
Supplementary Material

In this supplementary document we include additional results and analysis that showcase the robust-
ness of our proposed algorithms. More precisely, Section A contains definitions that were not formally
stated in the main manuscript, Section B contains additional experimental results that reinforce the
outperformance of the proposed algorithms relative to their benchmarks, Section C contains empirical
convergence results of the proposed algorithms, Section D describes a detailed convergence analysis
for Algorithm 3 in the form of a proof of Theorem 2 presented in the main manuscript, and Section
E describes a simple projected gradient descent algorithm for Subproblem (24) stated in the main
manuscript.

A Definitions

Definition 3 (Modularity) The modularity of a graph G [45] is defined as Q : G → R:

Q(G) , 1

2|E|
∑
i,j∈V

(
Wij −

didj
2|E|

)
1(ti = tj), (25)

where di is the weighted degree of the i-th node, ti is the type (or label) of the i-th node, and 1(·) is
the indicator function.

Definition 4 (Relative Error) The relative error between a ground truth matrix Btrue of edge weights
and its estimated version B? is defined as:

RE(Btrue,B
?) =

‖Btrue −B?‖F
‖Btrue‖F

. (26)

B Additional Experiments

B.1 S&P500 Stocks

We perform additional experiments considering log-returns of r = 362 stocks and q = 9 stock sectors
from Oct. 5th 2005 to Dec. 30th 2015, totalling n = 2577 observations. Figure 6 shows accuracy and
modularity measurements of the graphs learned in a rolling window basis. More precisely, we chose
a window of length 504 days (2 years in terms of stock market days) and we shift this window by 63
days (3 months in terms of stock market days). Likewise in the experiment described in the main
manuscript, we observe a sharp decline in accuracy and modularity for the proposed kSBG around
October 2008, which can be explained by the effect of the housing bubble crisis. Thus, our proposed
method may be able to capture events in financial networks, which can further be used to reduce risks
in financial tasks such as portfolio design.
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Figure 6: Measurements of accuracy and modularity between kSBG (Algorithm 3, proposed) and the
competing methods SGLA [14] and SOBG [12].

B.2 Synthetic Data

We perform an experiment with synthetic data in order to study the estimation error of the graph
learning algorithms as a function of the number of samples. To that end, we generate synthetic data
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from a multivariate Gaussian distribution, where the covariance matrix is set to be the pseudo-inverse
of the Laplacian matrix of a bipartite graph, i.e., x ∼ N

(
0,L†true

)
. Note that this setting is the

same as the one described in [14]. We set the number of nodes to be p = 110, where r = 100 and
q = 10. We then sample n observations from x, where we seek to measure the relative error (26)
between the ground truth Laplacian matrix, Ltrue, and its estimated version by different graph learning
methods. Figure 7 shows the average relative error for each sample size ratio (n/p) averaged over
100 realizations, where we can observe that GBG outperforms the competing methods for small and
medium sample size regimes. For large sample size (n/p ≥ 50), the methods present a statistically
similar performance.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n p

R
e

la
t
iv

e
 E

rr
o

r

2 4 10 50 100 250

SGA (benchmark)
SOBG (benchmark)
GBG (proposed)

Figure 7: Relative error versus sample size ratio for bipartite graph learning algorithms under
Gaussian settings. The shaded area around the solid curves represent the 1-sigma confidence interval
around the average.

C Empirical Convergence

In this section, we illustrate the empirical convergence performance of the proposed algorithms.
More precisely, we compute the augmented Lagrangian of Algorithm 3 and the objective functions of
Algorithms 1 and 2 while learning a graph with the whole data matrix X that contains p = 341 time
series with n = 1291 observations as described in the main manuscript. All the experiments were
carried out in a MacBook Pro 13in. 2019 with Intel Core i7 2.8GHz, 16GB of RAM.

Figures 8a, 8b, and 8c show the objective functions of Problems (8) and (15), and the Lagrangian
(19), respectively. In all cases, we observed a sharp improvement of the objective quantities in the
first few iterations, which suggests that the algorithms create efficient updates.

−160

−150

−140

−130

−120

0.03 0.10 0.30 1.00
CPU time [seconds]

O
bj

. F
un

ct
io

n

(a) Algorithm 1 (GBG).
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Figure 8: Empirical convergence of the proposed algorithms.
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D Proof of Theorem 2

Since Problem (18) contains nonconvex terms in both its objective function and constraints, the
convergence of Algorithm 3 is carefully analyzed and established through Theorem 2 in the main
manuscript. In the proof of Theorem 2, presented herein, we borrow ideas from recent convergence
results for the ADMM framework [50].

Proof To prove Theorem 2, we first establish the boundedness of the sequence
{(

Ll,Bl,Y l
)}

generated by Algorithm 3 in Lemma 5, and the monotonicity of Lρ
(
Ll,Bl,Y l

)
in Lemma 6.

Lemma 5 The sequence
{(

Ll,Bl,Y l
)}

generated by Algorithm 3 is bounded.

Proof Let B0 and Y 0 be the initial points of the sequences
{
Bl
}

and
{
Y l
}

, respectively, and∥∥B0
∥∥
F

and
∥∥Y 0

∥∥
F

are bounded. We prove the boundedness of the sequence by induction.

Recall that the sequence
{
Ll
}

is established by

Ll =
1

2ρ
Rl−1

(
Γl−1 +

√
(Γl−1)

2
+ 4ρI

)(
Rl−1)> , (27)

where Γl−1 contains the largest p−k eigenvalues of ρ

[
Ir −Bl−1

−
(
Bl−1)> Diag

((
Bl−1)> 1r

)]−Y l−1,

and Rl−1 contains the corresponding eigenvectors. When l = 1,
∥∥Γ0

∥∥
F

is bounded since both∥∥Bl−1
∥∥
F

and
∥∥Y l−1

∥∥
F

are bounded. Therefore, we can conclude that
∥∥L1

∥∥
F

is bounded.

Recall that the variable B satisfies the constraints B ≥ 0 and B1 = 1, thus B is in a compact set.
Therefore,

∥∥Bl
∥∥
F

and
∥∥V l

∥∥
F

are bounded for any l ≥ 1.

According to the dual variable update, we have

Y 1 = Y 0 − ρ

(
L1 −

[
Ir −B1

−
(
B1
)>

Diag
((

B1
)>

1r

)])
. (28)

We can see that
∥∥Y 1

∥∥
F

is bounded because of the boundedness of
∥∥L1

∥∥
F

and
∥∥B1

∥∥
F

. Therefore, it
holds for l = 1 that

{(
Ll,Bl,Y l

)}
is bounded.

Now we assume that
{(

Ll−1,Bl−1,Y l−1)} is bounded for some l ≥ 1, and check the boundedness
of
{(

Ll,Bl,Y l
)}

. Similarly to the proof in (27), we can obtain that
∥∥Ll∥∥

F
is bounded. We can

also obtain that
∥∥Y l

∥∥
F

is bounded according to the boundedness of
∥∥Ll∥∥

F
,
∥∥Bl

∥∥
F

and
∥∥Y l−1

∥∥
F

.
As a result,

{(
Ll,Bl,Y l

)}
is bounded, completing the induction. Therefore, we establish the

boundedness of the sequence
{(

Ll,Bl,Y l
)}

.

Lemma 6 The sequence Lρ
(
Ll,Bl,Y l

)
generated by Algorithm 3 is lower bounded, and

Lρ
(
Ll+1,Bl+1,Y l+1

)
≤ Lρ

(
Ll,Bl,Y l

)
, ∀ l ∈ N+, (29)

holds for any sufficiently large ρ.

Proof From expression (19) in the manuscript, we have that the augmented Lagrangian is written as

Lρ(L
l,Bl,Y l) =

p+ ν

n

n∑
i=1

log

(
1 +

hi + tr
(
BlGi

)
ν

)
− log det∗

(
Ll
)

+

〈
Ll −

[
Ir −Bl

−
(
Bl
)>

Diag
((

Bl
)>

1r

)]
,Y l

〉
+
ρ

2

∥∥∥∥∥Ll −
[

Ir −Bl

−
(
Bl
)>

Diag
((

Bl
)>

1r

)]∥∥∥∥∥
2

F

.

(30)
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We can see that the lower boundedness of the sequence Lρ
(
Ll,Bl,Y l

)
can be established by the

boundedness of
{(

Ll,Bl,Y l
)}

in Lemma 5.

We first establish that

Lρ
(
Ll+1,Bl,Y l

)
≤ Lρ

(
Ll,Bl,Y l

)
, ∀ l ∈ N+. (31)

We have

Lρ(L
l+1,Bl,Y l) =

p+ ν

n

n∑
i=1

log

(
1 +

hi + tr
(
BlGi

)
ν

)
− log det∗

(
Ll+1

)
+

〈
Ll+1 −

[
Ir −Bl

−
(
Bl
)>

Diag
((

Bl
)>

1r

)]
,Y l

〉
+
ρ

2

∥∥∥∥∥Ll+1 −

[
Ir −Bl

−
(
Bl
)>

Diag
((

Bl
)>

1r

)]∥∥∥∥∥
2

F

.

Then we obtain

Lρ(L
l+1,Bl,Y l)− Lρ(Ll,Bl,Y l)

=− log det∗
(
Ll+1

)
+
〈
Ll+1,Y l

〉
+
ρ

2

∥∥∥∥∥Ll+1 −

[
Ir −Bl

−
(
Bl
)>

Diag
((

Bl
)>

1r

)]∥∥∥∥∥
2

F

−

− log det∗
(
Ll
)
+
〈
Ll,Y l

〉
+
ρ

2

∥∥∥∥∥Ll −
[

Ir −Bl

−
(
Bl
)>

Diag
((

Bl
)>

1r

)]∥∥∥∥∥
2

F

 .

Note that Ll+1 minimizes the objective function

Ll+1 = arg min
rank(L)=p−k

L�0

−log det∗(L)+〈L,Y l〉+ρ
2

∥∥∥∥∥L−
[

Ir −Bl

−
(
Bl
)>

Diag
((

Bl
)>

1r

)]∥∥∥∥∥
2

F

. (32)

Therefore
Lρ(L

l+1,Bl,Y l)− Lρ(Ll,Bl,Y l) ≤ 0 (33)
holds for any l ∈ N+.

One has

Lρ(L
l+1,Bl,Y l)− Lρ(Ll+1,Bl+1,Y l+1)

=

〈
Ll+1 −

[
Ir −Bl

−
(
Bl
)>

Diag
((

Bl
)>

1r

)]
,Y l

〉
−

〈
Ll+1 −

[
Ir −Bl+1

−
(
Bl+1

)>
Diag

((
Bl+1

)>
1r

)]
,Y l+1

〉
︸ ︷︷ ︸

I1

+
ρ

2

∥∥∥∥∥Ll+1 −

[
Ir −Bl

−
(
Bl
)>

Diag
((

Bl
)>

1r

)]∥∥∥∥∥
2

F

− ρ

2

∥∥∥∥∥Ll+1 −

[
Ir −Bl+1

−
(
Bl+1

)>
Diag

((
Bl+1

)>
1r

)]∥∥∥∥∥
2

F

+
p+ ν

n

n∑
i=1

log

(
1 +

hi + tr
(
BlGi

)
ν

)
− p+ ν

n

n∑
i=1

log

(
1 +

hi + tr
(
Bl+1Gi

)
ν

)
. (34)

For the term I1, we have

I1 =

〈[
Ir −Bl+1

−
(
Bl+1

)>
Diag

((
Bl+1

)>
1r

)]− [ Ir −Bl

−
(
Bl
)>

Diag
((

Bl
)>

1r

)]
,Y l

〉

− ρ

∥∥∥∥∥Ll+1 −

[
Ir −Bl+1

−
(
Bl+1

)>
Diag

((
Bl+1

)>
1r

)]∥∥∥∥∥
2

F

,

(35)

where the equality follows from the updating of Y l+1 as below

Y l+1 = Y l − ρ

(
Ll+1 −

[
Ir −Bl+1

−
(
Bl+1

)>
Diag

((
Bl+1

)>
1r

)])
. (36)
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Recall that Bl+1 is a stationary point of the problem

minimize
B≥0,B1=1

p+ ν

n

n∑
i=1

log

(
1 +

hi + tr (BGi)

ν

)
+
ρ

2

∥∥∥∥Ll+1 −
[

Ir −B
−B> Diag

(
B>1r

)]∥∥∥∥2
F

−
〈[

Ir −B
−B> Diag

(
B>1r

)] ,Y l

〉
, (37)

The set of stationary points for the optimization (37) is defined by

X = {B | 〈∇gl(B), Z −B〉 ≥ 0, ∀Z ≥ 0,Z1 = 1} , (38)

where gl(w) is the objective function in (37). By taking Z = Bl and B = Bl+1 in (38), we obtain〈
∇gl(Bl+1),Bl −Bl+1

〉
=
〈
∇h(Bl+1),Bl −Bl+1

〉
+ ρ

〈
2Bl+1 + 1r1

>
r B

l+1,Bl −Bl+1
〉

+

〈[
Ir −Bl+1

−
(
Bl+1

)>
Diag

((
Bl+1

)>
1r

)]− [ Ir −Bl

−
(
Bl
)>

Diag
((

Bl
)>

1r

)]
,Y l + ρLl+1

〉
≥ 0,

(39)

where h(B) :=
p+ ν

n

∑n
i=1 log

(
1 +

hi + tr (BGi)

ν

)
.

Substituting (35) and (39) into (34), we obtain

Lρ
(
Ll+1,Bl,Y l

)
− Lρ

(
Ll+1,Bl+1,Y l+1

)
≥ ρ

2

∥∥∥B̃l+1 − B̃l
∥∥∥2
F

− Lh
2

∥∥Bl+1 −Bl
∥∥2
F
− 1

ρ

∥∥Y l+1 − Y l
∥∥2
F
, (40)

where B̃l :=

[
Ir −Bl

−
(
Bl
)>

Diag
((

Bl
)>

1r

)], and the inequality follows from the fact that h(B) is

a concave function and has Lh-Lipschitz continuous gradient where Lh > 0 is a constant, and thus
we obtain

h
(
Bl
)
− h

(
Bl+1

)
−
〈
∇h
(
Bl+1

)
,Bl −Bl+1

〉
≥ −Lh

2

∥∥Bl+1 −Bl
∥∥2
F
. (41)

By calculation, we obtain that if ρ is sufficiently large such that

ρ ≥ max

(
Lh,max

l

2
∥∥Y l+1 − Y l

∥∥
F

‖Bl+1 −Bl‖F

)
, (42)

then we have
Lρ
(
Ll+1,Bl,Y l

)
− Lρ

(
Ll+1,Bl+1,Y l+1

)
≥ 0. (43)

Together with (33) and (43), we conclude that

Lρ
(
Ll,Bl,Y l

)
≥ Lρ

(
Ll+1,Bl,Y l

)
≥ Lρ

(
Ll+1,Bl+1,Y l+1

)
, (44)

for any l ∈ N+.

Now we are ready to prove Theorem 2. By Lemma 5, the sequence
{(

Ll,Bl,Y l
)}

is bounded.
Therefore, there exists at least one convergent subsequence

{(
Lls ,Bls ,Y ls

)}
s∈N

, which converges
to a limit point denoted by

{(
Ll∞ ,Bl∞ ,Y l∞

)}
. By Lemma 6, we obtain that Lρ

(
Ll,Bl,Y l

)
is monotonically decreasing and lower bounded, and thus is convergent. Note that the function
log det∗(Θ) is continuous over the set of p-dimensional positive semidefinite matrices of rank p− k,
i.e.,

{
L ∈ Sp+ | rank(L) = p− k

}
.

We can then obtain

lim
l→+∞

Lρ
(
Ll,Bl,Y l

)
= Lρ (L

∞,B∞,Y ∞) = Lρ
(
Ll∞ ,Bl∞ ,Y l∞

)
.
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Then, (40), (42) and (44) together yields

Lρ(L
l,Bl,Y l)− Lρ(Ll+1,Bl+1,Y l+1) ≥ ρ

∥∥∥∥∥Ll+1 −

[
Ir −Bl+1

−
(
Bl+1

)>
Diag

((
Bl+1

)>
1r

)]∥∥∥∥∥
2

F

.

(45)
Thus, we obtain

lim
l→+∞

∥∥∥∥∥Ll −
[

Ir −Bl

−
(
Bl
)>

Diag
((

Bl
)>

1r

)]∥∥∥∥∥
F

= 0. (46)

Obviously,

∥∥∥∥∥Lls −
[

Ir −Bls

−
(
Bls

)>
Diag

((
Bls

)>
1r

)]∥∥∥∥∥
F

→ 0 also hold for any subsequence as

s → +∞, which implies that Y l∞ satisfies the condition of the stationary point of Lρ(L,B,Y )
with respect to Y . Following from (36), we obtain

lim
l→+∞

∥∥Y l+1 − Y l
∥∥
F
= 0. (47)

Together with (40), we obtain
lim

l→+∞

∥∥Bl+1 −Bl
∥∥
F
= 0. (48)

Let
{(

Ll∞ ,Bl∞ ,Y l∞
)}

be the limit point of any subsequence
{(

Lls ,Bls ,Y ls
)}
s∈N

. Following
from (47) and (48), we obtain that Ll∞ minimizes the following subproblem

Ll∞ = arg min
rank(L)=p−k

L�0

− log det∗(L)+
〈
L,Y l∞

〉
+
ρ

2

∥∥∥∥∥L−
[

Ir −Bl∞

−
(
Bl∞

)>
Diag

((
Bl∞

)>
1r

)]∥∥∥∥∥
2

F

.

Therefore, we conclude that Ll∞ satisfies the condition of stationary point of Lρ(L,B,Y ) with
respect to L. Similarly, Bl∞ is the stationary point of the following problem

minimize
B≥0,B1=1

p+ ν

n

n∑
i=1

log

(
1 +

hi + tr (BGi)

ν

)
+
ρ

2

∥∥∥∥Ll∞ − [ Ir −B
−B> Diag

(
B>1r

)]∥∥∥∥2
F

−
〈[

Ir −B
−B> Diag

(
B>1r

)] ,Y l∞

〉
.

As a result, Bl∞ satisfies the condition of stationary point of Lρ(L,B,Y ) with respect to B.

To sum up, we can conclude that any limit point
{(

Ll∞ ,Bl∞ ,Y l∞
)}

of the sequence generated by
Algorithm 3 is a stationary point of Lρ(L,B,Y ).

E A PGD Algorithm for Subproblem (24)

One of the steps of Algorithm 3 involves solving a strongly convex problem described in Subproblem
(24) in the main manuscript. While using convex solvers is a viable alternative, it may be more
efficient to use a custom algorithm. Here we present a simple yet efficient PGD algorithm to solve
Subproblem (24).

Let g(B) , tr
(
B
(
H +M j

))
+ ρ ‖B‖2F + ρ

21>r BB>1r be the objective function of Subproblem

(24), its gradient is given as ∇g(B) =
(
H +M j

)>
+ ρ

(
2Ir + 11>

)
B. Then, the PGD iterates

can be written as
Bj+1 = arg min

B≥0,B1q=1r

∥∥B − (Bj − αj∇g(Bj)
)∥∥2

F
, (49)

where αj is the learning rate, which can be updated using backtracking line search rules such as the
one presented in (11) in the main manuscript. Problem (49) is an Euclidean projection of the rows of
Bj − αj∇g(Bj) onto the probability simplex. The unique solution to Problem (49) can be found
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efficiently via several algorithms [35–37] whose theoretical worst-case complexity is O(rq2) but the
observed practical complexity is O(rq) [38].

Since the objective function of Subproblem (24) is strongly convex and its feasible set is compact,
the PGD iterates converge to the global solution of Subproblem (24) [32].
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