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Abstract

A central question in computational neuroscience is how structure determines
function in neural networks. Recent large-scale connectomic studies have started
to provide a wealth of structural information such as the distribution of excita-
tory/inhibitory cell and synapse types as well as the distribution of synaptic weights
in the brains of different species. The emerging high-quality large structural
datasets raise the question of what general functional principles can be gleaned
from them. Motivated by this question, we developed a statistical mechanical
theory of learning in neural networks that incorporates structural information as
constraints. We derived an analytical solution for the memory capacity of the
perceptron, a basic feedforward model of supervised learning, with constraint on
the distribution of its weights. Interestingly, the theory predicts that the reduction
in capacity due to the constrained weight-distribution is related to the Wasserstein
distance between the cumulative distribution function of the constrained weights
and that of the standard normal distribution. To test the theoretical predictions,
we use optimal transport theory and information geometry to develop an SGD-
based algorithm to find weights that simultaneously learn the input-output task and
satisfy the distribution constraint. We show that training in our algorithm can be
interpreted as geodesic flows in the Wasserstein space of probability distributions.
We further developed a statistical mechanical theory for teacher-student perceptron
rule learning and ask for the best way for the student to incorporate prior knowl-
edge of the rule (i.e., the teacher). Our theory shows that it is beneficial for the
learner to adopt different prior weight distributions during learning, and shows that
distribution-constrained learning outperforms unconstrained and sign-constrained
learning. Our theory and algorithm provide novel strategies for incorporating prior
knowledge about weights into learning, and reveal a powerful connection between
structure and function in neural networks.

1 Introduction

Learning and memory are thought to take place at the microscopic level by modifications of synaptic
connections. Unlike learning in artificial neural networks, synaptic plasticity in the brain operates
under structural biological constraints. Theoretical efforts to incorporate some of these constraints
have focused largely on the degree of connectivity [17, 35] and the constraints on the sign of the
synapses (Excitatory vs. Inhibitory) [4, 16], but few include additional features of synaptic weight
distributions observed in the brain [11]. More generally, recent large-scale connectomic studies
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[36, 59, 62] are beginning to provide a wealth of structural information of neuronal circuits at an
unprecedented scope and level of precision, which presents a remarkable opportunity for a more
refined theoretical study of learning and memory that takes into account these hitherto unavailable
structural information.

Perceptron [56] is arguably the simplest model of computation by single neuron and is the fundamental
building block for many modern neural networks. Despite the drastic oversimplification, studying the
computational properties of (binary and analog) perceptron has been used extensively in computational
neuroscience since its dawn, particularly in the cerebellum (as a model of sensory-motor association)
but also in cerebral cortex (for generic associative memory functions) [43, 2, 16, 18, 15, 14]. Forming
associations is considered an ‘atomic’ building block for generic cortical functions, and perceptron
memory capacity sets a tight bound on the memory capacity in recurrently connected neuronal
circuits with application to cortex and hippocampus [27, 55, 57]. Statistical mechanical analysis
predicts that near capacity, an unconstrained perceptron classifying random input-output associations
has normally distributed weights [29, 28, 21], see Fig.1(a). In contrast, physiological experiments
suggest that biological synapses do not change their excitatory/inhibitory identity during learning
(but see recent [33]). In order to take perceptron a step closer to biological realism, prior work has
imposed sign constraints during learning [4, 16]. In this case, the predicted weight distribution is a
delta-function centered at zero plus a half-normal distribution, see Fig.1(b). However, a wide range
of connectomic studies ranging from cortical circuits in animals [38, 32, 47, 74, 62, 40, 9], to human
cerebral cortex [47, 62] have shown evidence of lognormally distributed synaptic connections. As an
example, Fig.1(c) shows the weight connection distribution in mouse primary auditory cortex (data
adapted from [38]). Possible reasons for the ubiquitous lognormal distributions range from biological
structural/developmental constraints to computational benefits [64, 60]. Various potential mechanisms
for lognormal distributions have been proposed, from multiplicative gradient updates in feedforward
and recurrent networks[34, 40, 60], to mixture of additive and multiplicative plasticity rules in spiking
networks[30], but the majority of these proposals lead not just to lognormal distributions but also to
sparsification in the weights. Instead of adding yet another explanation to the computational origin
of lognormal distribution, here we take the observed weight distribution as a prior on the network
structure, and ask for its computational consequences. The goal of the paper is to present for the first
time a quantitative and qualitative theory of neural network learning performance under non-Gaussian
and general weight distributions (not limited to lognormal distributions).

In this paper, we combine two powerful tools: statistical mechanics and optimal transport theory,
and present a theory of perceptron learning that incorporates the knowledge of both distribution
and sign information as constraints, and gives accurate predictions for capacity and generalization
error. Interestingly, the theory predicts that the reduction in capacity due to the constrained weight-
distribution is related to the Wasserstein distance between the cumulative distribution function of
the constrained weights and that of the standard normal distribution. Along with the theoretical
framework, we also present a learning algorithm derived from information geometry that is capable
of efficiently finding viable perceptron weights that satisfy desired distribution and sign constraints.
This paper is organized as follows: in Section 2.1 we derive the perceptron capacity for classifying
random input-output associations using statistical mechanics, and illustrate our theory with a simple
example. In Section 3, we derive our learning algorithm using optimal transport theory, and show
that distribution of weights found by the learning algorithm coincide with geodesic distributions on
a Wasserstein statistical manifold, and therefore training can be interpreted as a geodesic flow. In
Section 4 we analyze a parameterized family of biologically realistic weight distributions, and use our
theory to predict the shape of the distribution with optimal parameters. We map out the experimental
parameter landscape for the estimated distribution of synaptic weights in mammalian cortex and
show that our theory’s prediction for optimal distribution is close to the experimentally measured
value. In Section 5 we further develop a statistical mechanical theory for teacher-student perceptron
rule learning and ask for the best way for the student to incorporate prior knowledge about the weight
distribution of the rule (i.e., the teacher). Our theory shows that it is beneficial for the learner to adopt
different prior weight distributions during learning.
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(a) (b) (c)

Figure 1: Theoretical and empirical synaptic weight distributions. (a)-(b) predicted distribution
following perceptron learning at capacity. (a) Normal distribution when learning is unconstrained. (b)
A delta-function plus a half-normal distribution when learning is sign-constrained. (c) Experimentally
measured synaptic weight distribution (mouse primary auditory cortex [38]).

2 Capacity

2.1 Learning under weight distribution constraints

We begin by considering a canonical learning problem: classifying random input-output associations
by a perceptron. In biological memory systems, the heavily correlated sensory data is undergoing
heavy preprocessing including massive decorrelations, and previous work on brain related perceptron
modeling [27, 16, 57] assumes similarly unstructured data. The data consists of pairs{ξµ, ζµ}Pµ=1,
where ξµ is an N -dimentional random vector drawn i.i.d. from a standard normal distribution,
p(ξµi ) = N (0, 1), and ζµ are random binary class labels with p(ζµ) = 1

2δ(ζ
µ + 1) + 1

2δ(ζ
µ − 1).

The goal is to find a hyperplane through the origin, described by a perceptron weight vector w ∈ RN ,
normalized to ||w||2 = N.

We call w a separating hyperplane when it correctly classifies all the examples with margin κ > 0:

ζµ
w · ξµ

||w||
≥ κ. (1)

We are interested in solutions w to Eqn.1 that obey a prescribed distribution constraint, wi ∼ q(w),
where q is an arbitrary probability density function. We further demand that ⟨w2⟩q(w) = 1 to fix the
overall scale of the distribution (since the task is invariant to the overall scale of w). Thus, the goal
of learning is to find weights that satisfy 1 with the additional constraint that the empirical density
function q̂(w) = 1

N

∑N
i δ(w − wi), formed by the learned weights is similar to q(w), and more

precisely that it converges to q(w) as N →∞ (see Section 2.2 below).

Extension of this setup that includes an arbitrary number of populations each satisfying its own
prescribed distribution constraints is discussed in Section 4 and in Appendix A.1.2. Note that the
sign constraint is a special case of this scenario with two synaptic populations: one excitatory and
one inhibitory. We further discuss the generalization of this setup to include biased inputs and sparse
labels in Appendix A.1.3.

2.2 Statistical mechanical theory of capacity

We are interested in the thermodynamic limit where P,N → ∞ , but the load α = P
N stays O(1).

This limit is amenable to mean-field analysis using statistical mechanics.

Following Gardner’s seminal work [29, 28], we consider the fraction V of viable weights that satisfies
both Eqn.1 and the distribution constraint q̂ = q, to all possible weights:

V =

�
dw
[∏P

µ=1 Θ
(
ζµw·ξµ

||w|| − κ
)]

δ(||w||2 −N)δ

( �
dk (q̂(k)− q(k))

)
�
dwδ(||w||2 −N)

. (2)
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Optimal 
Transport plan

Figure 2: An illustration of optimal transport from a standard normal distribution N (0, 1) to normal
distributions with nonzero mean N (

√
1− σ2, σ2). (a) A schematic of the space (M,W2) of proba-

bility distributions. (b) An example optimal transport plan from standard normal, p(x), to a normal
with σ = 0.5, q(w). The optimal transport plan T ∗ is plotted in between the distributions. T ∗ moves
p(x) units of probability mass x to location w, as indicated by the dashed line, and the colors are
chosen to reflect the amount of probability mass to be transported. (c) N (

√
1− σ2, σ2) interpolates

between standard normal (σ = 0) to a δ-function at 1 (σ = 1). (d) Capacity αc(κ = 0) as a function
of σ. Inset shows the W2 distance as a function of σ.

In Eqn.2, we impose the distribution constraint q̂ = q by demanding that in the thermodynamic
limit, all Fourier modes of q and q̂ are the same , i.e., that q(k) =

�
dweikwq(w) = q̂(k) =

1
N

∑N
i eikwi ,where in the last equality we have used the definition of empirical distribution. We

perform a quenched average over random patterns ξµ and labels ζµ. This amounts to calculating
⟨log V ⟩, which can be done using the replica trick [29, 28].

We focus on solutions with maximum margin κ at a given load α, or equivalently, the maximum load
capacity αc(κ) of separable patterns given margin κ. We proceed by assuming replica symmetry in
our mean field analysis, which in general might not hold because the constraint q̂ = q is non-convex.
For all the results presented in the main text, replica symmetry solution is supported by numerical
simulations. In Appendix A.5 we explore the validity of replica symmetric solutions in the case of
strongly bimodal distributions and show that they fail only very close to the binary (Ising) limit.

Detailed calculations of the mean-field theory are presented in Appendix A.1.1. Our mean-field
theory predicts that the reduction in capacity due to the distribution constraint is proportional to the
Jacobian of the transformation from w ∼ q(w) to a normally distributed variable x(w) ∼ N (0, 1),

αc(κ) = α0(κ)

〈
dw

dx

〉2

x

, (3)

where α0(κ) =
[�∞

−κ
Dt(κ+ t)2

]−1

is the capacity of an unconstrained perceptron, from Gardner
theory [29, 28], and κ = 0 reduces to the classical result of α0(0) = 2. The Jacobian factor,
⟨dw/dx⟩x, can be written in terms of the constrained distribution’s cumulative distribution function
(CDF), Q(w), and the standard normal CDF P (x) = 1

2

[
1 + Erf( x√

2
)
]
, namely,

〈
dw

dx

〉
x

=

� 1

0

duQ−1(u)P−1(u). (4)

Note that since the second moments are fixed to unity, 0 ≤
〈
dw
dx

〉
x
≤ 1 and it equals 1 iff p = q.

2.3 Geometrical interpretation of capacity

The jacobian factor Eqn.4 can be rewritten as〈
dw

dx

〉
x

= 1− 1

2
W2(Q,P )2, (5)
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where Wk (k = 2 in above) is the Wasserstein-k distance, given by

Wk(Q,P ) =

[� 1

0

du
(
Q−1(u)− P−1(u)

)k]1/k
. (6)

[In the following, we will make frequent use of both the probability density function (PDF), and the
cumulative distribution function (CDF). We distinguish them by using upper case letters for CDFs,
and lower case letters for PDFs.]

The Wasserstein distance measures the dissimilarity between two probability distributions, and is the
geodesic distance between points on the manifold of probability distributions [41, 25, 20]. Therefore,
we can interpret Eqn.3 as predicting that the reduction in memory capacity tracks the geodesic
distance we need travel from the standard normal distribution P to the target distribution Q (Fig.2(a)).

We demonstrate Eqn.3 and Eqn.5 with an instructive example. Let’s consider a parameterized family
of normal distributions, with the second moment fixed to 1: q(w) = N (

√
1− σ2, σ2), see Fig.2(c).

At σ = 1, q(w) is the standard normal distribution and we recover the unconstrained Gardner capacity
α0(κ = 0) = 2. As σ → 0, q(w) becomes a δ-function at 1 and αc(κ)→ 0 (Fig.2(c)).

As evident in this simple example, perceptron capacity is strongly affected by its weight distribution.
Our theory enables prediction of the shape of the distribution with optimal parameters within a
parameterized family of distributions. We apply our theory to a family of biologically plausible
distributions and compare our prediction with experimentally measured distributions in Section 4.

3 Optimal transport and the DisCo-SGD learning algorithm

Eqn.3 predicts the storage capacity for a perceptron with a given weight distribution, but it does not
specify a learning algorithm for finding a solution to this non-convex learning problem. Here we
present a learning algorithm for perceptron learning with a given weight distribution constraint. This
algorithm will also serve to test our theoretical predictions. For this purpose, we use optimal transport
theory to develop an SGD-based algorithm that is able to find max-margin solutions that obey the
prescribed distribution constraint. Furthermore, we show that training can be interpreted as traveling
along the geodesic connecting the current empirical distribution and the target distribution.

Stochastic gradient descent (SGD) on a cross-entropy loss has been shown to asymptotically converge
to max-margin solutions on separable data [63, 50]. Given data {ξµ, ζµ}Pµ=1, we use logistic
regression to predict class labels from our perceptron weights, ζ̂µ = σ(wt · ξµ),where σ(z) =

(1 + e−z)
−1 and wt is the weight at the t-th update. This defines an SGD update rule :

wt+δt
i ← wt

i − δt
∑
µ

ξµi (ζ̂
µ − ζµ), (7)

where the µ-summation goes from 1 to P for full-batch GD and goes from 1 to mini-batch size B for
mini-batches SGD (see Appendix A.4 for more details). The theory of optimal transport provides
a principled way of transporting each individual weight wt

i to a new value so that overall the new
set of weights satisfies the prescribed target distribution. In 1-D, the optimal transport plan T ∗ has
a closed-form solution in terms of the current CDF P and target CDF Q [66, 3]: T ∗ = Q−1 ◦ P ,
where ◦ denotes functional composition. We demonstrate the optimal transport map in Fig.2(b) for
the instructive example discussed in Section 2.3.

In order to apply T ∗ to transport our weights {wi} (omitting superscript t), we form the empirical
CDF Q̂(w) = 1

N

∑N
i=1 1wi≤w, which counts how many weights wi are observed below value w.

Then the new set of weights {ŵi} satisfying target CDF Q can be written as

ŵi = Q−1 ◦ Q̂(wi). (8)

We illustrate Eqn.8 in action in Table 1(b).
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(a) (b)

Table 1: Disco-SGD algorithm. (a) We perform alternating steps of gradient descent along the
cross-entropy loss (Eqn.7), followed by steps along the optimal transport direction (Eqn.9). (b) An
illustration of Eqn.8. For a given wi, we first compute its empirical CDF value Q̂(wi),then use the
inverse target CDF to transport wi to its new value, ŵi = Q−1

(
Q̂(wi)

)
.

(a) (b)

Figure 3: Intermediate distributions during learning are on the geodesic. (a) The solid histograms are
the intermediate distribution pt at different training time t from the DisCo-SGD algorithm, the dashed
lines are geodesic distributions pτ with the same W2 distance to the target distribution Q. From right
to left the training time advances, and the distributions transform further away from the δ-function
initialization, and approach the target distribution (a lognormal, in this example). (b) The geodesic
time τ as a function of the training time t. Location of the crosses correspond to the distributions
shown in (a).

However, performing such a one-step projection strongly interferes with the cross-entropy objective,
and numerically often results in solutions that do not perfectly classify the data. Therefore, it would
be beneficial to have an incremental update rule based on Eqn.8:

wτ+δτ
i ← wτ

i + δτ (ŵi − wτ
i ) , (9)

where we have used a different update time τ to differentiate with the cross-entropy update time t.

We present our complete algorithm in Table 1(a), which we named ‘Distribution-constrained SGD’
(DisCo-SGD) algorithm. In the DisCo-SGD algorithm, we perform alternating updates on Eqn.7 and
Eqn.9, and identify δt and δτ as learning rates η1 and η2. Note that in logistic regression, the norm
of the weight vector ||w|| is known to increase with training and the max-margin solution is only
recovered at ||w|| → ∞. In contrast, imposing a distribution constraint fixes the norm. Therefore, to
allow a variable norm, in Table 1 we include a trainable parameter β in our algorithm to serve as the
norm of the weight vector. This algorithm allows us to reliably discover linearly separable solutions
obeying the prescribed weight distribution Q.

Interestingly, Eqn.9 takes a similar form to geodesic flows in Wasserstein space. Given samples {wi}
drawn from the initial distribution P and {ŵi} drawn from the final distribution Q, samples {wτ

i }
from intermediate distributions Pτ along the geodesic can be calculated as wτ

(i) = (1−τ)w(i)+τŵ(i),
where subscript (i) denotes ascending order (see more in Appendix A.2). For intermediate perceptron
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Figure 4: Biologically-realistic distribution and parameter landscape. (a) Capacity (normalized by the
optimal value in the landscape) as a function of the lognormal parameters σE and σI . Experimental
value is shown in green with error bars, and optimal capacity is shown in red. (b)-(d) (theory from
Eqn.10 and simulations from DisCo-SGD): (b) Determination of capacity; (c) Max-margin κ at
different load α, which is the same as αc(κ); (d) Example weight distribution obtained in simulation.

weights wt found by our algorithm, we can compute its empirical distribution pt and compare with
theoretical distribution pτ along the geodesic with the same W2 distance to the target distribution (see
Appendix A.2 for how to calculate pτ ). In Fig.3(a), we show that indeed the empirical distributions
pt agree with the geodesic distributions pτ at geodesic time τ(t) (Fig.3(a)). The relation between the
geodesic time τ and the SGD update time t is shown in Fig.3(b). The interplay between the cross-
entropy objective and the distribution constraint is manifested in the rate at which the distribution
moves along the geodesic between the initial distribution and the target one.

4 Biologically-realistic distribution (E/I balanced lognormals) and
experimental landscape

In order to apply our theory to the more biologically-realistic cases, we generalize our theory from
a single prescribed distribution to an arbitrary number of input subpopulations each obeys its own
distribution. We consider a perceptron that consists of M synaptic populations wm indexed by m,
each constrained to satisfy its own weight distribution wm

i ∼ qm(wm). We denote the overall weight
vector as w ≡ {wm}Mm=1 ∈ RN×1, where the total number of weights is N =

∑M
m=1 Nm. In this

case, the capacity Eqn.3 is generalized to (See Appendix A.1.2 for detailed derivation):

αc(κ) = α0(κ)

[
M∑
m

gm

〈
dwm

dx

〉
x

]2
, (10)

where gm = Nm/N is the fraction of weights in this population. Eqn. 10 allows us to investigate
the parameter space of capacity with biologically-realistic distributions and compare with the experi-
mentally measured values. In particular, we are interested the case with two synaptic populations
that models the excitatory/inhibitory synpatic weights of a biological neuron, hence, m = E, I . We
model the excitatory/inhibitory synaptic weights as drawn from two separate lognormal distributions
(gI = 1− gE): wE

i ∼ 1√
2πσEwE

exp
{
− (lnwE−µE)2

2σ2
E

}
and wI

i ∼ 1√
2πσIwI

exp
{
− (lnwI−µI)

2

2σ2
I

}
.

We also demand that the mean synaptic weights satisfy the E/I balance condition [70, 71, 68, 69, 57,
48, 18] gE

〈
wE
〉
= gI

〈
wI
〉

as is often observed in cortex connectomic experiments [5, 73, 51, 53, 8].
With the E/I balance condition and fixed second moment, the capacity is a function of the lognormal
parameters σE and σI . In Fig.4(a) we map out the 2d parameter space of σE and σI using Eqn.10,
and find that the optimal choice of parameters which yields the maximum capacity solution is close
to the experimentally measured values in a recent connectomic studies in mouse primary auditory
cortex [38].

In order to test our theory’s validity on this estimated distribution of synaptic weights, we perform
DisCo-SGD simulation with model parameters σE and σI fixed to their experimentally measured
values. Both the capacity (Fig.4(b)), max-margin κ at different load (Fig.4(c)), and the empirical
weights found by the algorithm (Fig.4(d)) are in good agreement with our theoretical prediction.
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5 Generalization performance

5.1 Distribution-constrained learning as circuit inference

A central question in computational neuroscience is how underlying neural circuits determine its
computation. Recently, thanks to new parallelized functional recording technologies, simultaneous
recordings of the activity of hundreds of neurons in response to an ensemble of inputs are possible
[1, 12]. An interesting challenge is to infer the structural connectivity from the measured input-
output activity patterns. It is interesting to ask how are these stimuli-response relations related to the
underlying structure of the circuit [54, 39]. In the following, we try to adress this circuit reconstruction
task in a simple setup where a student perceptron tries to learn from a teacher perceptron [61, 22].
In this setup, the teacher is considered to be the underlying ground-truth neural circuit. The student
is attempting to infer the connection weights of this ground-truth circuit by observing a series of
input-output relations generated by the teacher. After learning is completed, one can assess the
faithfulness of the inference by comparing the teacher and student. The teacher-student setup is also
a well-known ‘toy model’ for studying generalization performance [42, 37, 44]. In this case since
the learning data are generated by the teacher, the overlap between teacher and student determines
the generalization performance of the learning. Here we ask to what extent prior knowledge of the
teacher weight distribution helps in learning the rule and how this knowledge can be incorporated in
learning. A similar motivation may arise in other contexts, in which there is a prior knowledge about
the weight distribution of an unknown target linear classifier.

Let’s consider the teacher perceptron, wt ∈ RN , drawn from some ground-truth distribution pt. Given
random inputs ξµ with p(ξµi ) = N (0, 1), we generate labels by ζµ = sgn(wt ·ξµ/||wt||+ηµ), where
ηµ is input noise and ηµ ∼ N (0, σ2). We task the student perceptron ws to find the max-margin
linear classifier for data {ξµ, ζµ}pµ=1: maxκ : ζµws · ξµ ≥ κ||ws||. Let’s define the teacher-student
overlap as

R =
ws ·wt

∥ws∥ ∥wt∥
, (11)

which is a measure the faithfulness of the circuit inference. The student’s generalization error is then
related to the overlap by εg = 1/π arccos

(
R/
√
1 + σ2

)
[61, 22].

As a baseline, let’s first consider a totally uninformed student (without any structural knowledge of
the teacher), learning from a teacher with a given (in particular non-Gaussian) weight distribution. In
this case, we can determine the overlap R (Eqn.11) as a function of load α by solving the replica
symmetric mean field self-consistency equations as in [61, 22]. An example of such learning for a
lognormal teacher distribution is shown in Fig.5(a) (‘unconstrained’) for the noiseless case (σ = 0).
Note that in the presence of noise in the labels (σ ̸= 0), α is bounded by αc(σ) , since max-margin
learning of separable data is assumed. The case with nonzero σ is presented in Appendix A.3.4. In
this unconstrained case, the student’s weight distribution evolves from a Gaussian for low α to one
which increasingly resembles the teacher distribution for large α (Fig.5(b)).

Next, we consider a student with information about the signs of the individual teacher weights. We
can apply this knowledge as a constraint and demand that the signs of individual student weights
agree with that of the teacher’s. The additional sign-constraints require a modification of replica
calculation in [61, 22], which we present in Appendix A.3.1. Surprisingly, we find both analytically
and numerically that if the teacher weights are not too sparse, the max-margin solution generalizes
poorly: after a single step of learning (with random input vectors), the overlap, R, drops substantially
from its initial value (see ‘sign-constrained’ in Fig.5(a)). The source of the problem is that, due to
the sign constraint, max-margin training with few examples yields a significant mismatch between
the student and teacher weight distributions. After only a few steps of learning, half of the student’s
weights are set to zero, and the student’s distribution, p(ws) = 1/2δ(0) + 1/

√
2π exp{−w2

s/4},
deviates significantly from the teacher’s distribution (see more in Appendix A.3.3). The discrepancy
between the teacher and student weight distributions therefore suggest that we should incorporate
distribution-constraint into learning.

8



(a) (b) (c)

Figure 5: Compare different learning paradigms. (a) Teacher-student overlap R , or equivalently
the generalization error εg = 1/π arccosR, as a function of load α in different learning paradigms.
Dashed lines are from theory, and dots are from simulation. Note that there is an initial drop of the
overlap in sign-constrained learning due to sparsification of weights. (b)-(c) The darker color curves
correspond to larger α, and dashed line is teacher distribution (same in both cases). (b) Distribution
of an unconstrained student evolves from normal distribution toward the teacher distribution. (c)
Optimal student prior evolves from a δ-function toward the teacher distribution.

5.2 Distribution-constrained learning outperforms unconstrained and sign-constrained
learning

Let’s consider the case that the student weight are constrained to some prior distribution qs(ws),
while the teacher obeys a distribution pt(wt),for an arbitrary pair qs, pt. We can write down the
Gardner volume Vg for generalization as in the capacity case (Eqn.2):

Vg =

�
dws

[∏P
µ=1 Θ

(
sgn
(

wt·ξµ

||wt|| + ηµ
)

ws·ξµ

||ws|| − κ
)]

δ(||ws||2 −N)δ

( �
dk (q̂(k)− q(k))

)
�
dwsδ(||ws||2 −N)

.

(12)

To obtain ensemble average of system over different realizations of the training set, we perform the
quenched average of log Vg over the patterns ξµ and teacher wt, and consider the thermodynamic
limit of N,P → ∞ and α = P

N stays O(1). We use the replica trick similar to [61, 22]. Overlap
R (Eqn.11) can be determined as a function of load α by solving the replica symmetric mean field
self-consistency equations in Appendix A.3.2. In this distribution-constrained setting, we can perform
numerical simulations with DisCo-SGD algorithm (Table 1) to find such weights and compare with
the predictions of our theory.

Now we ask if the student has a prior on the teacher’s weight distribution pt, whether incorporating
this knowledge in training will improve generalization performance. One might be tempted to
conclude that the optimal prior distribution the student should adopt is always that of the teacher’s,
i.e., qs = pt. We call this learning paradigm ‘fixed prior’, and show that its generalization performance
is better than that of the unconstrained and sign-constrained case (Fig.5(a)). However, instead of
using a fixed prior for the student, we can in fact choose the optimal prior distribution p∗s at different
load α. This presents a new learning paradigm we called ‘optimal prior’. In Fig.5(a), we show that
choosing optimal priors at different α achieves the overall best generalization performance compared
with all other learning paradigms. For a given parameterized family of distributions, our theory
provides a way to analytically obtain the optimal prior p∗s as a function of α (Fig.5(c)). Note that
unlike the unconstrained case (Fig.5(b)), the optimal prior starts from a δ-function at 1 at zero α, and
asymptotically approaches the teacher distribution pt as α→∞.

6 Summary and Discussion

We have developed a statistical mechanical framework that incorporates structural constraints (sign
and weight distribution) into perceptron learning. The synaptic weights in our perceptron learning
satisfy two key biological constraints: (1) individual synaptic signs are not affected by the learning
task (2) overall synaptic weights obey a prescribed distribution. These constraints may arise also in
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neuromorphic devices [31, 67]. Under the replica-symmetry assumption, we derived a novel form of
distribution-constrained perceptron storage capacity, which admits a simple geometric interpretation
of the reduction in capacity in terms of the Wasserstein distance between the standard normal
distribution and the imposed distribution. To numerically test our analytic theory, we used tools from
optimal transport and information geometry to develop an SGD-based algorithm, DisCo-SGD, in
order to reliably find weights that satisfy such prescribed constraints and correctly classify the data,
and showed that training with the algorithm can be interpreted as geodesic flows in the Wasserstein
space of distributions. It would be interesting to compare our theory and algorithm to [7, 58] where
the Wasserstein distance is used as an objective for training generative models. We applied our theory
to the biologically realistic case of of excitatory/inhibitory lognormal distributions that are observed
in the cortex, and found experimentally-measured parameters close to the optimal parameter values
predicted by our theory. We further studied input-output rule learning where the target rule is defined
in terms of a weighted sum of the inputs, and asked to what extent prior knowledge of the target
distribution may improve generalization performance. Using the teacher-student perceptron learning
setup, we showed analytically and numerically that distribution constrained learning substantially
enhances the generalization performance. In the context of circuit inference, distribution constrained
learning provides a novel and reliable way to recover the underlying circuit structure from observed
input-output neural activities. In summary, our work provides new strategies of incorporating
knowledge about weight distribution in neural learning and reveals a powerful connection between
structure and function in neural networks. Ongoing extensions of the present work include weight
distribution constraints in recurrent and deep architectures as well as testing against additional
connectomic databases.
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