S2, S̃2, can be computed as S̃2 =
∑n
i=1(yi−β̃2−β̃1xi)

2]∆
2

0 +N (0,∆
4

2ρ )

n−r . Another

equivalent way to compute S̃2 is to compute ỹ2 privately and then, together with the other DP
estimates, to compute S̃2. Note that under the null hypothesis, the DP estimate of S2 is S̃2

0 =∑n
i=1(yi−β̃2)2]∆

2

0 +N (0,∆
4

2ρ )

n−r which can also be equivalently computed by using ˜̄y, ỹ2, β̃2. Also, we
return (θ̃0, θ̃1) = (⊥,⊥) if the computed DP sufficient statistics cannot be used to simulate the null
distribution.

Lemma C.1. For any ρ,∆ > 0, Algorithm 4 satisfies ρ-zCDP.

Proof. This follows from Proposition 1.6 in [12] (use of the Gaussian Mechanism). Next, we apply
composition and post-processing (Lemmas 1.7 and 1.8 in [12]). The computation of the following

statistics is each done to satisfy ρ/5-zCDP: ˜̄x, ˜̄y, x̃2, x̃y, ỹ2. β̃1, β̃2, S̃2, S̃2
0 are post-processing of the

other DP releases.

As a result, the entire procedure satisfies ρ-zCDP.

Instantiating Algorithm 3 for the Linear Tester: If the procedure DPStatsL returns (⊥,⊥),

then we fail to reject the null. Otherwise, we use the returned statistics θ̃1 = (β̃1, ˜̄x, x̃2, S̃2, n) to
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Algorithm 4 ρ-zCDP procedure DPStatsL
1: Data: X ∈ Rn×2;Y ∈ Rn
2: Input: integer n ≥ 2; r, q; ρ > 0,∆ > 0
3: Set ρ = ρ/5 and compute the following:

• ˜̄x = 1
n

∑n
i=1 xi]

∆
−∆ +N (0, 2∆2

ρn2 ).

• ˜̄y = 1
n

∑n
i=1 yi]

∆
−∆ +N (0, 2∆2

ρn2 ).

• x̃2 = 1
n

∑n
i=1 x

2
i ]

∆2

0 +N (0, ∆4

2ρn2 ).

• x̃y = 1
n

∑n
i=1 xiyi]

∆2

−∆2 +N (0, 2∆4

ρn2 ).

• ỹ2 = 1
n

∑n
i=1 y

2
i ]∆

2

0 +N (0, ∆4

2ρn2 ).
•

β̃1 =
x̃y − ˜̄x˜̄y

x̃2 − ˜̄x2
, β̃2 =

˜̄y · x̃2 − ˜̄x · x̃y

x̃2 − ˜̄x2
.

•

S̃2
0 =

nỹ2 − 2β̃2n˜̄y + nβ̃2
2

n− r
.

S̃2 =
nỹ2 − 2β̃2n˜̄y − 2β̃1nx̃y + nβ̃2

2 + 2β̃1β̃2n˜̄x+ β̃2
1nx̃y

n− r
.

4: (θ̃0, θ̃1) = (⊥,⊥)

5: if min(S̃2
0 , (nx̃

2 − n˜̄x2)/(n− 1)) > 0 then
6: θ̃0 = (β̃2, ˜̄x, x̃2, S̃2

0 , n)

7: θ̃1 = (β̃1, ˜̄x, x̃2, S̃2, n)

8: end if(θ̃0, θ̃1) = (⊥,⊥)

9: return (θ̃0, θ̃1)

create the test statistic T (θ̃1) =
β̃2

1 ·n·(x̃2−˜̄x2)

S̃2
and use θ̃0 = (˜̄y, ˜̄x, x̃2, S̃2

0 , n) to simulate the null
distributions (to decide to reject or fail to reject the null hypothesis). Pθ̃0 is instantiated as a normal

distribution and used to generate kxi distributed as N (˜̄x, (nx̃2 − n˜̄x2)/(n− 1)) and kyi as β̃2 + ei,
ei ∼ N (0, S̃2

0) for all i ∈ [n].

C.3 Testing Mixture Models

As we will show experimentally, the best framework for the mixture model test depends on the
properties of the dataset. This can be seen as conditional inference [6].

C.3.1 F -Statistic

In the non-private case, we can use the following test statistic for testing mixtures in simple linear
regression models:

T (X,Y, β̂, β̂N , n, r, q) =

(
n− r
r − q

)
‖Xβ̂ −Xβ̂N‖2

‖Y −Xβ̂‖2

=
n1x2

1n2x2
2

S2nx2
(β̂1 − β̂2)2.

In Algorithm 5, we apply the Gaussian mechanism to calculate the DP sufficient statistics. S̃2
0 and

S̃2 are DP estimates of the sampling error under the null and alternative hypothesis, respectively.
In particular, S̃2

0 corresponds to an estimate of the sampling error when the groups have the same
distributional properties.
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Algorithm 5 ρ-zCDP procedure DPStatsM
1: Data: X ∈ Rn×2, Y ∈ Rn
2: Input: integer n1, n ≥ 2; r, q; ρ > 0,∆ > 0
3: Set ρ = ρ/8 and n2 = n− n1. Then compute the following:

• ˜̄x1 = 1
n1

∑n1

i=1 xi]
∆
−∆ + N (0, 2∆2

ρn2
1

), ˜̄x2 = 1
n2

∑n
i=n1+1 xi]

∆
−∆ + N (0, 2∆2

ρn2
2

), ˜̄x =

n1/n · ˜̄x1 + n2/n · ˜̄x2.

• x̃2
1 = 1

n1

∑n1

i=1 x
2
i ]

∆2

0 +N (0, ∆4

2ρn2
1
), x̃2

2 = 1
n2

∑n
i=n1+1 x

2
i ]

∆2

0 +N (0, ∆4

2ρn2
2
), x̃2 =

n1/n · x̃2
1 + n2/n · x̃2

2.
• x̃y1 = 1

n1

∑n1

i=1 xiyi]
∆2

−∆2 +N (0, 2∆4

ρn2
1

), x̃y2 = 1
n2

∑n
i=n1+1 xiyi]

∆2

−∆2 +N (0, 2∆4

ρn2
2

),

x̃y = n1/n · x̃y1 + n2/n · x̃y2.

• ỹ2
1 = 1

n1

∑n1

i=1 y
2
i ]∆

2

0 +N (0, ∆4

2ρn2
1
), ỹ2

2 = 1
n2

∑n
i=n1+1 y

2
i ]∆

2

0 +N (0, ∆4

2ρn2
2
), ỹ2 =

n1/n · ỹ2
1 + n2/n · ỹ2

2.
•

β̃1 =
x̃y1

x̃2
1

, β̃2 =
x̃y2

x̃2
2

, β̃ = n1/n · β̃1 + n2/n · β̃2.

•

S̃2
0 =

nỹ2 + nβ̃2 − 2nx̃yβ̃

n− r
.

S̃2 =
n1ỹ2

1 + n1β̃
2
1 − 2n1x̃y1β̃1 + n2ỹ2

2 + n2β̃
2
2 − 2n2x̃y2β̃2

n− r
.

4: (θ̃0, θ̃1) = (⊥,⊥)

5: if min(S̃2
0 , (nx̃

2 − n˜̄x2)/(n− 1)) > 0 then
6: θ̃0 = (β̃1, ˜̄x, x̃2, S̃2

0 , n1, n2, n)

7: θ̃1 = (β̃1, β̃2, x̃2
1, x̃2

2, x̃2, S̃2, n1, n2, n)
8: end if
9: return (θ̃0, θ̃1)

Lemma C.2. For any ρ,∆ > 0, Algorithm 5 satisfies ρ-zCDP.

Proof. This follows from Proposition 1.6 in [12] via the use of the Gaussian Mechanism to ensure
zCDP.

The composition and post-processing properties of zCDP (Lemmas 1.7 and 1.8 in [12]) can
then be applied. The computation of the following statistics is each done to satisfy ρ/8-zCDP:
˜̄x1, ˜̄x2, x̃2

1, x̃2
2, x̃y1, x̃y2, ỹ

2
1, ỹ

2
2. The other statistics computed are post-processed DP releases.

As a result, the entire procedure satisfies ρ-zCDP.

Instantiating Algorithm 3 for the F -statistic Mixture Tester: If the procedure DPStatsM re-
turns (⊥,⊥), then we fail to reject the null. Otherwise, we use the returned statistics

θ̃1 = (β̃1, β̃2, x̃2
1, x̃2

2, x̃2, S̃2, n1, n2, n) to create the test statistic and use

θ̃0 = (β̃1, ˜̄x, x̃2, S̃2
0 , n1, n2, n) to simulate the null distributions. Pθ̃0 is instantiated as a normal

distribution and used to generate kxi distributed as N (˜̄x, (nx̃2 − n˜̄x2
1)/(n− 1)) and to generate kyi

distributed as β̃1
kxi + ei, ei ∼ N (0, S̃2

0) for either group 1 with size n1 or group 2 with size n− n1.
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C.3.2 Nonparametric Tests via Kruskal-Wallis

Couch, Kazan, Shi, Bray, and Groce [21] present DP analogues of nonparametric hypothesis testing
methods (which require little or no distributional assumptions). They find that the DP variant of
the Kruskal-Wallis test statistic is more powerful than the DP version of the traditional parametric
statistics for testing if two groups have the same medians. Here, we reduce our problem of testing
mixture models to their problem of testing if groups share the same median. The reduction is as
follows: Given two datasets (x1, y1) and (x2, y2), each of size n1 and n2 respectively, we wish to
test if the slopes are equal. We randomly match all pairs of points in (x1, y1) and obtain at most n1/2
slopes in s1. We do the same for the second group (x2, y2) to obtain n2/2 slopes in s2. Then we
compute the mean of ranks of elements in s1 and s2 as r̄1 and r̄2 respectively. Next, we compute the
Kruskal-Wallis absolute value test statistic h from [21] and release a perturbed version satisfying
zCDP. We can use the Monte Carlo testing framework in Algorithm 3 and use Algorithm 6 to compute
the test statistics. Under the null, the slopes in s1 and s2 would have similar ranks so we choose
uniform random numbers in some interval. We then decide to reject or fail to reject the null, based on
the distribution of test statistics obtained via this process and its relation to the statistic computed on
the observed data.
Lemma C.3. For any ρ > 0 and even n, Algorithm 6 satisfies ρ-zCDP.

Proof. Algorithm 6 randomly pairs all n1 pairs of points in group 1 (to obtain slopes s1 of size n1/2)
and pairs all n2 pairs in group 2 (to obtain slopes s2 of size n2/2). Note that this is a 1-Lipschitz
transformation so that the differential privacy guarantees are preserved (by Definition 16 and Lemma
17 of [3]).

Then we proceed to use the DP Kruskal-Wallis absolute value test statistic with sensitivity of 8 (as
shown in Theorem 3.4 of [21]). By Proposition 1.6 in [12], via the use of the Gaussian Mechanism,
the procedure satisfies ρ-zCDP.

Algorithm 6 ρ-zCDP procedure DPKW
1: Data: X ∈ Rn×2;Y ∈ Rn
2: Input: Even n1, n ∈ N; ρ > 0
3: Let x1, . . . , xn be the observed 1-D independent variables from X
4: Let τ : [n]→ [n] be a randomly chosen permutation
5: s1 = {}
6: for i = 1 . . . n1/2 do
7: s1 = s1

⋃
{Yτ(n1/2+i)−Yτ(i)

xτ(n1/2+i)−xτ(i)
}

8: end for
9: n2 = n− n1

10: s2 = {}
11: e = n1 + n2/2
12: for i = n1 + 1 . . . e do
13: s2 = s2

⋃
{Yτ(e+i)−Yτ(i)

xτ(e+i)−xτ(i)
}

14: end for
15: Let r : Rm → [m] be rank-computing function on any m elements
16: Compute s by appending (in an order-preserving manner) s2 to s1

17: Compute r̄1, mean of ranks of s1 in r(s)
18: Compute r̄2, mean of ranks of s2 in r(s)
19: Compute h = 4(n−1)

n2

(
n1|r̄1 − n+1

2 |+ n2|r̄2 − n+1
2 |
)

20: return null, h+N (0, 82/(2ρ))

Instantiating Algorithm 3 for the Kruskal-Wallis Mixture Tester: We use the returned statistic
θ̃1 = (h) as the sole statistic. In this case, T is the identity function. θ̃0 is taken to be null. Pθ̃0
generates kxi and kyi (for the 2 groups) independently and uniformly at random in a fixed interval
(say [−5, 5]). Although this distribution may be very different from the actual data distribution, the
distribution of ranks of the slopes will be identical to that under the null, ensuring that T ((kx, ky))
has the right distribution.
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D Differentially Private F -Statistic

In this section, we will show that the DP F -statistic converges, in distribution, to the asymptotic
distribution of the F -statistic. The focus will be on showing results for Algorithm 4 but a similar route
can be used to obtain analogous results for Algorithm 5. Recall that Algorithm 4 is an instantiation of
the DP F -statistic for testing a linear relationship while Algorithm 5 is for testing mixtures.

Tn is the non-private F -statistic while T̃n is the DP F -statistic constructed from DP sufficient
statistics obtained via Algorithm 4. The main theorem in this section is Theorem D.1, which
shows the convergence, in distribution, of T̃n to the asymptotic distribution of Tn, the chi-squared
distribution. As a corollary, the statistical power of T̃n converges to the statistical power of Tn.
While Theorem D.1 is specialized to the simple linear regression setting (i.e., p = 2), it can easily be
extended to multiple linear regression.
Theorem D.1. Let σe > 0, r = p = 2, q = 1, and β ∈ Rp. For every n ∈ N with n > r,
let Xn ∈ Rn×p be the design matrix where the first column is an all-ones vector and the second
column is (x1, . . . , xn)T . Let ∆ = ∆n > 0 be a sequence of clipping bounds, ρ = ρn > 0 be
a sequence of privacy parameters, and η2

n = ‖Xnβ−XnβN‖2
σ2
e

. Under the general linear model

(GLM), Yn ∼ N (Xnβ, σ
2
eIn×n). Let β̃ and β̃N be the DP least-squares estimate of β, obtained

in Algorithm 4, under the alternative and null hypotheses, respectively. Let T̃ = T̃n be the DP
F -statistic computed from DP sufficient statistics via Algorithm 4 and Equation (7). Suppose the
following conditions hold:

1. ∃cx, cx2 ∈ R such that x̄→ cx, x2 → cx2 , and cx2 > c2x,

2. ∃η ∈ R such that η2
n → η2,

3. ∆2
n

ρnn
, ∆4

n

ρnn
→ 0,

4. P[∃i ∈ [n], yi /∈ [−∆n,∆n]]→ 0 and ∀i ∈ [n], xi ∈ [−∆n,∆n].

Then we obtain the following results:

1. Under the null hypothesis: β̃N = β̃Nn
P−→ β,

2. Under the alternative hypothesis: β̃ = β̃n
P−→ β,

3. T̃ = T̃n
D−→ χ2

r−q(η
2)

r−q .

The condition that P[∃i ∈ [n], yi /∈ [−∆n,∆n]] → 0 (Condition 4 in Theorem D.1), holds by a
Gaussian tail bound (Claim D.4), if ∃k > 0 such that for all i ∈ [n], ∆n ≥ |β1xi+β2|+σe

√
log 2nk.

First, we will prove convergence results for sufficient statistics used to construct the non-private
F -statistic Tn, in our setting. Then we will show convergence results for DP sufficient statistics
used to construct the private F -statistic T̃n. Finally, we will combine these previous results to show
Theorem D.1.

D.1 Convergence of Non-private Sufficient Statistics

In Equation (7), the non-private F -statistic is given as

T = Tn =
n− r
r − q

· ‖Xβ̂ −Xβ̂
N‖2

‖Y −Xβ̂‖2
=
n− r
r − q

· ‖Xnβ̂ −Xnβ̂
N‖2

‖Yn −Xnβ̂‖2
.

We start by writing this F -statistic, in an equivalent form, in terms of quantities that we will show are
convergent:
Lemma D.2. Suppose that σe > 0, p ∈ N, and β ∈ Rp. Let X = Xn ∈ Rn×p be the full-rank
design matrix (as in Equation (4)) and Y = Yn ∼ N (Xnβ, σ

2
eIn×n). Also, let β̂ and β̂N be the

non-private least-squares estimate of β under the alternative and null hypotheses, respectively.
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Define the following quantities:

Ên =

(
XT
nXn

n

)1/2

∈ Rp×p, F̂n =
XT
n Yn
n

∈ Rp, Ĝn =
Y Tn Yn
n
∈ R.

Then the test statistic Tn from Equation (7) can be re-written as

Tn =
n− r
r − q

· ‖
√
nÊn(β̂ − β̂N )‖2

n(β̂T Ê2
nβ̂ − 2β̂T F̂n + Ĝn)

, (10)

for any n, r, q ∈ N such that q < r.

Proof of Lemma D.2. First, note that Ên ∈ Rp×p (i) exists because XT
nXn is positive definite, (ii) is

unique since its square is positive definite [33].

‖Xnβ̂ −Xnβ̂
N‖2 = (β̂ − β̂N )TXT

nXn(β̂ − β̂N )

=
√
n(β̂ − β̂N )T ÊTn

√
nÊn(β̂ − β̂N )

= ‖
√
nÊn(β̂ − β̂N )‖2.

Next,

‖Yn −Xnβ̂‖2 = (Yn −Xnβ̂)T (Yn −Xnβ̂)

= Y Tn Yn − Y Tn Xnβ̂ − β̂TXT
n Yn + β̂TXT

nXnβ̂

= Y Tn Yn + β̂TXT
nXnβ̂ − 2β̂TXT

n Yn

= n(β̂T Ê2
nβ̂ − 2β̂T F̂n + Ĝn).

It will be easier to use Equation (10) as an equivalent form of the F -statistic to prove convergence
results. An analogous representation will be used to prove convergence results for the DP F -statistic.

In the case of testing a linear relationship (as in Section A.1) in simple linear regression (i.e., where
p = 2 and the columns of X are the all-ones vector and (x1, . . . , xn)T ),

XTX =

(
n nx̄

nx̄ nx2

)
, XTY =

(
nȳ
nxy

)
, Y TY =

n∑
i=1

y2
i ,

β̂ =

(
β̂2

β̂1

)
, β̂N =

(
ȳ
0

)
,

σ̂2
x = x2 − x̄2.

In this case, it can be verified that Ên, F̂n, Ĝn is:

Ên =
1√

x2 + 1 + 2
√
x2 − x̄2

(
1 +

√
x2 − x̄2 x̄

x̄ x2 +
√
x2 − x̄2

)
,

=
1√

x2 + 1 + 2

√
σ̂2
x

1 +

√
σ̂2
x x̄

x̄ x2 +

√
σ̂2
x

 ,

F̂n =
XTY

n
=

(
ȳ
xy

)
, Ĝn =

Y TY

n

def
= y2. (11)

Next, we proceed to show non-private convergence results that will be pivotal to our final result. We
will crucially rely on the Gaussian tail bound, the normality of β̂, β̂N , and Corollary D.5.
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Lemma D.3. For every sequence of clipping bounds ∆ = ∆n > 0 and sequence of privacy
parameters ρ = ρn > 0, under the conditions of Theorem D.1:

(1) ∃cy ∈ R such that ȳ P−→ cy ,

(2) ∃ca, cxy ∈ R such that xy P−→ cxy , xy − x̄ · ȳ P−→ ca,

(3) ∃cb 6= 0 such that σ̂2
x
P−→ cb,

(4) ∃ unique positive-definite C1/2 ∈ R2×2 such that Ên → C1/2,

(5) F̂n
P−→ (cy cxy)T ,

(6) ∃cy2 ∈ R such that Ĝn = Y TY
n

P−→ cy2 ,

(7) Normality of β̂: β̂ ∼ N
(
β, σ2

e(XT
nXn)−1

)
; Consistency of β̂: β̂ P−→ β.

To prove Lemma D.3, we will make use of the following tools: the Gaussian tail bound and Slutsky’s
Theorem, which we state below:
Claim D.4 (Gaussian Tail Bound). Let Z be a standard normal random variable with mean 0 and
variance 1. i.e., Z ∼ N (0, 1). Then

P[|Z| > t] ≤ 2 exp(−t2/2),

for every t > 0.

By the Gaussian tail bound, any Gaussian random variable (such as the DP estimates) converges, in
probability, to the asymptotic distributions of the estimates without Gaussian noise added as long as
the variance goes to 0 (Corollary D.5):

Corollary D.5. Let Nn ∼ N (0, σ2
n) where σn → 0, then Nn

P−→ 0.

Corollary D.5 follows from the definition of convergence in probability and the Gaussian tail bound
(Claim D.4).

Next, we introduce Slutsky’s Theorem which will be crucial to combining individual convergence
results to show more general results:
Theorem D.6 (Slutsky’s Theorem, see [31]). Let {Wn}, {Zn} be a sequence of random vectors and

W be a random vector. If Wn
D−→W and Zn

P−→ c for a constant c ∈ R, then as n→∞:

1. Wn · Zn
D−→Wc,

2. Wn + Zn
D−→W + c,

3. Wn/Zn
D−→W/c as long as c 6= 0.

Proof of Lemma D.3. (1): By definition, for all i ∈ [n], yi ∼ β2 + β1xi + N (0, σ2
e). Then, ȳ ∼

β2 +β1x̄+N (0,
σ2
e

n ). By Slutsky’s Theorem and Corollary D.5, ȳ P−→ β2 +β1cx
def
= cy . As a result,

ȳ
P−→ cy ∈ R.

(2): Also,

xy =
1

n

n∑
i=1

xiyi

∼ 1

n

n∑
i=1

xiN
(
β2 + β1xi, σ

2
e

)
=

1

n

n∑
i=1

(
β2xi + β1x

2
i

)
+N

(
0,

1

n2

n∑
i=1

σ2
ex

2
i

)
.
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From the assumptions of Theorem D.1, 1
n

∑n
i=1(β2xi + β1x

2
i )→ β2cx + β1cx2 and σ2

e

n2

∑n
i=1 x

2
i =

σ2
e

n x
2 → 0. Then by Slutsky’s Theorem and Corollary D.5, xy P−→ β2cx + β1cx2

def
= cxy and

xy − x̄ · ȳ P−→ cxy − cxcy
def
= ca.

(3): By Slutsky’s Theorem and the assumptions in Theorem D.1 that x2 → cx2 , x̄→ cx, cx2 6= c2x,

we have that ∃cb 6= 0 such that σ̂2
x → cx2 − c2x

def
= cb.

(4): By Equation (11), we have

Ên =
1√

x2 + 1 + 2

√
σ̂2
x

1 +

√
σ̂2
x x̄

x̄ x2 +

√
σ̂2
x

 (12)

→ 1√
cx2 + 1 + 2

√
cx2 − c2x

(
1 +

√
cx2 − c2x cx
cx cx2 +

√
cx2 − c2x

)
def
= C1/2. (13)

(5): Next,

F̂n =
XTY

n
=

(
ȳ
xy

)
P−→
(
cy
cxy

)
.

(6): By the weak law of large numbers (Lemma F.1), χ
2
n

n

P−→ 1. Then,

Ĝn =

∑n
i=1 y

2
i

n

∼ 1

n

n∑
i=1

(
β2 + β1xi +N (0, σ2

e)
)2

= β2
2 + 2x̄β1β2 + 2β2N

(
0,
σ2
e

n

)
+ β2

1x
2 + 2β1x̄N

(
0,
σ2
e

n

)
+ σ2

e

χ2
n

n
P−→ β2

2 + 2cxβ1β2 + β2
1cx2 + σ2

e

def
= cy2 ,

via the use of Slutsky’s Theorem, Corollary D.5, and assumptions that x̄→ cx, x2 → cx2 .

(7): First, we recall that β̂, the non-private OLS estimate, is Gaussian and centered at β:

β̂ ∼ N
(
β, σ2

e(XTX)−1
)

= N
(
β, σ2

eÊ
−2
n /n

)
,

This follows from Equations (3.9) and (3.10) in [32] for any design matrix X ∈ Rn×2.

Since Ên → C1/2, it follows that Ê−2
n /n→ 0 so that by Corollary D.5, β̂ P−→ β.

Now, we will show that the DP statistics converge, either in probability or distribution, to the
distributions of their corresponding non-DP statistics.

D.2 Convergence of Differentially Private Sufficient Statistics

The DP F -statistic is constructed via Algorithm 4 and Equation (7). We start by rewriting the DP
F -statistic analogously to Lemma D.2:
Lemma D.7. Suppose that σe > 0, p ∈ N, and β ∈ Rp. Let X = Xn ∈ Rn×p be the full-rank

design matrix (as in Equation (4)) and Y = Yn ∼ N (Xnβ, σ
2
eIn×n). Also, let ˜̄x, ˜̄y, x̃2, x̃y, ỹ2, β̃1,

and β̃2 be as computed in Algorithm 4.
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Define the following quantities:

σ̃2
x

def
= x̃2 − ˜̄x2, (14)

Ẽn =

(
X̃TX

n

)1/2

=
1√

x̃2 + 1 + 2

√
σ̃2
x

1 +

√
σ̃2
x

˜̄x

˜̄x x̃2 +

√
σ̃2
x

 ,

F̃n =
X̃TY

n
=

(
˜̄y

x̃y

)
, G̃n = ỹ2, (15)

β̃ =

(
β̃2

β̃1

)
, β̃N =

(
˜̄y
0

)
. (16)

where we take
√
σ̃2
x to be the square root of σ̃2

x with non-negative real and imaginary parts.

Furthermore, if T̃n = T (θ̃1) is the test statistic obtained via statistics computed in Algorithm 4 and
via Equation (7), then T̃n can be re-written as

T̃ = T̃n =
n− r
r − q

· ‖
√
nẼn(β̃ − β̃N )‖2

n(β̃T Ẽ2
nβ̃ − 2β̃T F̃n + G̃n)

, (17)

for any n, r, q ∈ N such that q < r.

Proof of Lemma D.7.

(β̃ − β̃N )T X̃T
nXn(β̃ − β̃N ) =

√
n(β̃ − β̃N )T ẼTn

√
nẼn(β̃ − β̃N )

= ‖
√
nẼn(β̃ − β̃N )‖2.

Next,

Ỹ Tn Yn − 2β̃T X̃T
n Yn + β̃T X̃T

nXnβ̃ = nG̃n − 2nβ̃T F̃n + nβ̃T Ê2
nβ̃

= n(β̃T Ẽ2
nβ̃ − 2β̃T F̃n + G̃n).

We now introduce two helper lemmas that are useful for showing later results. The first uses a
hybrid-type argument to show a 1/f(n) rate of convergence of a ratio of random variables. The
second can be used to show that if the difference of two random variables converge to 0, then as long
as they converge to a non-zero constant, the difference of their square root converge to 0.

Lemma D.8. Let An, Bn, Ãn, B̃n be random variables such that:

1. For constants c1, c2 ∈ R, c2 6= 0: An
P−→ c1, Bn

P−→ c2,

2. For function f(n): f(n)(Ãn −An)
P−→ 0 and f(n)(B̃n −Bn)

P−→ 0.

Then:

f(n)

(
Ãn

B̃n
− An
Bn

)
P−→ 0.

Proof of Lemma D.8. We use a hybrid-type argument. We write

f(n)

(
Ãn

B̃n
− An
Bn

)
= f(n)

(
Ãn

B̃n
− Ãn
Bn

+
Ãn
Bn
− An
Bn

)
.
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Then,

f(n)

(
Ãn

B̃n
− Ãn
Bn

)
= f(n)

(
ÃnBn − ÃnB̃n

B̃nBn

)

= Ãnf(n)

(
Bn − B̃n
B̃nBn

)
P−→ 0,

since Ãn
P−→ c1, f(n)(Bn − B̃n)

P−→ 0, and by Slutsky’s Theorem BnB̃n
P−→ c22 6= 0.

Also,

f(n)

(
Ãn
Bn
− An
Bn

)
= f(n)

(
Ãn −An
Bn

)
P−→ 0,

since f(n)(Ãn − An)
P−→ 0, Bn

P−→ c2 6= 0 so that the result follows by a routine application of
Slutsky’s Theorem.

As a result, f(n)
(
Ãn
B̃n
− An

Bn

)
P−→ 0.

Lemma D.9. Let An, Ãn be random variables such that:

1. For constant c ∈ R, c 6= 0: An
P−→ c,

2. For function f(n): f(n)(Ãn −An)
P−→ 0.

Then:
f(n)(Ã1/2

n −A1/2
n )

P−→ 0.

Proof of Lemma D.9. Throughout, we take square roots in which both the real and imaginary parts
are non-negative.

Recall that by difference of two squares:

a1/2 − b1/2 =
a− b

a1/2 + b1/2
,

for any a, b ∈ C.

Then by Slutsky’s Theorem:

f(n)(Ã1/2
n −A1/2

n ) =
f(n)(Ãn −An)

Ã
1/2
n +A

1/2
n

P−→ 0,

where Ã1/2
n , A

1/2
n

P−→ c1/2.

We will show that the DP regression coefficients converge to the true coefficients. i.e., β̃ P−→ β. But
we begin with showing convergence of the constituent DP sufficient statistics.
Lemma D.10. For every sequence of clipping bounds ∆ = ∆n > 0 and sequence of privacy
parameters ρ = ρn > 0, in Algorithm 4, under the conditions of Theorem D.1:

(1)
√
n|˜̄x− x̄| P−→ 0, ˜̄x

P−→ cx,

(2)
√
n|˜̄y − ȳ| P−→ 0, ˜̄y

P−→ cy ,
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(3)
√
n|x̃2 − x2| P−→ 0, x̃2 P−→ cx2 ,

(4)
√
n|x̃y − xy| P−→ 0, x̃y P−→ cxy ,

(5)
√
n|˜̄x2 − x̄2| P−→ 0,

(6)
√
n|˜̄x˜̄y − x̄ · ȳ| P−→ 0,

(7) ∃ca ∈ R, x̃y − ˜̄x˜̄y
P−→ ca,

(8) ∃cb 6= 0, σ̃2
x
P−→ cb,

(9)
√
n(σ̃2

x − σ̂2
x)

P−→ 0,

(10) ∃C1/2 ∈ R2×2 such that
√
n(Ẽn − Ên)

P−→ 0, Ẽn
P−→ C1/2,

(11) F̃n
P−→ (cy cxy)T ,

(12) ∃cy2 ∈ R such that G̃n
P−→ cy2 ,

where the constant scalars and matrix cx, cy, cx2 , cxy, cy2 , ca, cb, C
1/2 are the same as the ones

defined in Lemma D.3.

Proof of Lemma D.10. Define

1. ˘̄x = 1
n

∑n
i=1 xi|

∆n

−∆n
,

2. ˘̄y = 1
n

∑n
i=1 yi|

∆n

−∆n
,

3.
︸︸
x2 = 1

n

∑n
i=1 x

2
i |

∆2
n

0 ,

4.
︸ ︸
xy = 1

n

∑n
i=1 xiyi|

∆2
n

−∆2
n

, and

5.
︸︸
y2 =

∑n
i=1 y

2
i |

∆2
n

0 .

Then ˜̄x = ˘̄x + N1, ˜̄y = ˘̄y + N2, x̃2 =
︸︸
x2 +N3, x̃y =

︸ ︸
xy+N4, ỹ2 =

︸︸
y2 +N5 where N1, N2 ∼

N (0, 2∆2

ρn2 ), N3 ∼ N (0, ∆4

2ρn2 ), N4 ∼ N (0, 2∆4

ρn2 ), and N5 ∼ N (0, ∆4

2ρ ).

By conditions of Theorem D.1, ∆2
n

ρnn
→ 0, ∆4

n

ρnn
→ 0 so that by Corollary D.5,

√
n|N1|

P−→ 0,
√
n|N2|

P−→ 0,
√
n|N3|

P−→ 0,
√
n|N4|

P−→ 0, and
√
n
n |N5|

P−→ 0 since
√
nN (0, 2∆2

ρn2 ) ∼ N (0, 2∆2

ρn ),
√
nN (0, ∆4

2ρn2 ) ∼ N (0, ∆4

2ρn ), and
√
n
n N (0, 2∆4

ρ ) ∼ N (0, 2∆4

ρn ).

(1): By assumption, for all i ∈ [n], xi ∈ [−∆n,∆n]. Thus, x̄ = ˘̄x so that ˜̄x = x̄+N1. Then,

√
n|˜̄x− x̄| ≤

√
n|N1|+

√
n|˘̄x− x̄| P−→ 0

by Slutsky’s Theorem. As a corollary, ˜̄x
P−→ cx by Lemma B.4 and the assumption in Theorem D.1

that x̄→ cx.

(2): The proof that
√
n|ȳ − ˜̄y| P−→ 0 is very similar: observe that by the assumptions of Theorem D.1:

P[|ȳ − ˘̄y| > 0] ≤ P[∃i ∈ [n], yi /∈ [−∆n,∆n]] (18)
→ 0. (19)
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Thus,
√
n|˘̄y − ȳ| P−→ 0. Combining with

√
n|N2|

P−→ 0, by the triangle inequality,
√
n|ȳ − ˜̄y| P−→ 0.

As a corollary, ˜̄y
P−→ cy by Lemma B.4 and the assumption in Theorem D.1 that x̄→ cx.

(3): To show
√
n|x̃2 − x2| P−→ 0, we proceed in an analogous way: using the assumption that P[∃i ∈

[n], xi /∈ [−∆n,∆n]] = 0, we obtain that P[∃i ∈ [n], x2
i /∈ [0,∆2

n]] = 0 so that
√
n|x2 −

︸︸
x2 | P−→ 0.

Combining with
√
n|N3|

P−→ 0, by the triangle inequality,
√
n|x̃2 − x2| P−→ 0. As a corollary,

x̃2 P−→ cx2 by Lemma B.4 and the assumption in Theorem D.1 that x2 → cx2 .

(4): In a similar fashion,
√
n|x̃y − xy| P−→ 0: using the assumptions

P[∃i ∈ [n], xi /∈ [−∆n,∆n]] = 0, P[∃i ∈ [n], yi /∈ [−∆n,∆n]]→ 0,

we have that

P[∃i ∈ [n], xiyi /∈ [−∆2
n,∆

2
n]]

≤ P[∃i ∈ [n], xi /∈ [−∆n,∆n]] + P[∃i ∈ [n], yi /∈ [−∆n,∆n]]

→ 0,

so that
√
n|xy −

︸ ︸
xy | P−→ 0. Combining with

√
n|N4|

P−→ 0, by the triangle inequality,
√
n|x̃y −

xy| P−→ 0. By Lemma D.3, xy P−→ cxy . Then by Lemma B.4, x̃y P−→ cxy .

(5): Next we show
√
n|˜̄x2 − x̄2| P−→ 0:

√
n(˜̄x2 − x̄2) =

√
n(˜̄x− x̄)(˜̄x+ x̄). Since, ˜̄x, x̄

P−→ cx, we
have (˜̄x+ x̄)

P−→ 2cx, (˜̄x− x̄)
P−→ 0 so that by Slutsky’s Theorem,

√
n|˜̄x2 − x̄2| P−→ 0

(6): In a similar fashion,
√
n|˜̄x˜̄y−x̄·ȳ| P−→ 0: ˜̄x = ˘̄x+N1 = x̄+N1, since ∀i ∈ [n], xi ∈ [−∆n,∆n].

Then,
√
n(˜̄x˜̄y − x̄ · ȳ) =

√
n [(x̄+N1)˜̄y − x̄ · ȳ]

=
√
nN1 ˜̄y + x̄

√
n(˜̄y − ȳ)

P−→ 0,

since
√
n(˜̄y − ȳ)

P−→ 0, ˜̄y
P−→ cy ,

√
nN1

P−→ 0.

(7): Next, we show that x̃y − ˜̄x˜̄y
P−→ ca ∈ R: Follows by Slutsky’s Theorem since x̃y P−→ cxy,

˜̄x
P−→ cx, and ˜̄y

P−→ cy .

(8): In a similar fashion, σ̃2
x
P−→ cb: This follows by Slutsky’s Theorem since x̃2 P−→ cx2 , ˜̄x

P−→ cx.

(9)
√
n(σ̃2

x − σ̂2
x)

P−→ 0 follows from parts (3) and (5).

(10): By Lemma D.9,
√
n

(√
σ̃2
x −

√
σ̂2
x

)
P−→ 0,

since
√
n
(
σ̃2
x − σ̂2

x

)
P−→ 0 and σ̂2

x
P−→ cb 6= 0 by Lemma D.3.

We have already established that
√
n(x̃2 − x2)

P−→ 0 and
√
n

(√
σ̃2
x −

√
σ̂2
x

)
P−→ 0.

As a result, by Lemma D.9,

√
n

(√
x̃2 + 1 + 2

√
σ̃2
x −

√
x2 + 1 + 2

√
σ̂2
x

)
P−→ 0.

Then since Ên, Ẽn converge to constant matrices and
√
n(˜̄x − x̄)

P−→ 0,
√
n(x̃2 − x2)

P−→ 0,
√
n

(√
σ̃2
x −

√
σ̂2
x

)
P−→ 0, it follows by Lemma D.8 that

√
n(Ẽn − Ên)

P−→ 0.
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As a corollary, Ẽn
P−→ C1/2 since Ên

P−→ C1/2 by Lemma D.3.

(11): Also, F̃n
P−→ (cy cxy)T since ˜̄y

P−→ cy and x̃y P−→ cxy .

(12): Finally, we show that G̃n
P−→ cy2 ∈ R: using the assumption that P[∃i ∈ [n], yi /∈

[−∆n,∆n]] → 0, we can obtain that P[∃i ∈ [n], y2
i /∈ [0,∆2

n]] → 0 so that
√
n|y2 −

︸︸
y2 | P−→ 0.

Combining with
√
n
n |N5|

P−→ 0, by the triangle inequality,
√
n|y2 − ỹ2| P−→ 0 which implies that

√
n|G̃n − Ĝn|

P−→ 0. Then by Lemma D.3 and Lemma B.4, G̃n
P−→ cy2 .

Lemma D.10 shows that the noise added to the non-DP estimates converges, in probability, to 0 and
that the DP estimates of the regression parameters converge, in probability, to the true parameters.
Next, we will show the 1/

√
n convergence rates of β̃N , β̃. As a corollary, this implies the consistency

of β̃N , β̃.

Lemma D.11. For every sequence of clipping bounds ∆ = ∆n > 0 and sequence of privacy
parameters ρ = ρn > 0, in Algorithm 4, under the conditions of Theorem D.1:

1.
√
n(β̃N − β̂N )

P−→ 0,

2.
√
n(β̃ − β̂)

P−→ 0.

Proof of Lemma D.11. As previously defined,

β̃N =

(
˜̄y
0

)
, β̂N =

(
ȳ
0

)
.

Then,
√
n(β̃N − β̂N )

P−→ 0 by Lemma D.10 since
√
n|˜̄y − ˘̄y| P−→ 0.

We will show that
√
n(β̃ − β̂)

P−→ 0. First, to show that
√
n(β̃1 − β̂1)

P−→ 0, we apply Lemma D.8

with Ã = x̃y − ˜̄x˜̄y, A = xy − x̄ · ȳ, B̃ = x̃2 − ˜̄x2 = σ̃2
x, B = x2 − x̄2 = σ̂2

x and f(n) =
√
n. Then

β̃1 = Ã

B̃
and β̂1 = A

B . By Lemma D.3, B = σ̂2
x converges, in probability, to a non-zero constant and

√
n(x̃y − xy),

√
n (x̄ · ȳ − ˜̄x˜̄y)

P−→ 0 by Lemma D.10. Also, by Lemma D.10 and Lemma D.3, if
we define B̃ = σ̃2

x, B = σ̂2
x, Ã = x̃y − ˜̄x˜̄y, then

√
n(B̃ −B)

P−→ 0 and
√
n(Ã−A)

P−→ 0. Then by
Lemma D.8,

√
n(β̃1− β̂1)

P−→ 0. By similar arguments,
√
n(β̂2− β̃2)

P−→ 0 so that
√
n(β̂− β̃)

P−→ 0.

Lemma D.11 leads to the following corollary, showing consistency of the DP estimates of β under
the null or alternative hypothesis.

Corollary D.12. For every sequence of clipping bounds ∆ = ∆n > 0 and sequence of privacy
parameters ρ = ρn > 0, in Algorithm 4, under the conditions of Theorem D.1:

1. Under the null hypothesis: β̃N P−→ β,

2. Under the alternative hypothesis: β̃ P−→ β.

Proof of Corollary D.12. By Lemma D.3, β̂1
P−→ β1 and β̂2

P−→ β2. Then, using Lemma D.11 and
Lemma B.4: β̃1

P−→ β1, β̃2
P−→ β2.

Also, by Lemma D.3, ȳ P−→ cy so that under the null hypothesis, β̃N P−→ β.
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D.3 Convergence of Differentially Private F -Statistic

We now introduce the continuous mapping theorem, which is especially useful for combining
individual convergence results to show, under certain conditions, more complex convergence results.
The continuous mapping theorem can be used to map convergent sequences into another convergent
sequence via a continuous function.
Theorem D.13 (Continuous Mapping Theorem, see [31]). Let {Wn} be a sequence of random
vectors and W be a random vector taking values in the same metric space X . Let Y be a metric
space and g : X → Y be a measurable function.

Define Dg = {x : g is discontinuous at x}. Suppose that P[W ∈ Dg] = 0. Then:

1. Wn
P−→W ⇒ g(Wn)

P−→ g(W ),

2. Wn
D−→W ⇒ g(Wn)

D−→ g(W ),

3. Wn
a.s.−−→W ⇒ g(Wn)

a.s.−−→ g(W ).

We now state and prove a helper lemma that will be useful for showing that the numerators and
denominators of the DP F -statistic converge to the right distribution.
Lemma D.14. Let An, Bn be random vectors such that there exists distribution L where:

1. An −Bn
P−→ 0,

2. ‖Bn‖
D−→ L such that P[‖Bn‖ = 0] = 0.

Then,
‖An‖2

D−→ L2.

Proof of Lemma D.14. Consider the unit vector Bn
‖Bn‖ . Since An − Bn

P−→ 0, we have that by
definition of convergence in probability:

Bn
‖Bn‖

(An −Bn)
P−→ 0,

where ‖Bn‖ is almost surely never 0.

First, let Wn = (‖Bn‖, ‖Bn‖). Then since ‖Bn‖
D−→ L, by the continuous mapping theorem

(Theorem D.13), if g((x, y)) = x · y, then g(Wn) = ‖Bn‖2
D−→ L2.

Then, letWn = (‖Bn‖, Bn
‖Bn‖ (An−Bn)). Then since P[‖Bn‖ = 0] = 0, by the continuous mapping

theorem (Theorem D.13), if g((x, y)) = x · y, then g(Wn) = Bn · (An −Bn)
D−→ 0 which implies

that
〈An, Bn〉 − ‖Bn‖2 = Bn · (An −Bn)

P−→ 0,

so that
2(〈An, Bn〉 − ‖Bn‖2)

P−→ 0. (20)

Also, by the continuous mapping theorem,

‖An‖2 − 2〈An, Bn〉+ ‖Bn‖2 (21)

= ‖An −Bn‖2 (22)
P−→ 0. (23)

Adding Equations (20) and (21) results in the following: ‖An‖2−‖Bn‖2
P−→ 0. Then by Lemma B.4,

since ‖Bn‖2
D−→ L2, we have that ‖An‖2

D−→ L2.
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We now show that the main terms in the numerators and denominators of the DP F -statistic converge
to the asymptotic distribution of their non-private counterparts.

Lemma D.15. Let σe > 0, r = p = 2, q = 1, and β ∈ Rp. For every n ∈ N with n > r, let
Xn ∈ Rn×p be the design matrix. For every sequence of clipping bounds ∆ = ∆n > 0 and sequence
of privacy parameters ρ = ρn > 0, in Algorithm 4, under the conditions of Theorem D.1:

n(β̃T Ẽ2
nβ̃ − 2β̃T F̃n + G̃n)

n− r
P−→ σ2

e , ‖
√
nẼn(β̃ − β̃N )‖2 D−→ X 2

r−q(η
2)σ2

e .

Proof of Lemma D.15. By Lemma D.3 and Lemma D.10:

1. β̃, β̂ P−→ β,

2. Ẽn, Ên → C1/2,

3. F̃n, F̂n
P−→ (cy cxy)T ,

4. G̃n, Ĝn
P−→ cy2 .

Furthermore,
n

n− r
=

1

1− r/n
→ 1.

As a result, by Slutsky’s Theorem,(
n(β̃T Ẽ2

nβ̃ − 2β̃T F̃n + G̃n)− n(β̂T Ê2
nβ̂ − 2β̂T F̂n + Ĝn)

n− r

)
P−→ 0.

By Theorem A.1,

‖Yn −Xnβ̂‖2

n− r
P−→ σ2

e .

By Lemma D.2, ‖Y −Xβ̂‖2 = n(β̂T Ê2
nβ̂ − 2β̂T F̂n + Ĝn). As a result, by Lemma B.4,

n(β̃T Ẽ2
nβ̃ − 2β̃T F̃n + G̃n)

n− r
P−→ σ2

e .

Next, by Theorem A.1, ‖Xnβ̂ − Xnβ̂
N‖2 ∼ χ2

r−q(η
2)σ2

e . Then by Lemma D.2, ‖
√
nÊn(β̂ −

β̂N )‖2 ∼ χ2
r−q(η

2)σ2
e . We will show that

‖
√
nẼn(β̃ − β̃N )‖2 D−→ χ2

r−q(η
2)σ2

e .

First, we define the random vectors

H̃n = Ẽn
√
n(β̃ − β̃N ), Ĥn = Ên

√
n(β̂ − β̂N ).

By Lemma D.11,
√
n(β̃−β̂)

P−→ 0 and
√
n(β̃N−β̂N )

P−→ 0. And since by Lemma D.3, Ên
P−→ C1/2,

we have that by Slutsky’s Theorem,
√
nÊn(β̃ − β̂)

P−→ 0, and
√
nÊn(β̃N − β̂N )

P−→ 0. Also, by
Lemma D.10,

√
n(Ẽn − Ên)

P−→ 0 which implies that, by Slutsky’s Theorem, and Lemma D.11,
√
n(Ẽn − Ên)β̃

P−→ 0 and
√
n(Ẽn − Ên)β̃N

P−→ 0 so that
√
n(Ẽn − Ên)(β̃ − β̃N )

P−→ 0.
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As a result,

H̃n − Ĥn

= Ẽn
√
n(β̃ − β̃N )− Ên

√
n(β̂ − β̂N )

= Ẽn
√
nβ̃ − Ên

√
nβ̂ −

[
Ẽn
√
nβ̃N − Ên

√
nβ̂N

]
= (Ẽn − Ên)

√
nβ̃ + Ên

√
n(β̃ − β̂)−

[
(Ẽn − Ên)

√
nβ̃N + Ên

√
n(β̃N − β̂N )

]
= (Ẽn − Ên)

√
n(β̃ − β̃N ) + Ên

√
n(β̃ − β̂)−

[
Ên
√
n(β̃N − β̂N )

]
P−→ 0.

By Lemma D.14, since ‖Ĥn‖
D−→ χr−q(η

2)σe and H̃n − Ĥn
P−→ 0, we have that

‖H̃n‖2
D−→ χ2

r−q(η
2)σ2

e .

As a result, ‖
√
nẼn(β̃ − β̃N )‖2 D−→ χ2

r−q(η
2)σ2

e . This completes the proof.

Lemma D.15 shows the convergence of individual quantities that can now be combined to show the
convergence of the DP test statistic T̃ :

Proof of Theorem D.1. First, by Corollary D.12, under the null hypothesis: β̃N = β̃Nn
P−→ β. And

under the alternative hypothesis: β̃ = β̃n
P−→ β.

By Lemma D.2,

T = Tn =
n− r
r − q

· ‖Xβ̂ −Xβ̂
N‖2

‖Y −Xβ̂‖2
=
n− r
r − q

· ‖
√
nÊn(β̂ − β̂N )‖2

n(β̂T Ê2
nβ̂ − 2β̂T F̂n + Ĝn)

.

And by Equation (17),

T̃ = T̃n =
n− r
r − q

· ‖
√
nẼn(β̃ − β̃N )‖2

n(β̃T Ẽ2
nβ̃ − 2β̃T F̃n + G̃n)

.

From Theorem A.1, in the non-private case where Yn ∼ N (Xnβ, σ
2
eIn×n), if T = Tn is the test

statistic from Equation (7), then

Tn ∼ Fr−q,n−r(η2
n), η2

n =
‖Xnβ −Xnβ

N‖2

σ2
e

.

Also, by Theorem A.1, the asymptotic distribution of T is a chi-squared distribution. i.e., T = Tn
D−→

χ2
r−q(η

2)

r−q . Next, we show that the DP F -statistic also has asymptotic distribution of chi-squared.

By Lemma D.15,
‖
√
nẼn(β̃ − β̃N )‖2 D−→ X 2

r−q(η
2)σ2

e ,

and
n(β̃T Ẽ2

nβ̃ − 2β̃T F̃n + G̃n)

n− r
P−→ σ2

e .

Let

Wn =

(
‖
√
nẼn(β̃ − β̃N )‖2

r − q
,
n(β̃T Ẽ2

nβ̃ − 2β̃T F̃n + G̃n)

n− r

)
= (An, Bn),

and

W =

(
X 2
r−q(η

2)σ2
e

r − q
, σ2
e

)
.
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By the condition that σe > 0 (P[σe = 0] = 0) and the continuous mapping theorem (Theorem D.13),

T̃n = g(Wn) = g(An, Bn) = An/Bn converges, in distribution, to
χ2
r−q(η

2)

r−q as n→∞.

E Experimental Evaluation of Power and Significance

We will measure the effectiveness of our hypothesis tests via significance and power. In Section H,
we describe our meta-procedures for collating the significance and power of our implementations of
non-private and private statistical tests.

The power and significance of our differentially private tests are estimated on both semi-synthetic
datasets based on the Opportunity Atlas [19, 20] and on synthetic datasets. The OI semi-synthetic
datasets consists of simulated microdata for each census tract in some states in the U.S. The dependent
variable Y is the child national income percentile and the independent variableX is the corresponding
parent national income percentile. See [3] for more details on the properties of simulated data from
the OI team. In the OI data, X is lognormally distributed and the distribution of counts of individuals
across tracts in a state follows an exponential distribution.

General Parameter Setup for Synthetic Data: For experimental evaluation on synthetic datasets,
we generated datasets with sizes between n = 100 and n = 10, 000.

For both the linear relationship and mixture model tests on synthetic data below, we consider a subset
of the following values of the privacy budget ρ: {0.12/2, 0.52/2, 12/2, 22/2, 32/2, 52/2, 102/2}.
We draw the independent variables x1, . . . , xn according to a few different distributions: Normal, Uni-
form, Exponential. We will detail the parameters used to generated variables from these distributions
in the corresponding subsections.

For all tests below, the clipping parameter is either set to ∆ = 2 or ∆ = 3. For the synthetic data,
the dependent variable Y is generated using the linear or mixture model specification described in
previous sections and by fixing or varying parameters (such as σe). For estimating the power and
significance, we fix the target significance level to 0.05 and run Monte Carlo tests 2000 times. We
estimate the power and significance as the fraction of times the null is rejected, given various settings
of parameters that satisfy the alternative and null hypothesis, respectively.

E.1 Testing a Linear Relationship on Synthetic Data

E.1.1 F -statistic

We evaluate our DP linear relationship test on synthetically generated data from three different
distributions: normal, uniform, and exponential. We also vary parameters such as: the slope of the
linear model and the noise distribution of the dependent variable.

Evaluating the Significance for Normally Distributed Independent Variables: Generally, we see
that the significance remains below the target significance level, on average, for all values of ρ. For
the linear relationship tester, when the standard deviation of the dependent variable (σe) is small
(Figure 4a), we see that the true significance level is well below the target significance of 0.05, which
is fine (but conservative). We conjecture that this happens because when σe is small: (i) we fail to
reject when the noisy estimate of σe is ≤ 0; or (ii) the test statistic under the null distribution will be
almost always 0 since under the null (even without privacy), the standard deviation of the test statistic
is proportional to σe. In Figures 4a, 4b and 4c, we see the significance of the linear tester attains the
target (of 0.05) as we vary the noise in the dependent variable σe.

Evaluating Power for Varying the Noise in the Dependent Variable: For Figures 5a, 5b, and 5c,
we set the true slope to 1. We then vary the noise in the dependent variable. That is, for the
general linear model, Y ∼ N (Xβ, σ2

eIn×n), we vary σe. The following values of σe are considered:
{0.001, 0.35, 1}.
In Figure 5a, we generally see that compared to higher values of σe (Figures 5b and 5c), the power is
relatively low. We believe this occurs because when σe is small, its DP estimate is more likely to be
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(a) Significance for testing a lin-
ear relationship. xi ∼ N (0.5, 1),
yi ∼ 0 · xi +N (0, 0.0012). ∆ =
2.

(b) Significance for testing a lin-
ear relationship. xi ∼ N (0.5, 1),
yi ∼ 0 ·xi +N (0, 0.352). ∆ = 2.

(c) Significance for testing a lin-
ear relationship. xi ∼ N (0.5, 1),
yi ∼ 0 · xi +N (0, 1). ∆ = 2.

Figure 4

(a) Power for testing a linear rela-
tionship. xi ∼ N (0.5, 1), yi ∼
1 · xi +N (0, 0.0012). ∆ = 2.

(b) Power for testing a linear rela-
tionship. xi ∼ N (0.5, 1), yi ∼
1 · xi +N (0, 0.352). ∆ = 2.

(c) Power for testing a linear rela-
tionship. xi ∼ N (0.5, 1), yi ∼
1 · xi +N (0, 1). ∆ = 2.

Figure 5

less than 0, in which case we fail to reject the null (even when the alternative is true). This generally
leads to a reduction in the power.

Evaluating Power for Varying Slopes: Figures 6a, 6b show the power of the linear test for slopes
of 0.1, 1. We generally see that the larger the slope, the higher the power of the DP tests.

Evaluating the Significance while Varying the Distribution of the Independent Variable: For
Figures 7a, 7b, and 7c, we set the standard deviation of the noise dependent variable to 0.35. We then

(a) Power for testing a linear relationship.
xi ∼ N (0.5, 1), yi ∼ 0.1 ·xi +N (0, 0.352). ∆ =
2.

(b) Power for testing a linear relationship.
xi ∼ N (0.5, 1), yi ∼ 1·xi+N (0, 0.352). ∆ = 2.

Figure 6
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(a) Significance for testing a linear
relationship. Normal Distribution
on X .

(b) Significance for testing a linear
relationship. Uniform Distribution
on X .

(c) Significance for testing a linear
relationship. Exponential Distribu-
tion on X .

Figure 7

vary the distribution of the independent variable — while maintaining the variance — to take on one
of the following:

1. Normal: with mean 0.5 and variance 1/12.
2. Uniform: between 0 and 1 (variance of 1/12).
3. Exponential: with scale of 1/

√
12.

We observe that the significance is still preserved even though, in our DP testers, the null distribution
is simulated via a normal distribution.

E.1.2 Differentially Private Bootstrap Confidence Intervals

Using the duality between confidence interval estimation and hypothesis testing, we can construct hy-
pothesis tests for testing a linear relationship based on DP confidence interval procedures. Specifically,
we compare the F -statistic linear relationship tester to the tester that uses DP confidence intervals. See
Section G for more details on the experimental framework of the DP bootstrap confidence intervals.
Algorithm 7 summarizes the approach for testing that builds on DP confidence intervals.

In Figure 8a, we present experimental results for the significance level of Algorithm 7 compared
to Algorithm 3 instantiated with the DP F -statistic. As we see, Algorithm 7 achieves the target
significance level. In Figure 8b, we also present experimental results for the power of Algorithm 7
compared to Algorithm 3. We see that Algorithm 7 has less power than Algorithm 3. This observation
is more pronounced for less concentrated distributions (i.e., uniform) on the independent variable.
See Figure 9b. This might be due to the, sometimes excessive, width of the confidence interval
produced by the bootstrap interval (in order to ensure coverage under the null hypothesis).

Figures 8a, 8b, 9a, and 9b show results averaged out over 2000 trials. The dashed lines correspond to
the bootstrap confidence interval approach (denoted CI) while the solid lines are for the F -statistic
(denoted F -stat).

E.2 Testing Mixture Models on Synthetic Data

E.2.1 F -Statistic

We evaluate the F -statistic DP mixture model test on synthetically generated data. We vary parameters
such as: the fraction of data in each group and the slopes used to generate data for each group. Let
β1, β2 denote the slopes of the two groups.

Evaluating the Significance: Like in the DP linear model tester, we also see that we achieve the
target significance levels, on average, for all values of ρ. In Figures 10a, 10b, and 10c, we vary the
noise in the dependent variable. In Figures 11a, 11b, and 11c, we vary the fraction of group sizes,
using either a 1/8, 1/4, or 1/2 fraction for the first group. We see that the more unbalanced splits tend
to have lower significance levels.

Power while Varying the Group Size Fraction: Let n be the total number of datapoints and n1, n2

be the number of points in groups 1 and 2 respectively. We vary the fraction of points in group
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(a) Significance for F -statistic versus confidence
interval approach. xi ∼ N (0.5, 1), yi ∼ 0 · xi +
N (0, 0.352). ∆ = 2.

(b) Power for F -statistic versus confidence inter-
val approach. xi ∼ N (0.5, 1), yi ∼ 1 · xi +
N (0, 0.352). ∆ = 2.

Figure 8

(a) Significance for F -statistic versus confidence
interval approach. xi ∼ Unif(0, 1), yi ∼ 0 · xi +
N (0, 0.352). ∆ = 2.

(b) Power for F -statistic versus confidence inter-
val approach. xi ∼ Unif(0, 1), yi ∼ 1 · xi +
N (0, 0.352). ∆ = 2.

Figure 9

(a) Significance for testing mix-
tures. Equal-sized groups. xi ∼
N (0.5, 1), yi ∼ 1 · xi +
N (0, 0.012) for Group 1. yi ∼
1 · xi +N (0, 0.012) for Group 2.

(b) Significance for testing mix-
tures. Equal-sized groups. xi ∼
N (0.5, 1), yi ∼ 1 · xi +
N (0, 0.352) for Group 1. yi ∼
1 · xi +N (0, 0.352) for Group 2.

(c) Significance for testing mix-
tures. Equal-sized groups. xi ∼
N (0.5, 1), yi ∼ 1 · xi + N (0, 1)
for Group 1. yi ∼ 1 · xi +N (0, 1)
for Group 2.

Figure 10
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(a) Significance for testing mix-
tures. 1/8th vs. 7/8th splits.
xi ∼ N (0.5, 1), yi ∼ 1 · xi +
N (0, 0.352) for Group 1. yi ∼
1 · xi +N (0, 0.352) for Group 2.

(b) Significance for testing mix-
tures. 1/4th vs. 3/4th splits.
xi ∼ N (0.5, 1), yi ∼ 1 · xi +
N (0, 0.352) for Group 1. yi ∼
1 · xi +N (0, 0.352) for Group 2.

(c) Significance for testing mix-
tures. Equal-sized groups. xi ∼
N (0.5, 1), yi ∼ 1 · xi +
N (0, 0.352) for Group 1. yi ∼
1 · xi +N (0, 0.352) for Group 2.

Figure 11

(a) Power for testing mixtures.
1/8th vs. 7/8th splits. xi ∼
N (0.5, 1), yi ∼ −1 · xi +
N (0, 0.352) for Group 1. yi ∼
1 · xi +N (0, 0.352) for Group 2.

(b) Power for testing mixtures.
1/4th vs. 3/4th splits. xi ∼
N (0.5, 1), yi ∼ −1 · xi +
N (0, 0.352) for Group 1. yi ∼
1 · xi +N (0, 0.352) for Group 2.

(c) Power for testing mixtures.
Equal-sized groups. xi ∼
N (0.5, 1), yi ∼ −1 ·xi +N (0, 1)
for Group 1. yi ∼ 1 · xi +N (0, 1)
for Group 2.

Figure 12

1: n1/n. Setting the slopes of each group to β1 = −1 and β2 = 1, we vary this fraction so that
n1/n ∈ {1/8, 1/4, 1/2}. For Figure 12a, we set the group sizes to be equal. For Figure 12b, we set
the group sizes to be n/4, 3n/4. And last, for Figure 12c, the group sizes are n/8, 7n/8.

Generally, the more even the group size fractions are, the higher the power of the DP test for testing
mixtures in the general linear model.

Power while Varying the Difference Between Slopes in Each Group: Let β1, β2 correspond to
the slopes for groups 1 and 2. We vary |β1 − β2|. Generally, we see that the larger |β1 − β2| is, the
higher the power of the test. In Figures 13a, 13b we vary the slope in the two groups and observe the
aforementioned phenomena.

Power while Varying the Noise in the Dependent Variable: We also vary σe. We generally see
that the smaller it is, the smaller the power. We conjecture that this happens because we err on the
side of failing to reject the null if the DP estimate of σe becomes ≤ 0, which is more likely to happen
if σe is small. In Figures 14a, 14b,and 14c we see this phenomenon.

E.2.2 Nonparametric Tests via Kruskal-Wallis

We now proceed to show results for comparing the mixture models based on Kruskal-Wallis (KW) to
the parametric F -statistic method.

Evaluating the Significance: The KW methods, on average, achieve the target significance levels
for all values of ρ as illustrated in Figures 15a and 15b, where we vary the noise in the dependent
variable.

Evaluating the Power as we Increase the Difference in Slopes: We see that the the KW method
outperforms the F -statistic method on small datasets. But as the difference in slopes between the two
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(a) Power for testing mixtures. Equal-sized groups.
xi ∼ N (0.5, 1), yi ∼ −0.1 · xi +N (0, 0.352) for
Group 1. yi ∼ 0.1 · xi +N (0, 0.352) for Group 2.

(b) Power for testing mixtures. Equal-sized groups.
xi ∼ N (0.5, 1), yi ∼ −1 · xi + N (0, 0.352) for
Group 1. yi ∼ 1 · xi +N (0, 0.352) for Group 2.

Figure 13

(a) Power for testing mixtures.
Equal-sized groups. xi ∼
N (0.5, 1), yi ∼ −1 · xi +
N (0, 0.012) for Group 1. yi ∼
1 · xi +N (0, 0.012) for Group 2.

(b) Power for testing mixtures.
Equal-sized groups. xi ∼
N (0.5, 1), yi ∼ −1 · xi +
N (0, 0.352) for Group 1. yi ∼
1 · xi +N (0, 0.352) for Group 2.

(c) Power for testing mixtures.
Equal-sized groups. xi ∼
N (0.5, 1), yi ∼ −1 ·xi +N (0, 1)
for Group 1. yi ∼ 1 · xi +N (0, 1)
for Group 2.

Figure 14

(a) Significance for testing mixtures. Equal-sized
groups. xi ∼ N (0.5, 0.1), yi ∼ 1 · xi +
N (0, 0.352) for Group 1. yi ∼ 1 ·xi+N (0, 0.352)
for Group 2.

(b) Significance for testing mixtures. Equal-sized
groups. xi ∼ N (0.5, 1), yi ∼ 1 · xi +N (0, 1) for
Group 1. yi ∼ 1 · xi +N (0, 1) for Group 2.

Figure 15
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(a) Power for testing mixtures. Equal-sized groups.
xi ∼ N (0.5, 1), yi ∼ −1 ·xi +N (0, 1) for Group
1. yi ∼ 1 · xi +N (0, 1) for Group 2.

(b) Power for testing mixtures. Equal-sized groups.
xi ∼ N (0.5, 1), yi ∼ −1 ·xi +N (0, 1) for Group
1. yi ∼ 5 · xi +N (0, 1) for Group 2.

Figure 16

(a) Power for Kruskal-Wallis versus the F -statistic.
xi ∼ N (0.5, 1), yi ∼ −1 ·xi +N (0, 1) for Group
1. yi ∼ 1 · xi +N (0, 1) for Group 2.

(b) Power for Kruskal-Wallis versus the F -statistic.
xi ∼ N (0.5, 10), yi ∼ −1·xi+N (0, 1) for Group
1. yi ∼ 1 · xi +N (0, 1) for Group 2.

Figure 17

groups increases, the F -statistic method does better and begins to outperform the KW method. See
Figures 16a and 16b.

Evaluating the Power as we Increase the Variance of the Independent Variable: In Figures 17a
and 17b, we see that the F -statistic method outperforms the KW method when the variance of the
independent variable is much larger (10x) than previously.

E.3 Testing on Opportunity Insights Data

The Opportunity Insights (OI) team gave us simulated data for census tracts from the following states
in the United States: Idaho, Illinois, New York, North Carolina, Texas, and Tennessee. The dependent
and independent variables are the child and parent national income percentiles, respectively. For the
linear tester, a rejection of the null hypothesis implies that there is a relationship between the parent
and child income percentiles. For the mixture model tester, it implies that there is more than one
linear relationship in the data which suggests that more granular data is needed for analysis on the
data. The groups of data fed to the mixture model tester are conglomeration of one or more tracts.

Some of these states have a small number of datapoints. For example, within Illinois, there are tracts
with just n = 39 datapoints. For the Illinois dataset, there are n = 219, 594 datapoints that are
subdivided into 3, 108 census tracts. The North Carolina and Texas datasets consists of datapoints
subdivided into 2, 156 and 5, 187 census tracts respectively. We will focus on data from North
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(a) P[reject null] for testing a linear relationship in
NC. ∆ = 2.

(b) P[reject null] for testing a linear relationship in
TX. ∆ = 2.

Figure 18

(a) P[reject null] for testing for mixtures in NC. ∆ =
2.

(b) P[reject null] for testing for mixtures in TX. ∆ =
2.

Figure 19

Carolina (NC), and Texas (TX) and experimentally evaluate P[reject null], the probability of rejecting
the null hypothesis over the randomness of the DP algorithms. We run our tests on some census
tracts in these states showing how these measures fair as the privacy parameter is relaxed. For the
experiments below, from each state, we randomly and uniformly select: (i) a single tract; (ii) 10
randomly selected tracts and concatenate; and (iii) 50 randomly selected tracts and concatenate.
Then we test for the presence of a (non-zero) linear relationship. The concatenation could result in
hundreds or thousands of points.

Our tests are evaluated on the OI data. We have not included the test based on Kruskal-Wallis as
our current implementation is, at the moment, relatively computationally inefficient to evaluate on
such large datasets. See above synthetic data experiments for comparison of Kruskal-Wallis to the
F -statistic method. Figures 18a, and 18b show the probability of rejecting the null as we increase the
parameter ρ when using the DP linear tester. Figures 19a, and 19b show the corresponding results
for the F -stat based DP mixture model tester. We see that for the small-sized datasets tend to have a
small chance of rejecting the null while larger ones have a higher chance.

E.4 Testing on UCI Bike Dataset

We use the UCI bike dataset [28] with 17,389 instances. For this dataset, we test for a linear
relationship between the “temp” (normalized temperature in Celsius) and “hr” (hour between 0
and 23) attributes. The null hypothesis is that there is no linear relationship between the “temp”
and “hr” attributes. Without privacy, the linear relationship tester based on the F -statistic rejects
the null. In Table 1, we show the probability of Algorithm 3 rejecting the null as we vary the
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ρ 0.005 0.125 0.5 1.125 2.0 3.125 4.5 6.125 8.0 10.125 non-DP
P[reject null | 100% data] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P[reject null | 10% data] 0.85 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 1: P[reject null] for testing for a linear relationship between temperature and time (in hours).

privacy parameter. We can observe that for almost all—except for the smallest setting of ρ—privacy
parameters, P[reject null | p% data] (probability of rejecting the null, given p% of the dataset) for the
private test matches that of the non-private test.

While we show that our methods can run on real-world datasets, the synthetically generated datasets
give a lot more information on the behavior of the tests.

F F -Statistic for the General Linear Model

The proofs in this section rely on insights from [37]. In fact, Theorem F.2 can be seen as a special
case of Theorem 14.11 in [37] where, under the null hypothesis, the projection onto ω0 results in βN
and, under the alternative hypothesis, the projection onto ω results in β.

We present the main test statistic we will use for hypothesis testing. This statistic is equivalent to the
generalized likelihood ratio test statistic and can be written as

T =

(
n− r
r − q

)
‖Y −Xβ̂N‖2 − ‖Y −Xβ̂‖2

‖Y −Xβ̂‖2
=

(
n− r
r − q

)
‖Xβ̂ −Xβ̂N‖2

‖Y −Xβ̂‖2
, (24)

where β̂N , β̂ are the least squares estimates under the null and alternative hypothesis respectively.

The vectors Y − Xβ̂ and Xβ̂ − Xβ̂N can be shown to be orthogonal, so that ‖Y − Xβ̂N‖2 =

‖Y −Xβ̂‖2 + ‖Xβ̂ −Xβ̂N‖2 by the Pythagorean theorem [37].
Lemma F.1 (Weak Law of Large Numbers, see [37]). Let Y1, . . . , Yn be i.i.d. random variables with
mean µ. Then

1

n

n∑
i=1

Yi = Ȳn
P−→ µ,

provided that E[|Yi|] <∞.
Theorem F.2. For every n ∈ N with n > r, let X = Xn ∈ Rn×p be the design matrix. Under the
general linear model Y = Yn ∼ N (Xnβ, σ

2
eIn×n),

T = Tn ∼ Fr−q,n−r(η2
n), η2

n =
‖Xnβ −Xnβ

N‖2

σ2
e

,

where Fn,m is the F -distribution with parameters n, m, βN = E[β̂N ], q is the dimension of ω0, and
r is the dimension of ω with 0 ≤ q < r.

Furthermore,

1.
‖Yn −Xnβ̂‖2 ∼ X 2

n−rσ
2
e , ‖Xnβ̂ −Xnβ̂

N‖2 ∼ X 2
r−q(η

2
n)σ2

e .

2. If there exists η ∈ R such that ‖Xnβ−Xnβ
N‖2

σ2
e

→ η2, then

T = Tn ∼ Fr−q,n−r(η2
n)

D−→
χ2
r−q(η

2)

r − q
.

3. We have
‖Yn −Xnβ̂‖2

n− r
P−→ σ2

e .

The values β = E[β̂], βN = E[β̂N ] are the expected values of our parameter estimates under the
alternative and null hypotheses respectively.
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Proof of Lemma F.2. First, define Ω0 = {Xβ : β ∈ Rp, β ∈ ω0} (for null hypothesis) and
Ω = span{c1, . . . , cp} = {Xβ : β ∈ Rp, β ∈ ω} (for alternative) where c1, . . . , cp are the columns
of X . Write Y =

∑n
i=1 Zivi, where v1, . . . , vn is an orthonormal basis chosen so that v1, . . . , vr

spans Ω (so that vr+1, . . . , vn lies in Ω⊥) and v1, . . . , vq spans Ω0.

For all i ∈ [n], we can find Zi ∈ Rn by introducing an n× n matrix O with columns v1, . . . , vn. As
a result, O is an orthogonal matrix (i.e., OTO = OOT = I since O is a square matrix) such that
Z = OTY (or Y = OZ).

As before Y = Xβ+e, where e ∼ N (0, σ2
eIn×n). As a result, Z = OT (Xβ+e) = OTXβ+OT e.

If we define τ = OTXβ and e∗ = OT e, then Z = τ + e∗. And because E[e∗] = E[OT e] =
OTE[e] = 0 and cov(e∗) = cov(OT e) = OT cov(e)O = OT (σ2

eI)O = σ2
eI , e∗ ∼ N (0, σ2

eIn×n).
As a result,

Z ∼ N (τ, σ2
eIn×n).

Next, since c1, . . . , cp denotes the columns of the design matrix X , Xβ =
∑p
i=1 βici and

τ = OTXβ =


vT1
vT2
...
vTn


p∑
i=1

βici =


∑p
i=1 βiv

T
1 ci∑p

i=1 βiv
T
2 ci

...∑p
i=1 βiv

T
n ci

 .

And because c1, . . . , cp all lie in Ω and vr+1, . . . , vn in Ω⊥, we have vTk ci = 0 for all k > r. Then,
τr+1 = · · · = τn = 0.

Additionally, because τ = OTXβ,

Xβ = Oτ = (v1 · · · vn)



τ1
τ2
...
τr
0
...
0


=

r∑
i=1

τivi.

Essentially, we established a one-to-one relation between points Xβ ∈ Ω and (τ1, . . . , τr) ∈ Rr.
Now, since Z ∼ N (τ, σ2

eIn×n), Z1, . . . , Zn are independent and Zi ∼ N (τi, σ
2
e) for all i ∈ [n].

Furthermore, τr+1 = · · · = τn = 0.

Then since Xβ =
∑r
i=1 τivi, Xβ̂ =

∑r
i=1 Zivi and Xβ̂N =

∑q
i=1 Zivi.

As a result, we get

‖Y −Xβ̂‖2 = ‖
n∑

i=r+1

Zivi‖2 =

n∑
i=r+1

n∑
j=r+1

ZiZjv
T
i vj =

n∑
i=r+1

Z2
i ,

which follows since for all i 6= j, vTi vj = 0 and for i = j, vTi vj = 1. Also, since τr+1 = · · · =

τn = 0, Zi ∼ σeN (τi, 1), ‖Y −Xβ̂‖2 ∼ X 2
n−rσ

2
e .

Similarly,

‖Y −Xβ̂N‖2 =

n∑
i=q+1

Z2
i .

Then by Equation (24),

T =

1
r−q

∑r
i=q+1 Z

2
i

1
n−r

∑n
i=r+1 Z

2
i

=

1
r−q

∑r
i=q+1(Zi/σe)

2

1
n−r

∑n
i=r+1(Zi/σe)2

.
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The variables Zi are independent and because Zi/σe ∼ N (τi/σe, 1), using properties of the (non-
central) chi-squared distribution,

r∑
i=q+1

(
Zi
σe

)2

∼ χ2
r−q(η

2
n), η2

n =

r∑
i=q+1

τ2
i

σ2
e

.

As a corollary, ‖Xβ̂ −Xβ̂N‖2 ∼ X 2
r−q(η

2
n)σ2

e .

Also, since τi = 0 for i = r + 1, . . . , n, Zi/σe ∼ N (0, 1) for i = r + 1, . . . , n. As a result,∑n
i=r+1(Zi/σe)

2 ∼ χ2
n−r.

By definition of the noncentral F -distribution, we have T ∼ Fr−q,n−r(η2
n) where η2

n =
∑r
i=q+1

τ2
i

σ2
e

.

We know that Xβ = E[Xβ̂] =
∑r
i=1 τivi and XβN = E[Xβ̂N ] =

∑q
i=1 τivi. As a result,

Xβ −XβN =
∑r
i=q+1 τivi so that

‖Xβ −XβN‖2 =

r∑
i=q+1

τ2
i .

This completes the proof of the distribution of T .

In the limit, by Lemma F.3

Tn = Fr−q,n−r(η
2
n)

D−→
χ2
r−q(η

2)

r − q
.

Finally, we have established that

‖Yn −Xnβ̂‖2

n− r
∼
X 2
n−rσ

2
e

n− r
.

Applying the weak law of large numbers (Lemma F.1), χ
2
n−r
n−r

P−→ 1. As a result,

‖Yn −Xnβ̂‖2

n− r
P−→ σ2

e .

Lemma F.3. Let X ∼ Fn,m(λ) and Y = limm→∞ nX . Then Y ∼ χ2
n(λ).

Proof. By definition of the F -distribution, X = N/n
M/m , where N ∼ X 2

n(λ) and M ∼ X 2
m are

independent random variables.

For mutually independent χ2
1 random variables Y1, . . . , Ym,

M =
Y1 + · · ·+ Ym

m
.

By the weak law of large numbers (Lemma F.1),

M

m

P−→ E[Y1] = 1.

As a result, by Slutsky’s Theorem (Theorem D.6),

lim
m→∞

nX = lim
m→∞

N

M/m
= N ∼ X 2

n(λ).

50



G Duality Between Testing and Interval Estimation

In this section, we expand on the relationship between interval or region estimation (i.e., confidence
interval estimation) and hypothesis testing. We present a general formulation, which can be special-
ized to linear regression. Previous work (e.g., [29]) examines the generation of confidence intervals
for differentially private parametric inference. Our work focuses on hypothesis testing.

As before, for some unknown parameter θ ∈ Ω, Z ∼ Pθ is the observed data. Also let f : Ω→ R be
a function on the parameter space (i.e., for linear regression, we can compute functions of the slope
and/or intercept).
Definition G.1 (Confidence Region). A (random) set S(Z) is a 1 − α confidence region for a
(function of a) parameter f(θ) if

Pθ[f(θ) ∈ S(Z)] ≥ 1− α, ∀θ ∈ Ω.

A confidence region is, essentially, a multi-dimensional generalization of a confidence interval.
Definition G.2 (Acceptance Region). For every f0 ∈ R, A(f0) is the acceptance region for a
nonrandomized level α test of

H0 : f(θ) = f0 vs. H1 : f(θ) 6= f0.

A(f0) denotes the range of values that would lead to acceptance of the null hypothesis, when the null
is true, where for the level α test,

Pθ[Z ∈ A(f(θ))] ≥ 1− α, ∀θ ∈ Ω.

Define the following function:
S(z) = {f0 : ∃θ0 s.t. f0 = f(θ0) and z ∈ A(f0)}.

Then f(θ) ∈ S(Z) ⇐⇒ Z ∈ A(f(θ)) which implies that
Pθ(f(θ) ∈ S(Z)) = Pθ(Z ∈ A(f(θ))) ≥ 1− α.

We have established that S(Z) is, thus, a 1− α confidence region for f . Essentially, we have shown
that we can construct confidence regions from a family of nonrandomized tests.

For any function f : Ω → R and f0 = f(θ0), we could seek to obtain a 1 − α confidence region
S(Z) for the parameter f0 (e.g., the mean or median).

Now, consider a test φ defined by

φ(z) =

{
1 if f0 /∈ S(z)

0 otherwise
.

Then if f(θ) = f0, then
Eθφ = Pθ[f0 /∈ S(Z)] (25)

= Pθ[f(θ) /∈ S(Z)] ≤ α. (26)

This test has level at most α for testing
H0 : f(θ) = f0 vs. H1 : f(θ) 6= f0.

Then if the coverage probability for S(Z) is exactly 1− α, then
Pθ[f(θ) ∈ S(Z)] = 1− α, ∀θ ∈ Ω,

so that φ will have level of exactly α.

To summarize, we have shown that we can: (1) Construct confidence regions from a family of
nonrandomized tests. (2) Construct a family of nonrandomized tests from a 1− α confidence region.

Since (nontrivial) DP tests are randomized, to apply the duality framework, we could de-randomize
by giving the DP procedure the random bits to be used for DP. Or we can also define the DP procedure
as a family of nonrandomized tests.

We can still turn DP procedures for confidence region estimation into procedures for testing although,
as we show below, the power of the corresponding tests is likely to be very low if the area of the
confidence regions are too large.
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More Details on Experimental Evaluation of DP Confidence Intervals We now proceed to
construct a hypothesis test based on DP parametric bootstrap confidence intervals (e.g., using the
work of [29]). Then we will experimentally compare to our linear relationship tester based on the DP
F -statistic.

Suppose that θ is the set of parameters (e.g., standard deviation of the dependent and independent
variables) and f = f(θ) is the estimation target (e.g., the slope in the dataset). The goal is to obtain
a 1− α confidence interval [ân, b̂n] for f(θ) via an end-to-end differentially private procedure. In
other words, we want

P
[
ân ≤ f(θ) ≤ b̂n

]
= 1− α,

where the probability is taken over both θ and f .

Because of the randomized nature of (non-trivial) DP procedures, the finite-sample coverage of the
interval might not exactly be close to 1− α. Ferrando, Wang, and Sheldon [29] show the consistency
of these intervals (in the large-sample, asymptotic regime).

Algorithm 7 follows the same framework as Algorithm 3, except that instead of simulating test
statistics under the null hypothesis, the goal is to calculate a confidence interval for the slope. P(θ̃0,θ̃1)

denotes the distribution from which we shall generate our bootstrap samples and from which a
confidence interval can be estimated. For example, for taking bootstrap samples for the slope, P(θ̃0,θ̃1)

would approximately be distributed as N (β̃1,
S̃2

ñvar ) where ñvar = n · x̃2 − n · x̃2 and S̃2 is as defined
in Algorithm 4. Note that a crucial difference between tests based on the parametric bootstrap
confidence intervals and our tests is the following: our tests only use θ̃0, a subset of the estimated DP
statistics, to simulate the null distribution and decide to reject the null while the other approach uses
(θ̃0, θ̃1) to decide to reject the null.

The target slope is b. For example, if we seek to test for a linear relationship, we set b = 0 since
under the null hypothesis, the slope will be 0. DPStats is a ρ-zCDP procedure for estimating DP
sufficient statistics for a parametric model. In Algorithm 7, (s(l), s(r)) is the parametric bootstrap
confidence interval for the slopes under the null hypothesis.

Algorithm 7 DP Test Framework via Parametric Bootstrap Confidence Intervals.
1: Data: X ∈ Rn×p;Y ∈ Rn
2: Input: n (dataset size); ρ (privacy-loss parameter);α (target significance); b (target slope)
3: (θ̃0, θ̃1) = DPStats(X,Y, n, ρ)

4: if θ̃0 = θ̃1 =⊥ then
5: return Fail to Reject the null
6: end if
7: Select K > 1/α
8: for k = 1 . . .K do
9: Sample slope sk ∼ P(θ̃0,θ̃1)

10: end for
11: Sort s(1) ≤ · · · ≤ s(K)

12: Set l = d(K + 1)(α/2)e
13: Set r = d(K + 1)(1− α/2)e
14: if b /∈ (s(l), s(r)) then
15: return Reject the null
16: else
17: return Fail to Reject the null
18: end if

Without privacy, by Lemma D.3, under the null hypothesis, we know that the slopes will be distributed

as the following distribution: β̂1 ∼ N
(
β,

σ2
e

n·σ̂2
x

)
∼ N

(
0,

σ2
e

n·σ̂2
x

)
. Even as n increases and as we

take fresh samples of β̂1, the parametric bootstrap confidence interval around β̂1 gets smaller and
more concentrated around the true value 0. We expect to observe similar behavior when applying DP.
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H Experimental Framework for Monte Carlo Evaluation

Compute Resources Used We run all our experiments on a MacBook Pro (13-inch, 2018) with
a 2.3GHz Quad-Core Intel Core i5 with 16GB Memory.6 In Algorithm 8, we present a generic
procedure showing how we obtain significance and power on our experimental evaluation of our
DP tests. EstimateRejectionProb is a meta-procedure that uses DataSampler to sample a dataset
D either from the null or alternative distribution we are testing. Then it runs MonteCarloTester to
decide whether to reject or fail to reject the null. MonteCarloTester can be any of the private Monte
Carlo tests defined above or their non-private versions. The fraction of times (amongst M trials) a
reject decision is returned is estimated and can be used to calculate the significance or the power of
the test.

DataSampler: This procedure is used to sample from a user-specified distribution for testing the
null or the alternative hypothesis. For example, for two groups (X1, Y1) and (X2, Y2) with slopes
β1 and β2 respectively, the user could specify β1 = β2 as parameters to the data sampler. Other
parameters include the size of the groups, the noise distribution in the dependent or independent
variable, and so on.

MonteCarloTester: Examples of this procedure are instantiations of Algorithm 3.

CompareAlgorithms: For user-specified data samplers and Monte Carlo test procedures, this
procedure (Algorithm 9) collates significance and power (to be plotted, for example).

Algorithm 8 EstimateRejectionProb: Meta-Procedure for Estimating significance and power.
1: Data: DataSampler; MonteCarloTester;M(#trials)
2: r = 0
3: for m = 1, . . . ,M do
4: D ← DataSampler()
5: if MonteCarloTester(D) = Reject the null then
6: r = r + 1
7: end if
8: end for
9:

10: // Compute empirical probability that the test rejects
11:
12: return r/M

Algorithm 9 CompareAlgorithms: Compares statistical performance of DP tests.
1: Data: DataSamplerList; MonteCarloTesterList;M(#trials)
2: R = []
3: for DataSampler ∈ DataSamplerList do
4: for MonteCarloTester ∈ MonteCarloTesterList do
5: e = EstimateRejectionProb(DataSampler,MonteCarloTester,M)
6: Append (DataSampler,MonteCarloTester,M, e) to R
7: end for
8: end for
9:

10: return R

6 The code for reproducing our results can be found in the anonymous Github repository: https://
gitfront.io/r/user-4848858/LVCyokZuDhSj/dplr/.
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