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Abstract

Transformation invariances are present in many real-world problems. For example,
image classification is usually invariant to rotation and color transformation: a
rotated car in a different color is still identified as a car. Data augmentation, which
adds the transformed data into the training set and trains a model on the augmented
data, is one commonly used technique to build these invariances into the learning
process. However, it is unclear how data augmentation performs theoretically and
what the optimal algorithm is in presence of transformation invariances. In this
paper, we study PAC learnability under transformation invariances in three settings
according to different levels of realizability: (i) A hypothesis fits the augmented
data; (ii) A hypothesis fits only the original data and the transformed data lying in
the support of the data distribution; (iii) Agnostic case. One interesting observation
is that distinguishing between the original data and the transformed data is nec-
essary to achieve optimal accuracy in setting (ii) and (iii), which implies that any
algorithm not differentiating between the original and transformed data (including
data augmentation) is not optimal. Furthermore, this type of algorithms can even
“harm” the accuracy. In setting (i), although it is unnecessary to distinguish between
the two data sets, data augmentation still does not perform optimally. Due to such
a difference, we propose two combinatorial measures characterizing the optimal
sample complexity in setting (i) and (ii)(iii) and provide the optimal algorithms.

1 Introduction

Transformation invariances are present in many real-world learning problems. That is, given a certain
set of transformations, the label of an instance is preserved under any transformation from the set.
Image classification is often invariant to rotation/flip/color translation. Syntax parsing is invariant to
exchange of noun phrases in a sentence. Such invariances are often built into the learning process by
two ways. One is designing new architectures in neural networks to learn a transformation invariant
feature, which is usually task-specific and challenging. A more universally applicable and easier way
is data augmentation (DA)1, that is, adding the transformed data into the training set and training a
model with the augmented data. Although DA performs well empirically, it is unclear whether and
when DA “helps”. In this paper, we focus on answering two questions:

1Throughout the paper, we refer to ERM over the augmented data by DA.
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How does data augmentation perform theoretically?

What is the optimal algorithm in terms of sample complexity under transformation invariances?

We formalize the problem of binary classification under transformation invariances in the PAC model.
Given instance space X , label space Y = {0, 1}, and hypothesis class H, we consider the following
three settings according to different levels of realizability.

(i) Invariantly realizable setting: There exists a hypothesis h⇤
2 H such that h⇤ can correctly

classify not only the natural data (drawn from the data distribution) but also the transformed
data. For example, considering the transformation of rotating images where all natural
images are upright, the hypothesis h⇤ can correctly classify every upright image (natural
data) and their rotations (transformed data).

(ii) Relaxed realizable setting: There exists a hypothesis h⇤
2 H such h⇤ has zero error over the

support of the data distribution (and therefore will correctly classify the transformed data
that lies in the support of the data distribution), but h⇤ may not correctly classify transformed
data that lies outside the support of the natural data distribution. For example, there exists
an h⇤ classifying all small rotations that lie in the support of the distribution correctly, but
misclassifying upside-down cars.

(iii) Agnostic setting: Every hypothesis in H might not fit the natural data.

In most of this work, we consider the case where the set of transformations forms a group (e.g., all
rotations and all color translations), which is a classic setting studied in literature (e.g., Cohen and
Welling, 2016; Bloem-Reddy and Teh, 2020; Chen et al., 2020). Some algorithms and analyses in
this work also apply to non-group transformations (e.g., croppings).

Main contributions First, we show that DA outperforms vanilla ERM but is sub-optimal in setting
(i) above. We then introduce a complexity measure (see Definition 4) that characterizes the optimal
sample complexity of learning in setting (i), and we give an optimal (up to log-factors) algorithm
in this setting based on 1-inclusion-graph predictors. Second, we characterize the complexity of
learning in setting (ii) when the learner only receives the augmented data (without specifying which
are natural). Such a characterization provides us with a sufficient condition under which DA "hurts".
Third, we introduce a complexity measure (see Definition 5) that characterizes the optimal sample
complexity of learning in settings (ii) and (iii) above, and we give optimal algorithms for these
settings. Finally, we also provide adaptive learning algorithms that interpolate between settings (i)
and (ii), i.e., when h⇤ is partially invariant. We want to emphasize that our complexity measures
take into account the complexity of both the hypothesis class H and the set of transformations being
considered. The results are formally summarized in Section 3.

Related work Theoretical guarantees of DA has received a lot of attention recently. Chen et al.
(2020); Lyle et al. (2020) study theoretical guarantees of DA under the assumption of “equality”
in distribution, i.e., for any transformation in the transformation group, the data distribution of
the transformed data is approximately the same as that of the natural data (e.g., the upside-down
variations of images happen at the same probability as the original upright images). Under this
assumption, they show that DA reduces variance and induces better generalization error upper bounds.
Our work does not make such an assumption. Dao et al. (2019) models augmentation as a Markov
process and shows that for kernel linear classifiers, DA can be approximated by first-order feature
averaging and second-order variance regularization components. The concurrent work by Shen et al.
(2022) studies the benefit of DA when training a two layer convolutional neural network in a specific
multi-view model, showing that DA can alter the relative importance of various features. There is a
line of theoretical study on the invariance gain in different models. For example, Elesedy and Zaidi
(2021) study the linear model and Elesedy (2021); Mei et al. (2021); Bietti et al. (2021) study the
non-parametric regression. The concurrent work by Elesedy (2022) also studies PAC learning under
transformation invariances but only provides an upper bound on the sample complexity, while our
work provides a complete characterization of learning under this model with optimal algorithms.
There is a parallel line of theoretical study on architecture design (e.g., Wood and Shawe-Taylor,
1996; Ravanbakhsh et al., 2017; Kondor and Trivedi, 2018; Bloem-Reddy and Teh, 2020).

Learning under transformation invariances has also been studied a lot empirically. Here we briefly
mention a few results. DA has been applied as standard method in modern deep learning, e.g.,
in Alexnet (Krizhevsky et al., 2012). Gontijo-Lopes et al. (2020) proposes two measures, affinity
and diversity, to quantify the performance of the existing DA methods. Fawzi et al. (2016); Cubuk
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et al. (2018); Chatzipantazis et al. (2021) study how to automatically search for improved data
augmentation policies. For architecture design, one celebrated example is convolutions (Fukushima
and Miyake, 1982; LeCun et al., 1989), which are translation equivariant. See Cohen and Welling
(2016); Dieleman et al. (2016); Worrall et al. (2017) for more different architectures invariant or
equivariant to different symmetries.

Another line of related work is adversarial training, which adds the perturbed data into the training set
and can be considered as a special type of data augmentation. Raghunathan et al. (2019); Schmidt et al.
(2018); Nakkiran (2019) study the standard accuracy of adversarial training and provide examples
showing that adversarial training can sometimes “harm” standard accuracy.

Notation For any n 2 N, let e1, e2, . . . denote the standard basis vectors in Rn. For any set V
and any v 2 V

n, let v�i = (v1, . . . , vi�1, vi+1, . . . , vn) 2 V
n�1 denote the remaining part of

v after removing the i-th entry and (v0,v�i) = (v1, . . . , vi�1, v0, vi+1, . . . , vn) 2 V
n denote the

vector after replacing i-th entry of v with v0 2 V . Let � denote the bitwise XOR operator. For
any h 2 Y

X and X = {x1, . . . , xn} ⇢ X , denote h|X = (h(x1), . . . , h(xn)) the restriction of h
on X . A data set or a sample is a multiset of X ⇥ Y . For any sample S, let SX = {x|(x, y) 2 S}
(with multiplicity) and for any distribution D over X ⇥ Y , for (x, y) ⇠ D, let DX denote the
marginal distribution of x. For any data distribution D and any hypothesis h, the expected error
errD(h) := Pr(x,y)⇠D(h(x) 6= y). Denote err(h) = errD(h) when D is clear from the context. For
any sample S of finite size, errS(h) := 1

|S|

P
(x,y)2S

1[h(x) 6= y]. For any sample S of possibly of
infinite size, we say errS(h) = 0 if h(x) = y for all (x, y) 2 S.

2 Problem setup

We study binary classification under transformation invariances. We denote by X the instance space,
Y = {0, 1} the label space and H the hypothesis class.

Group transformations We consider a group G of transformations acting on the instance space
through a mapping ↵ : G ⇥ X 7! X , which is compatible with the group operation. For convenience,
we write ↵(g, x) = gx for g 2 G and x 2 X . For example, consider G = {e, g1, g2, g3} where e
is the identify function and gi is rotation by 90i degrees. Given an image x, ex = x is the original
image and g1x is the image rotated by 90 degrees. The orbit of any x 2 X is the subset of X that can
be obtained by acting an element in G on x, Gx := {gx|g 2 G}. Note that since G is a group, for any
x0

2 Gx, we have Gx0 = Gx. Thus we can divide the instance space X into a collection of separated
orbits, which does not depend on the data distribution. Given a (natural) data set S ⇢ X ⇥Y , we call
GS := {(gx, y)|(x, y) 2 S, g 2 G} the augmented data set.

Transformation invariant hypotheses and distributions To model transformation invariance,
we assume that the true labels are invariant over the orbits of natural data. Formally, for any
transformation group G and X ⇢ X , we say a hypothesis h is (G, X)-invariant if

h(gx) = h(x), 8g 2 G, x 2 X .

That is to say, for every x 2 X , h predicts every instance in the orbit of x the same as x. For any
marginal distribution DX over X , we say a hypothesis h is (G,DX )-invariant if h(gx) = h(x) for all
g 2 G, for all x 2 supp(DX ), i.e., Prx⇠DX

(9x0
2 Gx : h(x0) 6= h(x)) = 0. We say a distribution

D over X ⇥ Y is G-invariant if there exists a (G,DX )-invariant hypothesis f⇤ (possibly not in H)
with errD(f⇤) = 0. We assume that the data distribution is G-invariant throughout the paper.

Realizability of hypothesis class We consider three settings according to the different levels of
realizability of H: (i) invariantly realizable setting, where there exists a (G,DX )-invariant hypothesis
h⇤

2 H with errD(h⇤) = 0; (ii) relaxed realizable setting, where there exists a (not necessarily
(G,DX )-invariant) hypothesis h⇤

2 H with errD(h⇤) = 0; and (iii) agnostic setting, where there
might not exist a hypothesis in H with zero error. To understand the difference among the three
settings, here is an example.
Example 1. Consider X = {±1,±2}, G = {e,�e} being the group generated by flipping the sign

(i.e., Gx = {x,�x}), and the data distribution D being the uniform distribution over {(1, 0), (2, 0)}.

If H = {h(·) = 0} contains only the all-zero function, then it is in setting (i) as h(·) = 0 is

(G,DX )-invariant and errD(h) = 0; If H = {1[x < 0]} contains only the hypothesis predicting

{�1,�2} as 1 and {1, 2} as 0, then it is in setting (ii) as 1[x < 0] is not (G,DX )-invariant but

errD(1[x < 0]) = 0; If H = {1[x > 0]}, it is in setting (iii) as no hypothesis in H has zero error.
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The following definitions formalize the notion of PAC learning in the three settings.
Definition 1 (Invariantly realizable PAC learnability). For any ✏, � 2 (0, 1), the sample complexity

of invariantly realizable (✏, �)-PAC learning of H with respect to transformation group G, denoted

MINV(✏, �;H,G), is defined as the smallest m 2 N for which there exists a learning rule A such

that, for every G-invariant data distribution D over X ⇥ Y where there exists a (G,DX )-invariant

predictor h⇤
2 H with zero error, errD(h⇤) = 0, with probability at least 1� � over S ⇠ D

m
,

errD(A(S))  ✏ .

If no such m exists, define MINV(✏, �;H,G) = 1. We say that H is PAC learnable in the invariantly

realizable setting with respect to transformation group G if 8✏, � 2 (0, 1), MINV(✏, �;H,G) is finite.

For any algorithm A, denote by MINV(✏, �;H,G,A) the sample complexity of A.

Definition 2 (Relaxed realizable PAC learnability). For any ✏, � 2 (0, 1), the sample complexity

of relaxed realizable (✏, �)-PAC learning of H with respect to transformation group G, denoted

MRE(✏, �;H,G), is defined as the smallest m 2 N for which there exists a learning rule A such that,

for every G-invariant data distribution D over X ⇥ Y where there exists a predictor h⇤
2 H with

zero error, errD(h⇤) = 0, with probability at least 1� � over S ⇠ D
m

,

errD(A(S))  ✏ .

If no such m exists, define MRE(✏, �;H,G) = 1. We say that H is PAC learnable in the relaxed

realizable setting with respect to transformation group G if 8✏, � 2 (0, 1), MRE(✏, �;H,G) is finite.

For any algorithm A, denote by MRE(✏, �;H,G,A) the sample complexity of A.

Definition 3 (Agnostic PAC learnability). For any ✏, � 2 (0, 1), the sample complexity of agnostic

(✏, �)-PAC learning of H with respect to transformation group G, denoted MAG(✏, �;H,G), is defined

as the smallest m 2 N for which there exists a learning rule A such that, for every G-invariant data

distribution D over X ⇥ Y , with probability at least 1� � over S ⇠ D
m

,

errD(A(S))  inf
h2H

errD(h) + ✏ .

If no such m exists, define MAG(✏, �;H,G) = 1. We say that H is PAC learnable in the agnostic

setting with respect to transformation group G if 8✏, � 2 (0, 1), MAG(✏, �;H,G) is finite.

Data augmentation One main goal of this work is to analyze the sample complexity of data
augmentation. When we talk of data augmentation (DA) as an algorithm, it actually means ERM over
the augmented data. Specifically, given a fixed loss function L mapping a data set and a hypothesis
to [0, 1], and a training set Strn, DA outputs an h 2 H such that h(x) = y for all (x, y) 2 GStrn if
there exists one; outputs a hypothesis h 2 H with the minimal loss L(GStrn, h) otherwise. When we
say DA without specifying the loss function, it means DA w.r.t. an arbitrary loss function, which can
be defined based on any probability measure on the transformation group.

To characterize sample complexities, we define two measures as follows.
Definition 4 (VC dimension of orbits). The VC dimension of orbits, denoted VCo(H,G), is defined

as the largest integer k for which there exists a set X = {x1, . . . , xk} ⇢ X such that their orbits

are pairwise disjoint, i.e., Gxi \ Gxj = ;, 8i, j 2 [k] and every labeling of X is realized by a

(G, X)-invariant hypothesis in H, i.e., 8y 2 {0, 1}k, there exists a (G, X)-invariant hypothesis

h 2 H s.t. h(xi) = yi, 8i 2 [k].

Definition 5 (VC dimension across orbits). The VC dimension across orbits, denoted VCao(H,G),
is defined as the largest integer k for which there exists a set X = {x1, . . . , xk} ⇢ X such that their

orbits are pairwise disjoint, i.e., Gxi \ Gxj = ;, 8i, j 2 [k] and every labeling of X is realized by a

hypothesis in H, i.e., 8y 2 {0, 1}k, there exists a hypothesis h 2 H s.t. h(xi) = yi, 8i 2 [k].

Let VCdim(H) denote the VC dimension of H. By definition, it is direct to check that VCo(H,G) 
VCao(H,G)  VCdim(H). For any H,G with VCo(H,G) = d, we can supplement H to a new
hypothesis class H0 such that VCo(H0,G) is still d while VCao(H0,G) is as large as the total number
of orbits with at least two instances, i.e., VCao(H0,G) = |{Gx| |Gx| � 2, x 2 X}|. This can be
done by supplementing H with all hypotheses predicting Gx with two different labels for all x with
|Gx| � 2. Besides, for any H with VCdim(H) = d, we can construct a transformation group G to
make all instances lie in one single orbit, which makes VCao(H,G)  1. Hence the gap among the
three measures can be arbitrarily large. Here are a few examples for better understanding of the gaps.

4



Example 2. Consider X = {±1,±2, . . . ,±2d} for some d > 0 , H = {1[x 2 A]|A ⇢

[2d] and |A| = d} being the set of all hypotheses labeling exact d elements from [2d] as 1 and

G = {e,�e} being the group generated by flipping the sign. Then we have VCo(H,G) = 0 since for

any i 2 [2d], there is no (G, {i})-invariant hypothesis that can label i as 1 (which is due to the fact that

�i is labeled as 0 by any hypothesis in H). It is direct to check that VCao(H,G) = VCdim(H) = d.

Example 3. Consider X = {x 2 R2
| kxk2 = 1} being a circle, the hypothesis class H = {0, 1}X

being all labeling functions and G being all rotations (thus 8x,Gx = X ). Then we have VCo(H,G) =
VCao(H,G) = 1 as there is only one orbit and VCdim(H) = 1.

Example 4. Consider the natural data being k upright images and the transformation set G is

rotation by 0, 360/n, 2 · 360/n, . . . , (n� 1) · 360/n degrees for some integer n. For an expressive

hypothesis class H (e.g., neural networks) that can shatter all rotated versions of these images, we

have VCdim(H) = nk and VCo(H,G) = VCao(H,G) = k. For a hypothesis class H
0

composed

of all hypotheses labeling all upright images and their upside-down variations differently, we have

VCdim(H0) = (n� 1)k, VCao(H0,G) = k and VCo(H0,G) = 0.

3 Main results

We next present and discuss our main results.

• Invariantly realizable setting (Definition 1)
– DA “helps” but is not optimal. The sample complexity of DA is characterized by
VCao(H,G). For any H,G, DA can learn H with sample complexity eO(VCao(H,G)

✏
+ 1

✏
log 1

�
),

where eO ignores log-factors of VCao(H,G)
✏

(Theorem 1). For all d > 0, there exists H,G with
VCao(H,G) = d and VCo(H,G) = 0 such that DA needs ⌦(d

✏
) samples (Theorem 2).

– The optimal sample complexity is characterized by VCo(H,G). For any H,G, we have
⌦(VCo(H,G)

✏
+ 1

✏
log 1

�
)  MINV(✏, �;H,G)  O(VCo(H,G)

✏
log 1

�
) (Theorem 4). We propose

an algorithm achieving this upper bound based on 1-inclusion graphs, which does not distinguish
between the original and transformed data. It is worth noting that the algorithm takes the
invariance over the test point into account, which provides some theoretical justification for
test-time adaptation such as Wang et al. (2021).

• Relaxed realizable setting (Definition 2)
– DA can “hurt”. DA belongs to the family of algorithms not distinguishing the original data from

the transformed data. We show that the optimal sample complexity of this family is characterized
by µ(H,G) (see Definition 6) (Theorem 5), which can be arbitrarily larger than VCdim(H).
This implies that for any H,G with µ(H,G) > VCdim(H), the sample complexity of DA is
higher than that of ERM.

– The optimal sample complexity is characterized by VCao(H,G). For any H,G, we have
⌦(VCao(H,G)

✏
+ log(1/�)

✏
)  MRE(✏, �;H,G)  eO(VCao(H,G)

✏
+ 1

✏
log 1

�
) (Theorem 7). We

propose two algorithms achieving similar upper bounds, with one based on ERM and one
based on 1-inclusion graphs. Both algorithms have to distinguish between the original and the
transformed data.

– An adaptive algorithm interpolates between two settings. We present an algorithm that
adapts to different levels of invariance of the target function h⇤, which achieves eO(VCao(H,G)

✏
)

sample complexity in the relaxed realizable setting and eO(VCo(H,G)
✏

) sample complexity in the
invariantly realizable setting without knowing it (Theorem 9 in Appendix).

• Agnostic setting (Definition 3)
– The optimal sample complexity is characterized by VCao(H,G). For any H,G,
MAG(✏, �;H,G) = O

⇣
VCao(H,G)

✏2
log2

⇣
VCao(H,G)

✏

⌘
+ 1

✏2
log( 1

�
)
⌘

(Theorem 8). Since
MAG(✏, �;H,G) � MRE(✏, �;H,G), VCao(H,G) characterizes the optimal sample complex-
ity.

4 Invariantly Realizable setting

In this section, we discuss the results in the invariantly realizable setting (see Definition 1).
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4.1 DA “helps” but is not optimal

We show that in the invariantly realizable setting, DA indeed “helps” to improve the sample complexity
from eO(VCdim(H)

✏
) (the sample complexity of ERM in standard PAC learning) to eO(VCao(H,G)

✏
).

First, we have the following upper bound on the sample complexity of DA.
Theorem 1. For any H,G with VCao(H,G) < 1, DA satisfies that MINV(✏, �;H,G,DA) =

O(VCao(H,G)
✏

log3 VCao(H,G)
✏

+ 1
✏
log 1

�
).

Intuitively, for a set of instances in one orbit that can be labeled by H in multiple ways, we only need
to observe one instance from this orbit to learn the labels of all the instances by applying DA. Thus,
DA helps to improve the accuracy. The detailed proof is deferred to Appendix A. However, DA does
not fully exploit the transformation invariances as it only utilizes the invariances of the training set.
Hence, DA does not perform optimally in presence of the transformation invariances. In fact, besides
DA, all proper learners (i.e., learners outputting a hypothesis in H) have the same problem.
Theorem 2. For any d > 0, there exists a hypothesis class Hd and a group Gd with VCao(Hd,Gd) =
d and VCo(Hd,Gd) = 0 such that MINV(✏,

1
9 ;Hd,Gd,A) = ⌦(d

✏
) for any proper learner A,

including DA and standard ERM.

The theorem shows that DA is sub-optimal as we will show that the optimal sample complexity is
characterized by VCo(H,G) in Theorem 4. We provide an idea of the construction here and defer
the detailed proof to Appendix B. Consider the X , H and G in Example 2. Pick the target function
1[x 2 A] uniformly at random from H and let the data distribution only put probability mass on
points in [2d] \A, the orbits of which are labeled as 0 by the target function. Then any proper learner
must predict d unobserved examples of [2d] as 1, which leads to high error if the learner observes
fewer than d/2 examples. Theorem 2 also implies that for any hypothesis class including H as a
subset, there exists a DA learner (i.e., a proper learner fitting the augmented data) whose sample
complexity is ⌦(d

✏
).

Theorem 1 shows that the sample complexity of DA is eO(VCao(H,G)
✏

), better than that of ERM in
standard PAC learning, eO(VCdim(H)

✏
). This is insufficient to show that DA outperforms ERM as it

might be possible that ERM can also achieve better sample complexity in presence of transformation
invariances. To illustrate that DA indeed "helps", we show that any algorithm without exploiting the
transformation invariances still requires sample complexity of ⌦(VCdim(H)

✏
).

Theorem 3. For any H, there exists a group G with VCao(H,G)  5 s.t. MINV(✏, �;H,G,A) =

⌦(VCdim(H)
✏

+ 1
✏
log 1

�
) for any algorithm A not given any information about G (e.g., ERM).

The basic idea is that, given a set of k instances that can be shattered by H for some k > 0, G is
uniformly at random picked from a set of 2k groups, each of which partitions the set into two orbits in
a different way. If given G, the algorithm only need to observe one instance in each orbit to learn the
labels of all k instances. If not, the algorithm can only randomly guess the label of every unobserved
instance. The detailed construction is included in Appendix C.

4.2 The optimal algorithm

We show that the optimal sample complexity is characterized by VCo(H,G).

Theorem 4. For any H,G with VCo(H,G) < 1, we have ⌦(VCo(H,G)
✏

+ 1
✏
log 1

�
) 

MINV(✏, �;H,G)  O(VCo(H,G)
✏

log 1
�
).

Our algorithm is based on the 1-inclusion-graph predictor by Haussler et al. (1994). Given hypothesis
class H and instance space X = {x1, . . . , xt}, the classical 1-inclusion-graph consists of vertices
{h|X |h 2 H}, which are labelings of X realized by H , and two vertices are connected by an edge if
and only if they differ at the labeling of exactly a single xi 2 X . Haussler et al. (1994) shows that
the edges can be oriented such that each vertex has in-degree at most VCdim(H). This orientation
can be translated to a prediction rule. Specifically, for any i 2 [t], given the labels of all instances
in X except xi, if there are two hypotheses h, h0

2 H such that their labelings are consistent with
the labels of X \ {xi} and different at xi, then h|X , h0

|X
are two vertices in the graph and we predict
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the label of xi as the edge between h|X , h0

|X
is oriented against. The average leave-one-out-error is

upper bounded by VCdim(H)
t

.
Lemma 1 (Theorem 2.3 of Haussler et al. (1994)). For any hypothesis class H and instance space

X with VCdim(H) < 1, there is a function Q : (X ⇥ Y)⇤ ⇥X 7! Y such that, for any t 2 N and

sample {(x1, y1), . . . , (xt, yt)} that is realizable w.r.t. H ,

1

t!

X

�2Sym(t)

1[Q({x�(i), y�(i)}i2[t�1], x�(t)) 6= y�(t)] 
VCdim(H)

t
, (1)

where Sym(t) denotes the symmetric group on [t]. The function Q can be constructed by a 1-

inclusion-graph predictor.

Denote by QH,X the function guaranteed by Eq (1) for hypothesis class H and instance space X . For
any t 2 N and S = {(x1, y1), . . . , (xt, yt)}, let XS denote the set of different elements in SX . Define
H(XS) := {h|XS

|h 2 H is (G, XS)-invariant} being the set of all possible (G, XS)-invariant label-
ings of XS . We then define our algorithm A(S) by letting A(S)(x) = QH(XS[{x}),XS[{x}(S, x)
if H(XS [ {x}) 6= ; and predicting arbitrarily if H(XS [ {x}) = ;. That is to say, A(S) needs
to construct a function Q for every test example. Given any test example, this 1-inclusion-graph-
based algorithm takes into account whether the prediction can be invariant over the whole orbit of
the test example and thus benefits from the invariance of test examples. This can provide some
theoretical justification for test-time adaptation such as Wang et al. (2021). By definition, we have
VCdim(H(XS [ {x}))  VCo(H,G) for all S and x. Then the expected error of A can be bounded
by VCo(H,G) through Lemma 1. We defer the details and the proof of Theorem 4 to Appendix D.
Note that the results of Theorem 4 also apply to non-group transformations2.

5 Relaxed realizable setting

In this section, we discuss the results in the relaxed realizable setting (see Definition 2). As we can see,
DA belongs to the family of algorithms not distinguishing between the original and transformed data.
In Section 5.1, we provide a tight characterization µ(H,G) (Definition 6) on the sample complexity of
this family algorithms. This implies that when µ(H,G) > VCdim(H), there exists a distribution s.t.
DA performs worse than ERM. We then show that there exists H,G such that µ(H,G) > VCdim(H)
and the gap can be arbitrarily large. In Section 5.2, we provide two optimal algorithms, both of which
have to distinguish between the original and transformed data.

5.1 DA can even “hurt”

In the invariantly realizable setting, the optimal algorithm based on 1-inclusion graphs does not need
to distinguish between the original and transformed data since H(XS [ {x}) in the algorithm is fully
determined by the augmented data. However, in the relaxed realizable setting, distinguishing between
the original and transformed data is crucial. In the following, we will provide a characterization of
the sample complexity of algorithms not distinguishing between the original and transformed data,
including DA. Such a characterization induces a sufficient condition when DA “hurts”.

Let MDA(✏, �;H,G) be the smallest integer m for which there exists a learning rule A such
that for every G-invariant data distribution D, with probability at least 1 � � over Strn ⇠ D

m,
errD(A(GStrn))  ✏. The quantity MDA(✏, �;H,G) is the optimal sample complexity achievable if
algorithms can only access the augmented data without knowing the original training set. In standard
PAC learning, the optimal sample complexity can be characterized by the maximum density of any
subgraph of the 1-inclusion graphs, which is actually equal to the VC dimension (Haussler et al.,
1994; Daniely and Shalev-Shwartz, 2014). Analogously, we characterize MDA(✏, �;H,G) based on
a variant of 1-inclusion graphs, which is constructed as follows.
In the 1-inclusion graph for standard PAC learning (Haussler et al., 1994), given any sequence of
instances x = (x1, . . . , xt), the vertices are labelings of x and two vertices are connected iff. they are
different at only one instance in x and this instance appears once. In our setting, the input is a multiset
of labeled orbits and an unlabeled test instance, hence the vertices are pairs of labelings of orbits

2In this case, we only assume that G contains the identity element.
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and unlabeled instances. Specifically, for any t 2 N, given a multi-set of orbits � = {�1, . . . ,�t} of
some unknown original data, a labeling f 2 Y

t is possible iff. there exists a sequence of instances
x = (x1, . . . , xt) 2

Q
t

i=1 �i and a hypothesis h 2 H such that h|x = f and that instances in the
same orbit are labeled the same, i.e., (Gxi ⇥ {1 � fi}) \ ({(xj , fj)}j2[t]) = ; for all i 2 [t]. We
denote the set of all possible labelings of � by

⇧H(�) := {f 2 Y
t
|9h 2 H, 9x 2

tY

i=1

�i, h|x = f and [i2[t] (Gxi ⇥ {1� fi}) \ {(xj , fj)|j 2 [t]} = ;} .

(2)
Denote the set of all such sequences x 2

Q
t

i=1 �i of instances that can be labeled as f by

Uf (�) := {x 2

tY

i=1

�i|9h 2 H, h|x = f and [i2[t] (Gxi ⇥ {1� fi}) \ {(xj , fj)|j 2 [t]} = ;} .

Denote the set of all pairs of labeling and its corresponding instance sequence by
B(H,G,�) := [f2⇧H(�){f}⇥ Uf (�) . (3)

For any (f ,x) 2 B(H,G,�), x is a candidate of original data and f is a candidate of labeling of
x. Now we define a graph GH,G(�), where the vertices are all pairs of labeling f 2 ⇧H(�) and an
element in a instance sequence corresponding to f . Formally, the vertex set is

V = {(f , xi)|(f ,x) 2 B(H,G,�), i 2 [t]} .

For every two vertices (f , x) and (g, z), they are connected if and only if (i) x = z; (ii) there
exists j 2 [t] such that x 2 �j , fi = gi, 8i 6= j and fj 6= gj ; and (iii) �j only appear once
in �. Each edge can be represented by e = {f ,g, x} and we denote E the edge set. If an edge
e = {f ,g, x} exists, the edge could be recovered given only f , x or g, x, and thus, we also denote by
e(f , x) = e(g, x) = {f ,g, x}. Any algorithm accessing only the augmented data corresponds to an
orientation of edges in the graph we constructed, which leads to the following definition.
Definition 6. Let w : E⇥⇧H(�) 7! [0, 1] be a mapping such that for every e = {f ,g, x}, w(e, f)+
w(e,g) = 1 and w(e,h) = 0 if h /2 e and let W be the set of all such mappings. Note that w
actually defines a randomized orientation of each edge in graph GH,G(�): the edge e = {f ,g, x}
is oriented towards vertex (f , x) with probability w(e, f). For any (f ,x) 2 B(H,G,�), it corre-

sponds to a cluster of vertices {(f , xi)|i 2 [t]} in GH,G(�) and
P

i2[t]:9e2E,{f ,xi}⇢e
w(e(f , xi), f)

is the expected in-degree of the cluster. Let �(B(H,G,�)) denote the set of all distributions over

B(H,G,�). For any P 2 �(B(H,G,�)), we define

µ(H,G,�, P ) := min
w2W

E(f ,x)⇠P

2

4
X

i2[t]:9e2E,{f ,xi}⇢e

w(e(f , xi), f)

3

5 . (4)

By taking the supremum over P , we define µ(H,G,�) := sup
P2�(B(H,G,�)) µ(H,G,�, P ). By

taking supremum over �, we define µ(H,G, t) := sup�:|�|=t
µ(H,G,�) and

µ(H,G) := sup
t2N

µ(H,G, t) . (5)

Theorem 5. For any H,G, MDA(✏, �;H,G) satisfies the following bounds:

• For all t � 2 with µ(H,G, t) < 1, MDA(✏,
µ(H,G,t)
16(t�1) ;H,G) = ⌦(µ(H,G,t)

✏
). This implies that if

µ(H,G) < 1, there exists a constant c dependent on H,G s.t. MDA(✏, c;H,G) = ⌦(µ(H,G)
✏

).

• For all t with
1
6 

µ(H,G,t)
t


1
3 , MDA(✏, �;H,G) = O(µ(H,G,t)

✏
log2 µ(H,G,t)

✏
+ 1

✏
log 1

�
) .

• If µ(H,G) < 1, MDA(✏, �;H,G) = O(µ(H,G) log(1/�)
✏

).

Theorem 5 implies that when µ(H,G) > VCdim(H), there exists a distribution such that any
algorithm not differentiating between the original and transformed data performs worse than simply
applying ERM over the original data. We defer the proof of Theorem 5 to Appendix E. As we can
see, the definition of µ(H,G) is not intuitive and it might be difficult to calculate µ(H,G) as well as
to further determine when µ(H,G) > VCdim(H). We introduce a new dimension as follows, which
lower bounds µ(H,G) and is easier to calculate.
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Definition 7 (VC Dimension of orbits generated by H). The VC dimension of orbits generated

by H, denoted dim(H,G), is defined as the largest integer k for which there exists a set X =
{x1, . . . , xk} ⇢ X such that (i) their orbits � = {�1, . . . ,�k} are pairwise disjoint, (ii) ⇧H(�) =
Y

k
(defined in Eq (2)) and (iii) there exists a set B = {(f ,xf )}f2Yk ⇢ B(H,G,�) (defined in

Eq (3)) such that f � g = ei implies xf ,i = xg,i for all i 2 [k], f ,g 2 Y
k
.

Theorem 6. For any H,G, µ(H,G) � dim(H,G)/2.

The proof is included in Appendix F. Through this dimension, we claim that the gap between
µ(H,G) and VCdim(H) can be arbitrarily large. In the following, we give an example of H,G with
dim(H,G) � VCdim(H), which cannot be learned by DA but can be easily learned by ERM.
Example 5. For any d > 0, let X = {±1} ⇥ {ei|i 2 [2d]} ⇢ R2d+1

, H = {x1 > 0, x1  0}
and G = {I2d+1, I2d+1 � 2diag(e1)} (i.e., the cyclic group generated by flipping the sign of x1). It

is easy to check that VCdim(H) = 1. Let X = {(1, e1), (1, e2), . . . , (1, e2d)} and then the orbits

generated from X are � = {{(�1, ei), (1, ei)}|i 2 [2d]}}. For every labeling f 2 Y
2d

, if
P

i2[2d] fi
is odd, let xf = ((2fi � 1, ei))2di=1; if

P
i2[2d] fi is even, let xf = ((1 � 2fi, ei))2di=1. It is direct

to check that (f ,xf ) 2 B(H,G,�) for all f 2 Y
2d

. Then for all i 2 [2d], f � g = ei implies

xf ,i = xg,i. Hence, dim(H,G) = 2d, where d can be an arbitrary positive integer. According to

Theorem 6, we have µ(H,G) � d.

The above example can be interpreted in a vision scenario. Let’s consider an example of classifying
land birds versus water birds. The natural data is 2d images of land birds with land background
and water birds with water background. The transformation set is composed of keeping the current
background and changing the background from land (water) to water (land). Consider simple
hypotheses depending on backgrounds only. Specifically, H = {h1, h2} with h1 predicting all
images with water background as water birds and h2 predicting all images with water background as
land birds. Let the data distribution be the uniform distribution over all the original images. Then
given any training data, h1 and h2 have the same empirical loss on the augmented training data. Thus,
for any unobserved image, DA will make a mistake with constant probability. Hence DA requires
at least ⌦(d) sample complexity. It is direct to check that standard ERM only needs one labeled
instance to achieve zero error.

Open question: It is unclear whether µ(H,G) is upper bounded by dim(H,G). If true, then we can
tightly characterize MDA(✏, �;H,G) by dim(H,G).

5.2 The optimal algorithms

Different from the invariantly realizable setting, the optimal sample complexity in the relaxed
realizable setting is characterized by VCao(H,G). The optimal (up to log-factors) sample complexity
can be achieved by another variant of 1-inclusion-graph predictor. Besides, we propose an ERM-based
algorithm, called ERM-INV (see Appendix G for details), achieving the similar guarantee.

Theorem 7. For any H,G with VCao(H,G) < 1, we have ⌦(VCao(H,G)
✏

+ log(1/�)
✏

) 

MRE(✏, �;H,G)  O
⇣
min

⇣
VCao(H,G)

✏
log3 VCao(H,G)

✏
+ 1

✏
log 1

�
, VCao(H,G)

✏
log 1

�

⌘⌘
.

We defer the details of algorithms and the proof of Theorem 7 to Appendix G. Usually, ERM-INV is
more efficient than the 1-inclusion-graph predictor. But the 1-inclusion-graph predictor as well as
the lower bound can apply to non-group transformations. Another advantage of 1-inclusion-graph
predictor is allowing us to design an adaptive framework which automatically adjusts to different
levels of invariance of h⇤. Specifically, for any hypothesis h 2 H, we say h is (1� ⌘)-invariant over
the distribution DX for some ⌘ 2 [0, 1] if Px⇠DX

(9x0
2 Gx, h(x0) 6= h(x)) = ⌘. When ⌘(h⇤) = 0,

it degenerates into the invariantly realizable setting, which implies that we can achieve better bounds
when ⌘(h⇤) is smaller. We propose an adaptive algorithm with sample complexity dependent on
⌘(h⇤) and the details are included in Appendix I.1.

6 Agnostic setting

In the agnostic setting (Definition 3), infh2H err(h) is possibly non-zero. Different from the ag-
nostic setting in the standard PAC learning allowing probabilistic labels, our problem is limited to
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deterministic labels because we assume that the data distribution is G-invariant, i.e., there exists a
(G,DX )-invariant hypothesis f⇤ (possibly not in H) with errD(f⇤) = 0.
Theorem 8. The sample complexity in the agnostic setting satisfies:

• For all d > 0, there exists H,G with VCao(H,G) = d, MAG(✏, 1/64;H,G) = ⌦( d

✏2
).

• For any H,G with VCao(H,G) < 1, MAG(✏, �;H,G) = eO
⇣

VCao(H,G)
✏2

+ 1
✏2

log( 1
�
)
⌘

.

For upper bound, we show that ERM-INV achieves sample complexity eO(VCao(H,G)
✏2

). There is
another way of achieving similar upper bound based on applying the reduction-to-realizable technique
of David et al. (2016). Note that a direct combination of any reduction-to-realizable technique and
any optimal algorithm in relaxed realizable setting does not work in our agnostic setting. This is
because the relaxed realizable setting requires not only realizability, but also invariance in the support
of the data distribution. For example, the reduction method of Hopkins et al. (2021) needs to run a
realizable algorithm over a set labeled by each h 2 H, which might label two instances in the same
orbit differently and make the realizable algorithm not well-defined. When combining the reduction
method of David et al. (2016) and the 1-inclusion-graph-type algorithm, the similar problem also
exists but can be fixed by predicting arbitrarily when the invariance property is not satisfied. For lower
bound, According to Ben-David and Urner (2014), the sample complexity of agnostic PAC learning
under deterministic labels is not fully determined by the VC dimension. Following the construction
by Ben-David and Urner (2014), we provide an analogous lower bound in our setting. The algorithm
details and the proofs are deferred to Appendix H. Analogous to the realizable setting, we provide one
algorithm adapting to different levels of invariance of the optimal hypothesis in H in Appendix I.2.
Similar to the results in the realizable settings, the lower bound and the 1-inclusion-graph predictor in
the agnostic setting also apply to non-group transformations.

7 Discussion

Definition of invariance under probabilistic labels In this work, we model invariance by assuming
that the data distribution is G-invariant, which restricts the labels to be deterministic. It is unclear
what “invariance under probabilistic labels” means. One option is assuming that the distribution of
the labels is invariant over the orbits, Pr(y|gx) = Pr(y|x) for all g 2 G, x 2 X . However, such a
condition may not characterize invariance in real-world scenarios due to classes having different
underlying distributions. For example, given a fuzzy image with probability 0.5 being a car and 0.5
being a tree, it is uncertain if the chance of this image being a car is still 0.5 after rotation.

The performance of DA under non-group transformations Most results of DA and ERM-type
algorithms only hold when the transformation set is a group. If we regard adversarial training as a
special type of data augmentation through a ball around the natural data, then the transformation
set is not a group. The appropriate way to formulate theoretical guarantees for DA under arbitrary
transformations is still an open question.
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