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Abstract

We study the problem of list-decodable sparse mean estimation. Specifically, for
a parameter α ∈ (0, 1/2), we are given m points in Rn, ⌊αm⌋ of which are i.i.d.
samples from a distribution D with unknown k-sparse mean µ. No assumptions are
made on the remaining points, which form the majority of the dataset. The goal is
to return a small list of candidates containing a vector µ̂ such that ∥µ̂−µ∥2 is small.
Prior work had studied the problem of list-decodable mean estimation in the dense
setting. In this work, we develop a novel, conceptually simpler technique for list-
decodable mean estimation. As the main application of our approach, we provide
the first sample and computationally efficient algorithm for list-decodable sparse
mean estimation. In particular, for distributions with “certifiably bounded” t-th
moments in k-sparse directions and sufficiently light tails, our algorithm achieves
error of (1/α)O(1/t) with sample complexity m = (k log(n))O(t)/α and running
time poly(mnt). For the special case of Gaussian inliers, our algorithm achieves
the optimal error guarantee Θ(

√
log(1/α)) with quasi-polynomial complexity.

We complement our upper bounds with nearly-matching statistical query and
low-degree polynomial testing lower bounds.

1 Introduction

It is well-established that when a dataset is corrupted by outliers, many commonly-used estimators
fail to produce reliable estimates [Tuk60, ABH+72]. The field of robust statistics was developed to
perform reliable statistical inference in the presence of a constant fraction of outliers, even when the
data is high-dimensional [HR09, HRRS86]. Although statistical rates of high-dimensional robust
estimation problems are relatively well-understood by now [DL88, Yat85, DG92, HR09, CGR16], all
of the estimators developed in these works were computationally inefficient, with runtime exponential
in the dimension. The goal of algorithmic robust statistics, beginning with the works of [DKK+16,
LRV16], is to design computationally efficient algorithms for high-dimensional robust estimation
tasks. We refer the reader to the survey [DK19] for an introduction to this field.

The bulk of the recent progress in algorithmic robust statistics has focused on the setting where the
fraction of outliers is a small constant, and the majority of samples are inliers, see, e.g., [DKK+16,
LRV16, KKM18]. In contrast, when the fraction of outliers outnumbers the fraction of inliers, it is
generally information-theoretically impossible to output a single estimate with non-vacuous error
guarantees. In such situations, we allow the algorithm to return a small list of candidates such that
one of the candidates is close to the true parameter. This list-decodable learning setting was first
introduced in [BBV08] and developed in [CSV17]. We define the model below.
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Definition 1.1 (List-Decodable Learning). Given a parameter 0 < α < 1/2 and a distribution
family D on Rn, the algorithm specifies m ∈ Z+ and observes a set of m samples constructed as
follows: First, a set S of ⌊αm⌋ i.i.d. samples are drawn from an (unknown) distribution D ∈ D.
Then, an adversary is allowed to inspect S and choose a multiset E of m − ⌊αm⌋ points. The
multiset T , defined as T := S ∪ E, of m points is given as input to the algorithm. We say that D
is the distribution of inliers, the elements in S are inliers, the points in E are outliers, and T is an
(1− α)-corrupted dataset of S. The goal is to output a “small” list of hypotheses L at least one of
which is (with high probability) close to the target parameter of D.

The list-decodable learning setting, interesting in its own right, is closely related to several well-
studied problems. A natural example is the problem of parameter recovery from mixture models, e.g.,
Gaussian mixtures (see, e.g., [Das99, VW04, AK05, DS07, KK10, RV17]). List-decodable mean
estimation can serve as a key step in learning mixtures, since one can treat any component of the
mixture as the set of inliers (see, e.g., [CSV17, DKS18a, KS17]). In addition, list-decodable learning
can be used to model data in important applications where mixture models are not sufficient, such
as crowdsourcing (see, e.g., [SVC16, SKL17, MV18]) and community detection in stochastic block
models (e.g., [CSV17]).

Prior work on list-decodable mean estimation has focused on the unstructured setting, where the
target mean is an arbitrary dense vector (see, e.g., [CSV17, KS17, DKS18a, RY20a, CMY20, DKK20,
DKK+21, DKK+22b]). Sparse models have proven to be useful in a wide range of statistical tasks,
and thus understanding the statistical and computational aspects of sparse estimation is a fundamental
problem (see, e.g., [EK12, HTW15, van16]). Here we study list-decodable sparse mean estimation,
where the target mean vector is known to be k-sparse, i.e., it has at most k non-zero coordinates.
Given an (1−α)-corrupted set of samples, our goal is to output, in a computationally-efficient manner,
a small list of vectors containing a good approximation µ̂ to the true mean µ (cf. Definition 1.1).
Importantly, the goal is to achieve this with far fewer samples than in the dense setting. While the
dense setting would require sample size polynomial in n — the ambient dimension of the data — the
goal here is to solve the problem in number of samples polynomial in k and only polylogarithmic in n.

In this paper, we present a novel and conceptually simple technique for list-decodable mean estima-
tion (that is applicable even in the dense setting). Combining our framework with the concentration
results from [DKK+22a], we obtain the first sample and computationally efficient algorithm for
list-decodable sparse mean estimation. We note that, while prior results [KS17, RY20a] can possibly
be modified to incorporate the sparsity framework of [DKK+22a] after sufficient effort, a notable con-
tribution of our work is a general and conceptually simpler framework for list-decodable estimation,
which can easily be adapted to incorporate various structural constraints.

1.1 Related Work

Efficient estimators for high-dimensional robust statistics with sparsity constraints have been recently
developed for various problems, such as mean estimation and PCA (see, e.g., [BDLS17, DKK+19,
Li17, DKK+22a]). The problem of list-decodable mean estimation was first introduced in [CSV17],
which achieved an error guarantee of Õ(1/

√
α) for distributions with bounded second moment; this

guarantee turned out to be optimal for this distributional assumption (see [DKS18a]). Subsequent
work improved the algorithmic guarantees for this problem (see, e.g., [CMY20, DKK20, DKK+21]).

To achieve better error guarantees, it is necessary to make further assumptions on the distribution,
e.g., Gaussianity or bounded higher moments. In terms of the minimax optimal rate1, [DKS18a]
showed that the optimal error for Gaussians is Θ(

√
log(1/α)). They also showed that any SQ

algorithm that achieves the optimal error for Gaussians must take either super-polynomial time
or samples, and presented an algorithm with matching guarantees. When the distribution D has
bounded t-th moment for some even t > 2 ( i.e., E[⟨v,X − E[X]⟩t] is bounded for all unit
vectors v), [DKS18a] proved that the minimax optimal rate is Θ(α−1/t). For distributions with
certifiably bounded t-th moments, [KS17, RY20a] provided algorithms obtaining an error rate
of O((1/α)O(1/t)) with sample complexities m = poly(nt/α), and runtimes poly(mtnt) and
poly(mn)poly(t,1/α), respectively. Recently, in the context of moment estimation and clustering

1Informally speaking, we say that the minimax optimal rate is γ if (i) no algorithm (regardless of sample size
and runtime) has error o(γ) with a list of size independent of dimension n, and (ii) there is an algorithm with
error O(γ) with a list of size independent of n; in our case, poly(n/α) samples and O(1/α) list size suffice.
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problems, [ST21] showed how to improve the dependence on m in the runtime of algorithms that
depend on certifiably bounded moments from poly(mtnt) to poly(mnt). While it is possible that
their result might be applied to [KS17, RY20a], our algorithmic technique naturally lends itself to
achieve runtime poly(mnt) for the dense as well as sparse settings. We provide detailed comparisons
with (see, e.g., [DKS18a, KS17, RY20a]) in Section 1.3. Finally, we mention that the list-decodable
setting has also been studied in the context of linear regression (see, e.g., [KKK19, RY20a, DKP+21])
and subspace recovery (see, e.g., [BK21, RY20b]).

In an independent and concurrent work [ZS22], Zeng and Shen also study list-decodable sparse mean
estimation when the underlying distribution is spherical Gaussian.

1.2 Our Results

We demonstrate an algorithm to perform list-decodable sparse mean estimation with (k log n)O(t)

samples, when the mean µ ∈ Rn is known to be k-sparse. For this to be possible, we will require
some assumptions on the underlying distribution of inliers D. Prior work in the dense setting ([KS17,
RY20a]) assumed that the inlier distribution D in Definition 1.1 satisfies d-certifiably bounded t-th
moments in every direction (i.e., for some moment bound M > 0, M∥v∥t2 − EX∼D[⟨v,X − µ⟩t]
can be expressed as a sum of square polynomials of degree at most d = O(t) in the entries of v), and
D has light tails. We highlight that our algorithmic technique can also be used in the dense case,
under the same assumption, and provides qualitatively similar error guarantees with much simpler
arguments and improved runtime. Below we apply our technique to the sparse setting.

Our results hold when (i) the t-th moment of D is d-certifiably bounded for every v that is k-sparse,
with d = O(t), and (ii) D has light tails. For ease of exposition, we state the result assuming
D has subexponential tails (i.e., for some universal constant c, for all unit vectors v and p ∈ N,
EX∼D[|⟨v,X − µ⟩|p]1/p ≤ cp). 2

Theorem 1.2 (List-Decodable Sparse Mean Estimation). Let t be an integer power of two. Let D be a
distribution over Rn with k-sparse mean µ. Suppose that D has t-th moments d-certifiably bounded
in k-sparse directions by M for some d = O(t) (cf. Definition 2.3) and subexponential tails in the
standard basis directions. There is an algorithm which, given α, M , t, k, and a (1−α)-corrupted
set of m = (tk log n)O(t) max(1,M−2)/α samples from D, runs in time poly(mnt) and returns a
vector µ̂ ∈ Rn such that with probability Ω(α) it is the case that ∥µ̂− µ∥2 = Ot(M

1/t/αO(1)/t).

Note that with high probability over the inliers and for any choice of outliers, with probability Ω(α)
over the internal randomness of the algorithm, the algorithm of Theorem 1.2 outputs an estimate µ̂
close to µ. By running our algorithm O(1/α) times, we can generate a list of size O(1/α) such that
with probability 0.9 the list contains the desired estimate µ̂.

Notably, for the important special case of Gaussian N (µ, I) inliers, our algorithm achieves the
information-theoretically optimal error rate. This is because N (µ, I) has its t-th moment certifiably
bounded by tt/2 in all directions. Specifically, for a large enough constant C > 0, we obtain the
following result: Given α, t, and a (1− α)-corrupted set of m ≥ (tk log n)Ct samples from N (µ, I)
for a k-sparse vector µ, our algorithm runs in time poly(mnt) and with probability Ω(α) outputs a
vector µ̂ such that ∥µ̂−µ∥2 ≤ O(

√
t/αC/t). Thus, by taking t = C log(1/α), we obtain the optimal

error of Θ(
√

log(1/α)) in quasi-polynomial sample and time complexity.

We also note that a broad and natural class of distributions satisfying Definition 2.3 is the class
of σ-Poincare distributions (see, e.g., [KS17]). A distribution is said to be σ-Poincare if for all
differentiable functions f : Rn → R, we have that VarX∼D [f(X)] ≤ σ2 EX∼D[∥∇f(X)∥22].
We complement our algorithm of Theorem 1.2 with a qualitatively matching lower bound in the
Statistical Query (SQ) model [Kea98]. Instead of directly accessing samples, SQ algorithms are
only allowed to perform adaptive queries of expectations of bounded functions of the underlying
distribution, up to some desired tolerance (c.f. Definition C.1). The class of SQ algorithms is
fairly broad: a wide range of known algorithmic techniques in machine learning are known to be
implementable in the SQ model (see, e.g., [FGR+13]).

An SQ lower bound is an unconditional statement that for any SQ algorithm, either the number of
queries q must be large or the tolerance, τ , of some query must be small. Since simulating a query of

2It suffices for D to have poly(t log(n)) bounded moments in axis-aligned directions; see Section 2.
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tolerance τ by averaging i.i.d. samples may need up to Ω(1/τ2) many of them, SQ lower bounds are
naturally interpreted as a tradeoff between runtime Ω(q) and sample complexity Ω(1/τ2). An adapta-
tion of the result in [DKS18a] yields Theorem 1.3, which indicates that the kO(t) factor in the sample
complexity of Theorem 1.2 might be necessary for efficient algorithms, even for Gaussian inliers.

Theorem 1.3 (SQ Lower Bound, Informal). Consider the problem of list-decoding the mean of
N (µ, I), for a k-sparse vector µ ∈ Rn, up to error better than O((tα)−1/t). Any SQ algorithm that
solves the problem does one of the following: (i) It returns a list of size nkΩ(1)

, (ii) it uses at least one
query of tolerance k−Ω(t) exp(O(tα)−2/t), or (iii) it makes at least nkΩ(1)

queries.

Theorem 1.3 states that any SQ algorithm that runs in time less than nkc

for a constant c > 0

and achieves the minimax-optimal error of
√

log(1/α) must use at least kΩ(log(1/α)/ log log(1/α))

samples. This follows by setting t = Ω(log(1/α)/ log log(1/α)). A similar lower bound holds for
the computational model of low-degree polynomial tests, as a consequence of the recently established
relationship between the two models [BBH+21]. See Appendix C for more details.

1.3 Overview of Techniques

We begin with a brief overview of the existing techniques for dense list-decodable mean estimation.
We then highlight some of the obstacles in adapting these techniques to the sparse setting. Then,
we provide an overview of our algorithmic approach and explain how it overcomes these obstacles.

Prior Work on List-Decodable Mean Estimation In the dense setting, prior algorithmic techniques
for list-decoding the mean with error better than Ω(α−1/2) are quite complicated. [DKS18a] uses
a multifilter-based technique for list-decoding spherical Gaussians, which relies critically on knowing
the higher degree moments of the inliers (and thus does not generalize to less specific distribution
families). Moreover, this method runs into technical difficulties related to being unable to determine
the variance of higher degree polynomials on the inliers without knowing the mean ahead of time.
The other approach in the literature (see, for example, [KS17, RY20a]) uses the Sum-of-Squares
method (SoS) to find these clusters of points. The algorithm in [RY20a] involves solving a nested SoS
program and then applying a complicated rounding procedure to get the final list. It should be noted
that the runtime of [RY20a] is exponential in poly(1/α), which can be quite large. Finally, [KS17]
gave an SoS based list-decodable mean estimation algorithm for the dense case with error, sample
complexity, and list size similar to the ones that are obtained in our work; but significantly worse
runtime. The approach of [KS17] has some important differences. First, the clustering relaxation
is conceptually harder, involving a more complex optimization problem for each filtering step and
second, after the filtering ends, the error guarantee scales with the norm of the unknown mean; thus
a complicated re-clustering step that combines ideas from [SCV18] is needed to reduce the error.

Here we present a significantly cleaner method to perform the outlier removal step; we avoid problems
like not knowing the mean ahead of time by simply taking pairs of differences of our samples to
make their mean zero. While it is likely that either of the prior techniques could be adapted to the
sparse setting with sufficient effort, this would result in significantly more complicated algorithms.
We briefly point out some difficulties below.

First, to ensure that the algorithms identify subsets of the samples that satisfy certifiably bounded
moments in all k-sparse directions, requires additional variables and constraints to the algorithms.
Additionally, one would need to replace the bounded moments in all directions condition by the
corresponding condition for the sparse case, and ensure that all the proof steps can be modified to
rely only on the latter – this would result in minor modifications of the original algorithms, such as
thresholding of candidate solution vectors.

Second, at the end of this process, while the algorithm might qualitatively match the er-
ror guarantee that we achieve, the runtime would continue to be (mn)O(t) for [KS17] or
(1/α)polylog(1/α)nO(max{1/α4,t}) for [RY20a] — both of these are qualitatively worse than the
runtime we achieve when α is sufficiently small. To obtain improved runtime using these prior
techniques, one would require additional ideas, e.g., from [ST21], to be adapted to this setting, overall
resulting in a far more complicated algorithm.

On the other hand, it seems difficult to adapt the multi-filtering technique from [DKS18a] to the setting
we consider, without any introduction of an SoS component. We remind the reader that the [DKS18a]
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algorithm depends critically on knowing the higher moments of the inliers exactly, and does not
generalize to less specific distribution families. Even in the Gaussian setting, generalizing [DKS18a]
might be difficult, since it would require the design of an efficiently verifiable notion of matching
higher moments in k-sparse directions.

We believe that our novel list-decoding technique is significantly simpler. As a result of simplifying
the optimization programs involved, our technique naturally improves the runtime from poly(mtnt)
in prior work to poly(mnt).

Novel List-Decodable Mean Estimation Algorithm All known list-decoding algorithms are based
upon the following fundamental observation. Suppose that S is a dataset that contains a subset Sg of
samples with bounded moments. If we can find a subset S′ of S with bounded moments and large
overlap with Sg, then the means of S′ and Sg cannot be too far apart (see Lemma 3.3). The goal of a
list-decoding algorithm is to find such a subset S′ (or, more precisely, a small number of hypotheses
for such a subset). In order to generalize this to the sparse mean setting, it suffices for the subsets Sg
and S′ to have bounded moments only in all k-sparse directions. This will imply that |⟨v, µg − µS′⟩|
is relatively small for all k-sparse unit vectors v, which will in turn imply that truncating µS′ to its k
largest entries will provide a suitable approximation to µg (see Fact A.2).

The basic idea behind our novel list-decoding technique, which we call the difference of pairs filter,
is the following: let T be the set of differences of pairs of elements of S. The set T will contain a
relatively large subset, Tg, (consisting of the pairwise differences of elements of Sg) whose moments
in k-sparse directions are bounded. Our goal will be to find a subset T ′ ⊂ T that has large overlap
with Tg and also has bounded (k-sparse) moments.

Naïvely, we can do this as follows. We start with T ′ = T . Either this set has bounded k-sparse
moments (in which case we are done) or there is some sparse direction v in which the average value
of |⟨v, x⟩|t over T ′ is substantially larger than the average value over Tg. By throwing away points
x from T ′ with probability proportional to |⟨v, x⟩|t, we eliminate mostly bad points. We repeat
this until T ′ has bounded sparse moments. Unfortunately, while this approach can be shown to be
correct, it does not suffice for our purposes because it is computationally infeasible in general to
determine whether or not T ′ has bounded sparse moments. However, if we assume additionally
that Sg has bounded k-sparse moments provable by a low-degree sum-of-squares proof (i.e., the
moment bound inequality can be re-expressed as a sum of square polynomials being greater than
0), then so will Tg. There is an efficient algorithm to determine whether or not T ′ has certifiably
bounded moments in k-sparse directions as well. If T ′ does not have certifiably bounded moments,
standard techniques for Sum-of-Squares programs imply that we can manufacture a non-negative
polynomial p so that the average value of p on T ′ is substantially larger than the value of p on any set
with SoS-certifiable bounded moments in k-sparse directions. Thus, filtering out points x in T ′ with
probability proportional to p(x) will likely remove mostly bad points. Using this idea, we can find
such a set T ′ efficiently (see Theorem 3.1).

We are thus left with a set of differences of samples rather than a set of samples. At this point, we will
need a rounding method that given a set T ′ of differences with bounded k-sparse moments guaranteed
to have large overlap with Tg, finds a small list of sets S′ with bounded k-sparse moments so that
at least one of them has a large overlap with Sg. Note that T ′ might be the union of Ti − Ti, where
each Ti is an individual cluster drawn from a moment-bounded distribution. This demonstrates the
necessity of a rounding step to identify the means of individual clusters. To achieve this, it is helpful
to think of T ′ as consisting of a set of pairs of elements of S, or equivalently as a graph over S. Given
T ′, our first task is to find some reasonably large subset of S with bounded moments (ideally which
has a large overlap with Sg). It is not hard to see that it suffices to find any large clique in T ′ (see
Lemma 3.3). Unfortunately, T ′ may well not have any large cliques, and even if it does, finding them
may be computationally difficult. However, we are saved here by the observation that if |⟨v, x− y⟩|t
and |⟨v, y − z⟩|t are both small, then so is |⟨v, x − z⟩|t. This means that if we replace T ′ by the
graph H of all pairs of vertices (v, w), where v and w have many common neighbors in T ′, this new
graph will also have relatively small k-sparse moments (see Lemma 3.5). As most elements of Sg
are adjacent in T ′ to most other elements of Sg, it is not hard to see that this new graph will have
relatively large cliques; unfortunately, finding them may still be computationally difficult.

To find these large cliques efficiently, we need one final observation. If v is a random vertex of a
graph G, then there will (on average) be very few pairs of neighbors, u and w, of v so that u and w
do not have a large number of common neighbors with each other in G (see Lemma 3.6). This means
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that if we pick a random sample x in S, then most pairs of neighbors of x in T ′ are neighbors in
H . Using a densification procedure (see Lemma 3.7), it is not hard to find a large subset S′ of these
neighbors so that any two elements of S′ have many neighbors in common in G. By Lemma 3.5, this
implies that S′ will in fact have bounded k-sparse moments. Furthermore, if we happened to pick
x from Sg, it is not hard to see that it is likely that S′ has large overlap with Sg, and thus its mean
provides us with a good estimate.

While the above describes our algorithmic approach, we also need to consider the sample complexity
of our method. We know that the distribution D has the property of bounded moments in k-sparse
directions, and our algorithm requires that the property is also satisfied by the uniform distribution
over the samples Sg. In order for Sg to have it as well, it suffices that the tth moment tensor of Sg−µ
be close to the corresponding moment tensor of D − µ. It turns out that if these moment tensors are
δk−t-close coordinate-wise, which takes O(t log(n)kO(t)/δ2) samples, this suffices to get the kind of
certifiable concentration we require. This is captured by Lemma 2.4, a restatement from [DKK+22a].

2 Preliminaries

Basic Notation. We use Z+ to denote positive integers. For n ∈ Z+ we denote [n] := {1, . . . , n}.
We denote by R[x1, . . . , xn]≤d the set of real-valued polynomials of degree at most d in variables
x1, . . . , xn. We use poly(·) to indicate a quantity that is polynomial in its arguments. For an ordered
set of variables Q = {x1, . . . , xn}, we will denote p(Q) to mean p(x1, . . . , xn). We use In to denote
the n× n identity matrix. For a vector v, we let ∥v∥2 denote its ℓ2-norm. We call a vector k-sparse if
it has at most k non-zero coordinates. We use ⟨v, u⟩ for the inner product of the vectors u, v. We use
capital letters for random variables and E[·] for expectation. When S is a set, we will use the notation
X ∼ S to mean that X is distributed uniformly over S. For a graph G we denote by NG(x) the
neighborhood of x in G. Throughout the paper, we will use the letter n for the dimension, m for the
number of samples, d for the degrees of the SoS proofs, and t for the number of bounded moments.

SoS Preliminaries The following preliminaries are specific to the SoS part of this paper. We refer to
[BS16, FKP19] for a more complete treatment of the SoS framework. Here, we review the basics.

Definition 2.1 (SoS Proof). Let x1, . . . , xn be indeterminates and let A be a set of polynomial
equalities {p1(x) = 0, . . . , pm(x) = 0}. An SoS proof of the inequality r(x) ≥ 0 from axioms
A is a set of polynomials {ri(x)}i∈[m] ∪ {r0(x)} such that r0 is a sum of square polynomial and
ri’s are arbitrary, and r(x) = r0(x) +

∑
i∈[m] ri(x)pi(x). If the set of polynomials {ri(x) · pi(x) |

i ∈ [d]} ∪ {r0(x)} have degree at most d, we say that this proof is of degree d and denote it by
A d r(x) ≥ 0. When we need to emphasize what indeterminates are involved in a particular SoS
proof, we denote it by A d

x
r(x) ≥ 0. When A is empty, we omit it, e.g., d r(x) ≥ 0 or d

x
r(x) ≥ 0.

We will also use the objects called pseudoexpectations.

Definition 2.2 (Pseudoexpectation). Let x1, . . . , xn be indeterminates. A degree-d pseudoexpectation
Ẽ is a linear map Ẽ : R[x1, . . . , xn]≤d → R from degree-d polynomials to R such that Ẽ

[
p(x)2

]
≥ 0

for any p of degree at most d/2 and Ẽ [1] = 1. If A = {p1(x) = 0, . . . , pm(x) = 0} is a set
of polynomial inequalities, we say that a pseudoexpectation Ẽ satisfies A if for every i ∈ [m],
Ẽ[s(x)pi(x)] = 0 for all polynomials s(x) such that s(x)pi(x) has degree at most d.

It is well known (see, e.g., [BS16]) that pseudoexpectations are dual objects to SoS proofs in
the following sense: given a set P of r polynomial equalities in n variables and a polynomial
q(x1, . . . , xn), either there exists an SoS proof P ℓ

x
q(x) ≥ 0 or there exists a pseudoexpectation Ẽ

of degree ℓ satisfying P but having Ẽ[q(x)] < 0. More importantly, there is an algorithm that runs in
time (rn)O(ℓ) and finds that pseudoexpectation when we are in the second case. Due to lack of space,
we defer formal statements and a brief overview of SoS to Appendix A.1.

Certifiably Bounded Moments in k-sparse Directions Our algorithm succeeds whenever the uncor-
rupted samples have certifiably bounded moments in k-sparse directions, defined as in [DKK+22a]:

Definition 2.3 ((M, t, d) Certifiably Bounded Moments in k-sparse Directions). Let Q :=
{v1, . . . , vn, z1, . . . , zn} and Ak-sparse := {z2i = zi}i∈[n] ∪{vizi = vi}i∈[n] ∪{

∑n
i=1 zi = k} ∪
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{∑n
i=1 v

2
i = 1

}
. For an M > 0 and even t ∈ N, a distribution D with mean µ satisfies (M, t, d)

certifiably bounded moments in k-sparse directions if Ak-sparse d

Q
EX∼D [⟨v,X − µ⟩t]2 ≤M2 .

The definition of Ak-sparse is based on the fact that a vector v = (v1, . . . , vn) is k-sparse if and only if
there exists z = (z1, . . . , zn) such that v, z satisfy Ak-sparse.

We will use the following lemma proved in [DKK+22a] to bound the number of samples it takes
to certify bounded moments in k-sparse directions. Although this is stated for subexponential
distributions, it needs the distribution to have only bounded t2 log(d) moments (see Lemma A.10).
Lemma 2.4 ([DKK+22a]). Let D be a distribution over Rn with mean µ. Suppose that D has c-
sub-exponential tails around µ for a constant c and thatAk-sparse O(t)

Q
EX∼D [⟨v,X − µ⟩t]2 ≤M2.

Let S = {X1, . . . , Xm} be a set of m i.i.d. samples from D, D′ be the uniform distribution over S,
and µ := EX∼D′ [X]. If m > C(tk(log n))5t max(1,M−2) for a sufficiently large constant C, then

with probability at least 0.9 we have the following: (i)Ak-sparse O(t)

Q
EX∼D′ [⟨v,X − µ⟩t]2 ≤ 8M2

and (ii) ⟨v, µ− µ⟩ ≤M1/t/α6/t for every k-sparse unit vector v.

3 Main Result: Proof of Theorem 1.2

Recall our setting: we are given α ∈ (0, 1/2) and a multiset S := {x1, . . . , xm} such that an
unknown subset of ⌊αm⌋ many of these points satisfy (M, t, d) certifiably bounded central moments
in k-sparse directions, and the remaining are arbitrary. The goal is to recover a candidate that is close
to µ := EX∼D[X] with probability Ω(α). In what follows, t will always be 2ℓ for some ℓ ∈ Z+.

3.1 The SoS-based Filter

Let T be the set of pairwise differences of all samples in S (similarly denote by Tg the subset of
T corresponding to inliers Sg). We would like to either detect that the moments of T are already
bounded in all k-sparse directions or find a direction that violates this and filter out mostly outliers.
Unfortunately, this kind of check is computationally infeasible, but it can be done efficiently if we
check for moment bounds that are certified by SoS proofs. This is done in Algorithm 1, which takes
as input the set T along with the parameters t, d,M and performs filtering until the resulting set T ′

has (M, t, d)-bounded moments.

Algorithm 1 SoS-based filter for list-decodable mean estimation
1: function LDMEAN-SOS-FILTER(T := {x1, . . . , xm}, t, d,M )
2: Let Q = {v1, . . . , vn, z1, . . . , zn} and T ′ = T .

3: while there is no SoS proof of Ak-sparse d

Q ∑
x∈T ′⟨v, x⟩t ≤ 6M |T | do

4: Find a degree-d Ẽ on Q satisfying Ak-sparse and Ẽ[
∑

x∈T ⟨v, x⟩t] > 6M |T |.
5: Throw out x ∈ T ′ with probability Ẽ [⟨v, x⟩t] /maxx∈T ′ Ẽ [⟨v, x⟩t].
6: end while
7: return T ′

8: end function

Theorem 3.1 (Filter Identifies a Subset Satisfying Bounded Moments). Let T be a multiset of points
in Rn for which there exists a subset Tg ⊂ T with |Tg| = α2|T | for some α > 0. Furthermore
assume that Tg has zero mean and (M, t, d)-certifiably bounded moments in k-sparse directions for
some M > 0, d ∈ Z+, and even t. Then Algorithm 1, given T,M, t, d, returns a subset T ′ ⊆ T in
time poly(mnd) so that, with probability at least 2/3, the following holds: (i) For any k-sparse unit
vector v, we have that

∑
x∈T ′⟨v, x⟩t ≤ 6M |T |, and (ii) |T ′ ∩ Tg| ≥ |Tg|/2.

Proof. Let Q = {z1, . . . , zn, v1, . . . , vn}. In Algorithm 1, Lines 3 and 4 use the separation oracle
of Theorem A.4 with P = Ak-sparse. Since Tg has zero mean and (M, t, d) bounded central moments
in k-sparse directions, we have that

Ak-sparse d

Q
M − E

X∼Tg

[
⟨v,X⟩t

]
≥ 0. (1)
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Thus, if Ak-sparse d

Q ∑
x∈T ′⟨v, x⟩t ≤ 6M |T | the algorithm identifies that and stops (in which case

we have the desired conclusion that for any k-sparse vector v,
∑

x∈T ′⟨v, x⟩t ≤ 6M |T |); otherwise it
finds a degree-d pseudo-expectation Ẽ on Q satisfyingAk-sparse and Ẽ

[
−6M |T |+

∑
x∈T ′⟨v, x⟩t

]
>

0, in which case we can create a filter: Using Equation (1) and |Tg| = α2|T |, we have that M ≥
EX∼Tg

[
Ẽ[⟨v,X⟩t]

]
≥ α−2

|T |
∑

x∈Tg∩T ′ Ẽ [⟨v, x⟩t] . Since Ẽ
[
−6M |T |+

∑
x∈T ′⟨v, x⟩t

]
> 0 and

Ẽ is linear, we see that
∑

x∈Tg∩T ′ Ẽ[⟨v,x⟩t]∑
x∈T ′ Ẽ[⟨v,x⟩t] ≤ α2/6. This means if we throw out sample x with

probability Ẽ [⟨v, x⟩t] /maxx∈T ′ Ẽ [⟨v, x⟩t] (which is indeed in [0, 1] since ⟨v, x⟩t is SoS, so its
pseudoexpectation is a non-negative value), on average, only an α2/6 fraction of the points that
are removed will be from Tg. Since the x with the largest value of Ẽ [⟨v, x⟩t] will be removed, the
algorithm will terminate in polynomial time. We now analyze the size of |T ′ ∩ Tg|. By the above
analysis, at each step the expected number of samples thrown out from Tg is at most α2/6 times
the expected total number of samples removed. Thus, the potential function ∆ = (|Tg ∩ T ′| −
(α2/6)|T ′|)/|T | is a submartingale. Note that always 0 ≤ ∆/α2 ≤ 1, and initially we had ∆/α2 ≥
5/6. By Doob’s martimgale inequality (Proposition A.9 applied with t = 1/2 to the submartingale
(∆/α2)), the probability that ∆/α2 remains at least α2/2 throughout the execution of the algorithm
is at least 2/3. Thus, we will have |Tg ∩ T ′| ≥ (α2/2)|T | = |Tg|/2 throughout the execution.

3.2 Identifying a Subset of Samples with Bounded Moments

Having identified a subset T ′ ⊂ T satisfying the conclusions of Theorem 3.1, we want to extract
from T ′ a vector that is close to the original mean. Since the average of the set of differences is likely
to be close to zero regardless of the true mean, we will need to use the information about the pairs
that we get from T ′ to find subsets of the original samples that satisfy the appropriate concentration
bounds. We will need the following definition.

Definition 3.2. Let S ⊂ Rn. A graph (V,E) on S with V = S is said to have (M, t)- bounded
moments in k-sparse directions if for all k-sparse unit vectors v, (1/|S|2)

∑
(x,y)∈E⟨v, x− y⟩t ≤M .

By the guarantee of our filter, if T ′ is the set returned, the graph G with edges (x, y) for which x− y
or y − x belongs to T ′ will have bounded moments in the above sense. If G contains a clique C
which intersects with an α-fraction of the target samples Cg, the means of C and Cg are close.

Lemma 3.3. Let S ⊂ Rn and G be a graph on S satisfying Definition 3.2. Let C ⊂ S be a clique
in G. Let Cg ⊂ C be a subset with |Cg| ≥ α|S|. If µC and µg denote the means of C and Cg

respectively, then ⟨v, µC − µg⟩t ≤ 2M/α2 for all k-sparse unit vectors v.

Proof. By using the fact that t is even and the fact that G satisfies Definition 3.2, we see that
M |S|2 ≥

∑
(x,y)∈E⟨v, x−y⟩t ≥ 1

2

∑
x,y∈C⟨v, x−y⟩t ≥ 1

2

∑
x∈Cg,y∈C⟨v, x−y⟩t . Using Jensen’s

inequality we obtain, M |S|2≥
∑

x∈Cg,y∈C
⟨v,x−y⟩t

2 ≥ |Cg||C|⟨v,µC−µg⟩t
2 ≥ |S|2α2⟨v,µC−µg⟩t

2 .

Unfortunately, even the inliers might not form a clique in G. However, the guarantee that |T ′ ∩ Tg| ≥
|Tg|/2 implies that the inliers share many neighbors in the graph G. Thus we look at the overlap
graph defined below, in the hope that this graph will be more dense.

Definition 3.4 (Overlap Graph). Let G = (V,E) be a graph and γ > 0. The overlap graph
Rγ(G) is defined to be the graph with the vertex set V where each (x, y) is an edge in the graph iff
|NG(x) ∩NG(y)| ≥ γ|V |, where NG(x) denotes the neighborhood of the vertex x in G.

The following result shows that if G has bounded moments, then so does Rγ(G). While this is not
sufficient by itself, we will subsequently modify Rγ(G) to ensure that we end up with a graph having
bounded moments, as well as an identifiable clique.

Lemma 3.5 (If G has bounded moments, then Rγ(G) has bounded moments). Let S be a set of
points and G be a graph with (M, t)-bounded moments in k-sparse directions. Then for γ > 0,
Rγ(G) has (2 · 2tM/γ, t)-bounded moments in k-sparse directions.
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Proof. For any x, y in Rγ(G), the triangle inequality implies ⟨v, (x− a)− (a− y)⟩t ≤ 2t[⟨v, x−
a⟩t + ⟨v, y − a⟩t]. By taking a sum over all a in NG(x) ∩NG(y), we have

⟨v, x− y⟩t =
∑

a∈NG(x)∩NG(y)

⟨v, (x− a)− (a− y)⟩t

|NG(x) ∩NG(y)|
≤ (2t/γ|S|)

∑
a∈NG(x)∩NG(y)

[⟨v, x− a⟩t + ⟨v, y − a⟩t].

Denote Γ(α, x) := {y : neighbor of x in Rγ(G) and neighbor of a in G}. Summing over all the
edges (x, y) in Rγ(G), and since t is even and G has (M, t) bounded moments in k-sparse directions,
we see:

∑
(x,y)∈Rγ(G)⟨v, x−y⟩t ≤

2t

γ|S|
∑

(x,y)∈Rγ(G)

∑
a∈NG(x)∩NG(y)[⟨v, x−a⟩t+⟨v, y−a⟩t] =

2·2t
γ|S|

∑
(a,x)∈E

∑
y∈Γ(α,x)⟨v, x− a⟩t ≤ 2·2t·|S|

γ|S|
∑

(a,x)∈E⟨v, a− x⟩t ≤ 2·2tM |S|2
γ .

While Rγ(G) may not have any cliques either, it is guaranteed to have fairly dense subgraphs. We
will subsequently prune out points so that the resulting final graph will have a clique.

Lemma 3.6 (Rγ(G) has dense subgraphs). Let G = (V,E) be a graph and γ > 0. If x is a randomly
selected vertex of G, then the expected number of pairs y, z ∈ NG(x) so that y and z are not
neighbors in Rγ(G) is at most γ|V |2.

Proof. The expectation in question is 1/|V | times the number of triples x, y, z ∈ V so that y and z
are not neighbors in Rγ(G), but are both neighbors of x in G. By the definition of Rγ(G), if y and z
are not neighbors in Rγ(G), they have at most γ|V | common neighbors in G. Thus, the number of
such triples is at most γ|V |3, so the expectation in question is at most γ|V |2.

As outlined above, the inliers in Rγ(G) form a dense subgraph. The next procedure (PRUNING in
Algorithm 2) prunes out points from a dense subgraph (inliers in Rγ(G) for us) to find a clique.

Algorithm 2 Algorithms for clique creation and rounding
1: function PRUNING(G = (V,E),W ⊂ V )
2: Let W ′ = W
3: while ∃x ∈W ′ that is not connected to at least 2|W |/3 vertices in W ′: Remove x from W ′

4: return W ′

5: end function
6: function ROUNDING(S,G = (V,E))
7: Let δ = α3/4608.
8: Choose x ∈ S uniformly at random, let W = NG(x), and let G′ = Rδ(G)
9: if the number of pairs of points in W that are not connected in G′ is more than (8δ/α)|V |2

or if |W | ≤ (α/4)|V | return FAIL
10: else Run PRUNING on G′ and W to obtain W ′

11: return EX∼W ′ [X].
12: end function

Lemma 3.7 (Dense subgraphs can be pruned to obtain a clique). Let G = (V,E) be a graph and let
W ⊂ V be a set of vertices with |W | = β|V | and all but γ|V |2 pairs of vertices in W are connected
in G, for β, γ > 0 with γ ≤ β2/36. There exists an algorithm (PRUNING in Algorithm 2) that given
G,W, β, γ runs in polynomial time and returns a W ′ ⊂W so that |W ′| ≥ |W | − (6γ/β)|V | and so
that |W ′| is a clique in Rβ/3(G).

Proof. In Line 3 of the Algorithm, the point x which is removed satisfies |NG(x) ∩W ′| < 2/3|W |.
If we also have that |W ′| ≥ 5|W |/6 (something that we will verify later), the removal of x decreases
the number of pairs of unconnected elements in W ′ by |W ′| − |NG(x)∩W ′| ≥ |W ′| − (2/3)|W | ≥
|W |/6 = (β/6)|V |. This can happen at most (6γ/β)|V | times before we run out of unconnected
pairs of elements in W ′, thus |W ′| ≥ |W | − (6γ/β)|V | upon termination. Also, since it holds
(6γ/β)|V | ≤ (β/6)|V | = |W |/6, we indeed have |W ′| ≥ 5|W |/6 as claimed at the start. Now note
that each element of W ′ is connected to at least 2|W |/3 other elements of W ′ in G. Thus any pair of
elements of W ′ have at least |W |/3 common neighbors, and thus are adjacent in Rβ/3(G).
We are finally ready to prove our main algorithmic result on rounding. The basic idea is that most of
the inliers in G (which are at least α-fraction of vertices) are connected to many other inliers, and
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thus if we start with an inlier, its neighborhood will also contain many inliers and will be dense in the
overlap graph G′ (Lemma 3.6). Thus, we can apply the pruning of Lemma 3.7 to obtain a large clique
in the overlap graph of G′, which also has bounded moments by two applications of Lemma 3.5.
Theorem 3.8 (Rounding). Let S ⊂ Rn and let G = (V,E) be a graph with V = S and (M, t)
bounded moments in k-sparse directions. Suppose there is a subset Sg ⊂ S with |Sg| ≥ α|S| and at
least half of the pairs of points in Sg are connected by an edge in G. Suppose that the Sg has mean
µg and t-th moment bounded by M in k sparse directions. Then, there exists a randomized algorithm
that given G,S and α runs in polynomial time and returns a µ̂ ∈ Rn such that with probability Ω(α),
for all k-sparse unit vectors v, ⟨v, µ̂− µg⟩t = O(10tMα−6)

Proof. The algorithm we consider is ROUNDING (Algorithm 2). Let x and G′ be as in Line 8. We
will claim that algorithm ROUNDING succeeds as long as the following hold: (i) x ∈ Sg, (ii) x has at
least Sg/4 neighbors in Sg in G′, and (iii) the number of pairs of neighbors of x that are not neighbors
in G′ is at most (8δ/α)|V |2. First, we show that these conditions hold with probability Ω(α). The
first condition holds with probability at least α over the choice of x. Conditioned on x ∈ Sg, the
expected number of non-neighbors that x has in Sg is at most |Sg|/2. Thus, the probability that it
has more than 3|Sg|/4 non-neighbors is at most 2/3 by Markov’s inequality. Thus, the first two
conditions both hold with probability at least α/3. Finally, the expected number of pairs of neighbors
of x that are non-neighbors in G′ is at most δ|V |2 by Lemma 3.6. Thus, by Markov’s inequality,
there will be more than (8δ/α)|V |2 such non-connected neighbors with probability at most α/8.
Combining with the above, all three conditions hold with probability at least α/24.

Given these assumptions, we note that |W | ≥ |Sg|/4 ≥ (α/4)|V |, and at most (8δ/α)|V |2 of pairs
in W are not connected in G′. This implies that we pass the condition in Line 9. We will now verify
the conditions in Lemma 3.7. Since β := |W |/|V | ≥ α/4 and γ, the number of pairs of vertices
in W that are not connected in G′, is at most 8δ/α = α2/576, we have γ ≤ β2/36, satisfying the
assumptions of Lemma 3.7. Thus the returned W ′ is a clique in Rβ/3(G

′) and satisfies
|W | − |W ′| ≤ (6γ/β)|V | ≤ (48δ/α)/(α/4)|V | ≤ (α/24)|V |.

This means that |W ′ ∩ Sg| ≥ |Sg|/4− (α/24)|V | ≥ |Sg|/6. On the other hand, we know that G has
(M, t) bounded moments in k-sparse directions. Lemma 3.5 implies that G′ has moments bounded
by O(2tM/α3). Applying the lemma once more implies that Rβ/3(G

′) has moments bounded by
O(4tM/(α3β)) = O(4tM/α4). Since W ′ is a clique in Rβ/3(G

′), we have by Lemma 3.3 that if µ̃
is the sample mean of Sg ∩W ′, then

⟨v, µ̂− µ̃⟩t ≤ O(4t Mα−6) for all k-sparse unit vectors v . (2)
Since |Sg∩W ′| ≥ |Sg|/6 and the Sg has bounded t-th moment along k-sparse directions, we have that
⟨v, µ̃− µgood⟩t ≤ O(M) (see Lemma B.1 for a proof of this fact). Combining this with Equation (2)
using triangle inequality completes the proof.

3.3 Proof Sketch of Theorem 1.2

We sketch the proof here, deferring the full proof to Appendix B.1. Let S be the (1− α)-corrupted
set of samples, and Sg be the inliers. Let T = {x− y | x, y,∈ S} and Tg be its part due to inliers. To
every subset T ′ of T , we can associate a graph GT ′ having vertices S and edges between the pairs
included in T ′. Because of Lemma 2.4, Tg has certifiably bounded moments in k-sparse directions.
By Theorem 3.1, the filtering step will return a subset T ′ ⊂ T that has sizable overlap with Tg and
its graph GT ′ has bounded moments in k-sparse directions. Finally, By Theorem 3.1, the rounding
algorithm will return a µ̂ that is close to µ in all k-sparse directions. This µ̂ can be truncated to yield
a vector close to µ in the standard ℓ2-norm (Fact A.2).
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Supplementary Material

A Omitted Background

Basic Notation. We use N to denote natural numbers and Z+ to denote positive integers. For
n ∈ Z+ we denote [n] := {1, . . . , n}. We denote by R[x1, . . . , xn]≤d the class of real-valued
polynomials of degree at most d in variables x1, . . . , xn. We use poly(·) to indicate a quantity that is
polynomial in its arguments. For an ordered set of variables Q = {x1, . . . , xn}, we will denote p(Q)
to mean p(x1, . . . , xn). Throughout the paper, we will typically use the letter n for the dimension,
m for the number of samples, d for the degrees of the SoS proofs, and t for the number of bounded
moments.

Linear Algebra Notation. We use In to denote the n × n identity matrix. We will drop the
subscript when it is clear from the context. We typically use small case letters for deterministic
vectors and scalars. We will specify the dimensionality unless it is clear from the context. We denote
by e1, . . . , en the vectors of the standard orthonormal basis, i.e., the j-th coordinate of ei is equal to
1{i=j}, for i, j ∈ [n]. For a vector v, we let ∥v∥2 denote its ℓ2-norm. We call a vector k-sparse if it
has at most k non-zero coordinates. We use ⟨v, u⟩ for the inner product of the vectors u, v. We will
use ·⊗s to denote the standard Kronecker product.

Probability Notation. We use capital letters for random variables. For a random variable X , we
use E[X] for its expectation. We use N (µ,Σ) to denote the Gaussian distribution with mean µ and
covariance matrix Σ. We let ϕ denote the pdf of the one-dimensional standard Gaussian. When D is
a distribution, we use X ∼ D to denote that the random variable X is distributed according to D.
When S is a set, we let EX∼S [·] denote the expectation under the uniform distribution over S. For any
sequence a1, . . . , am ∈ Rn, we will also use Ei∼[m][ai] to denote 1

m

∑
i∈[m] ai. For a real-valued

random variable X and p ≥ 1, we use ∥X∥Lp
to denotes its Lp norm, i.e., ∥X∥Lp

:= (E[|X|p])1/p.

Definition A.1 ((2, k)-norm). We define the (2, k)-norm of a vector x, denoted as ∥x∥2,k, to be the
maximum correlation with any k-sparse unit vector, i.e., ∥x∥2,k := max∥v∥2=1,v:k−sparse⟨v, x⟩.

The following standard fact translates bounds from the (2, k)-norm to the usual ℓ2-norm when the
underlying mean µ is k-sparse (see, e.g., [DKK+22a] for a proof):
Fact A.2. Let hk : Rn → Rn denote the function where hk(x) is defined to truncate x to its k largest
coordinates in magnitude and zero out the rest. For all µ ∈ Rn that are k-sparse, we have that
∥hk(x)− µ∥2 ≤ 3∥x− µ∥2,k.

A.1 Additional SoS Preliminaries

Definition A.3 (Symbolic polynomial). A degree-d symbolic polynomial p is a collection of indetermi-
nates p̂(α), one for each multiset α ⊆ [n] of size at most d. We think of it as representing a polynomial
p : Rn → R whose coefficients are themselves indeterminates via p(x) =

∑
α⊆[n],|α|≤t p̂(α)x

α.

Theorem A.4 (The SoS Algorithm [Sho87, Las01, Nes00, Bom98]). For any n, r, ℓ ∈ Z+, and a set
of r polynomial equalities P = {p1(x1, . . . , xn) = 0, . . . , pr(x1, . . . , xn) = 0}, the following set
has an (rn)O(ℓ)-time weak separation oracle (in the sense of [GLS81]):

{q(x1, . . . , xn) : P ℓ

x1,...,xn
q(x1, . . . , xn) ≥ 0}

It is standard fact that many inequalities like Cauchy-Schwartz and the triangle inequality have a Sum
of Squares version. We will use these extensively.
Fact A.5 (SoS Cauchy-Schwartz and Hölder (see, e.g., [Hop18])). Let f1, g1, . . . , fn, gn be indeter-
minates. Then,

2

f1,...,fn,g1,...,gn


(
1

n

n∑
i=1

figi

)2

≤

(
1

n

n∑
i=1

f2
i

)(
1

n

n∑
i=1

g2i

) .

Fact A.6 (SoS Triangle Inequality). If k is a power of two, k

a1,a2,...,an
{
(
∑

i ai)
k ≤ nk

(∑
i a

k
i

)}
.
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A.2 Martingales

Definition A.7 (Submartingale). A submartingale is an integer-time stochastic process {Xi | i ∈ Z+}
that satisfies the following:

1. E[|Xi|] <∞.

2. E[Xi|Xi−1, Xi−2, . . . , X1] ≥ Xi−1.

Fact A.8 (Optimal Stopping Theorem). Let X1, X2, . . . be a sub-martingale and T be a finite
stopping time. Then, E[XT ] ≥ E[X1].

Proposition A.9. Let X1, X2, . . . be a sub-martingale for which 0 ≤ Xi ≤ 1 almost surely and fix
an integer n <∞. Then, for any t ∈ (0, 1), we have that

Pr

[
min

1≤i≤n
Xi ≥ t

]
≥ E[X1]− t

1− t
.

Proof. Let the random variable T defined as the minimum between n and argmini{Xi < t}. Then
T is a stopping time and it is finite. By the optimal stopping theorem, E[XT ] ≥ E[X1]. Also, for
every random variable Y ∈ [0, 1] and t ∈ (0, 1), Markov’s inequality implies that Pr[Y ≥ t] ≥
(E[Y ]− t)/(1− t). Using the two, we have that

Pr

[
min

1≤i≤n
Xi < t

]
≤ Pr [E[XT ] < t] < 1− E[X1]− t

1− t
.

The following lemma has its proof in [DKK+22a]. Using this, it is possible to show that O(t2 log(n))
moments being bounded is sufficient to show concentration of the t-th tensors in ℓ∞ norm.
Lemma A.10. Let D be a distribution over Rn with mean µ. Suppose that for all s ∈ [1,∞), D
has its sth moment bounded by (f(s))s for some non-decreasing function f : [1,∞)→ R+, in the
direction ej , i.e., suppose that for all j ∈ [n] and X ∼ D:

∥⟨ej , X − µ⟩∥Ls ≤ f(s).

Let X1, . . . , Xm be m i.i.d. samples from D and define µ :=
∑m

i=1 Xi. The following are true:

1. If m ≥ max
(

1
δ2 , 1

)
C (t log(n/γ))

(
2f(t2 log(n/γ))

)2t
max

(
1, 1

f(t)2t

)
, then with proba-

bility 1− γ, we have that∥∥∥∥ E
i∼[m]

[(Xi − µ)⊗t]− E
X∼D

[(X − µ)⊗t]

∥∥∥∥
∞
≤ δ .

2. If m > C(k/δ2) log(n/γ)(f(log(n/γ)))2, then with probability 1− γ, it holds∥∥∥ E
X∼S

[X]− µ
∥∥∥
2,k
≤ δ.

B Omitted Proofs from Section 3

Lemma B.1. Let t ∈ Z+ even. Let U be a set of unit vectors in Rn and S be a set with t-th central
moment bounded by M in the directions of U , i.e., EX∼S [⟨v,X −EX∼S [X]⟩t] ≤M for all v ∈ U .
Then for all T ⊂ S with |T | ≥ α|S|, if we denote by µS and µT the means of S and T respectively,
we have that

⟨v, µS − µT ⟩t ≤
M

α
,

for all v ∈ U .

Proof. Let µS := EX∼S [X] and µT := EX∼T [X]. We have that
M ≥ E

X∼S
[⟨v,X − µS⟩t] ≥ α E

X∼T
[⟨v,X − µS⟩t] ≥ α⟨v, µT − µS⟩t ,

where the last inequality uses Jensen’s inequality.
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B.1 Proof of Theorem 1.2

We restate the main theorem below.
Theorem 1.2 (List-Decodable Sparse Mean Estimation). Let t be an integer power of two. Let D be a
distribution over Rn with k-sparse mean µ. Suppose that D has t-th moments d-certifiably bounded
in k-sparse directions by M for some d = O(t) (cf. Definition 2.3) and subexponential tails in the
standard basis directions. There is an algorithm which, given α, M , t, k, and a (1−α)-corrupted
set of m = (tk log n)O(t) max(1,M−2)/α samples from D, runs in time poly(mnt) and returns a
vector µ̂ ∈ Rn such that with probability Ω(α) it is the case that ∥µ̂− µ∥2 = Ot(M

1/t/αO(1)/t).

Algorithm 3 Algorithm for list-decodable sparse mean estimation.
1: function LDSPARSE-MEAN(S = {x1, . . . , xm}, α,M, t, k)
2: Let C ∈ Z+ be a large enough constant (C > 5 suffices).
3: Form the set T = {x− y | x, y ∈ S}
4: T ′ ← LDMEAN-SOS-FILTER(T, t, Ct,M)
5: Let G = (V,E) with V = S and E = {(x, y) : x− y or y − x belongs in T ′}.
6: µ̂← ROUNDING(S,G).
7: Let hk : Rn → Rn denote the function where hk(x) is defined to truncate x to its k largest

coordinates in magnitude and zero out the rest.
8: return hk(µ̂).
9: end function

Proof. Let S be the (1− α)-corrupted set of samples given as input to the algorithm and Sg be the
subset of S corresponding to the inliers. Given S, construct the set of differences T := {x − y |
x, y ∈ S}. Also, denote by Tg the same set of corresponding to the inliers.

For the inliers, the number of samples is large enough so that with constant probability the conclusion
of Lemma 2.4 holds. We thus condition on this event for the rest of the proof. Its first part states
that Sg has (M ′, t, d)-certifiable bounded moments in k-sparse directions, where M ′ = 8M and
d = O(t). By SoS triangle inequality, Tg (Fact A.6) has (2tM ′, t, O(d)) bounded central moments
in k-sparse directions.

Now, Theorem 3.1 identifies a subset T ′ ⊂ T such that with probability at least 2/3:

1. For all k-sparse unit vectors v it holds
∑

x∈T ′⟨v, x⟩t ≤ 6 · 2tM ′|T |.

2. We have |T ′ ∩ Tg| ≥ |Tg|/2.

Construct the graph G = (V,E) with vertex set V = S and edges (x, y) for every pair of x, y that
x− y or y−x is in T ′. By Item 1 above, G has (6 ·2tM ′, t) bounded moments in k-sparse directions.
By Item 2, at least half of the pairs of points in Sg are connected by an edge in G. Moreover, Sg has
(M ′, t, d)-certifiable bounded moments in k-sparse directions for d ≥ t. These are the conditions of
Theorem 3.8, thus an application of this to the graph G yields that for every k-sparse unit vector v we
have that

⟨v, µ̂− µg⟩t = O(10tM ′α−6).

Also, by the second part of the conclusion of Lemma 2.4, we have that ⟨v, µ− µg⟩t ≤M ′α−6 for
every k-sparse unit vector v. Using the triangle inequality, we have that ⟨v, µ− µ̂⟩t ≤ O(20tM ′α−6)
for every k-sparse unit vector v. Then, Fact A.2 provides a way to truncate the vector µ̂ so that the
result hk(µ̂) satisfies ∥hk(µ̂) − µ∥t2 = O(M ′α−6) = O(Mα−6). Raising both sides to the power
1/t gives the desired claim.

C Information-Computation Tradeoffs

In this section we present evidence of an information-computation gap for our problem, that is, we
provide evidence that computationally efficient list-decoding algorithms for sparse mean estimation
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of distributions with bounded t-th moments up to error O(α−c/t) might inherently need more samples
than what is needed to get the same error by computationally inefficient algorithms. More specifically,
we give statistical query and low-degree polynomial testing lower bounds for list-decodable sparse
mean estimation, which indicate that the factor kO(t) appearing in the sample complexity of our
algorithm from the previous sections might be necessary for computational efficiency. This is to
be compared with the fact that, for distributions with bounded t-th moments, it is information-
theoretically possible to identify a list of O(1/α) candidate vectors, containing at least one that is
within euclidean distance O(α−1/t) using O(k log n)/α3 samples.3

In the statistical query model, algorithms are allowed only to perform queries of the following kind
instead of drawing samples.
Definition C.1 (STAT Oracle). Let D be a distribution on Rn. A statistical query is a bounded
function f : Rn → [−1, 1]. For τ > 0, the STAT(τ) oracle responds to the query f with a value v
such that |v −EX∼D[f(X)]| ≤ τ . We call τ the tolerance of the statistical query.

The results of this section follow by simple modification of previous work of [DKS18a]. We thus do
not include self contained proofs here but mention only the key differences. We start by formally
defining the problem of list-decodable sparse mean estimation. In fact our lower bound would hold
against even a weaker noise model, where the noise is i.i.d. from an arbitrary distribution.
Problem C.2 (List-Decodable Sparse Mean Estimation). Fix ρ > 0 and α ∈ (0, 1/2). Given access
to the mixture distribution αN (ρv, In) + (1− α)B, for some (unknown) k-sparse unit vector v in
Rn and some (unknown and arbitrary) distribution B, the goal is to find a list of vectors L with the
guarantee that there exists a u ∈ L such that ∥u−EX∼D[X]∥2 < ρ/4.

The lower bounds of this section will in fact be about the more basic hypothesis testing version of the
problem.
Problem C.3 (Hypothesis Testing of List-Decodable Sparse Means). Fix ρ > 0. We define the
following hypothesis testing problem:

• H0: The underlying distribution is N (0, In).

• H1: The underlying distribution is αN (ρv, In) + (1− α)B, for some unknown k-sparse
unit vector v in Rn and some unknown distribution B.

It is known that the two problems are related by the following reduction. The resulting algorithm is
known to be implementable in both the statistical query and the low-degree polynomials model.
Fact C.4 ([DKP+21]). Fix ρ > 0 and the dimension n ∈ Z+. Denote by A an algorithm that,
whenever given some access to the distribution αN (ρv, In) + (1 − α)B with unknown B, v, it
returns a list L of candidate vectors such that there exists u ∈ L with ∥u− ρv∥2 ≤ ρ/4. Then, there
exists a procedure that calls A twice and solves the hypothesis testing Problem C.3 with probability
at least 1− |L|2/n . The running time of this reduction is quadratic in |L|n.

Proof. We follow the same proof strategy as [DKP+21, Lemma 5.9] with a crucial modification:
instead of using the random rotation matrix A in [DKP+21, Algorithm 1], we use a special kind of
rotation matrix that can only shuffle the coordinates and flip the signs (see Fact C.5 below). This
modification is needed because the latter family of rotation matrices preserve the sparsity of vectors.
We obtain the desired conclusion by following the same proof as [DKP+21] but replacing [DKP+21,
Lemma 5.10] with the following claim :

Fact C.5. Let σ1, . . . , σn be n independent Rademacher random variables. Let A be an n × n
independent permutation matrix generated uniformly at random. Let A′ be the matrix generated by
multipliying the i-th row of A by σi for each i ∈ [n], i.e, A′

i,j = σiAi,j . For any fixed vectors u and
v, let Z := ⟨u,A′v⟩. Then E[Z] = 0 and the variance of Z is ∥u∥22∥v∥22/n.

Proof. Let Z = ⟨u,A′v⟩ and observe that Z =
∑

i,j σiuiAi,jvj . Since σi’s are zero mean, we have
that E[Z] = 0. To calculate the variance, we use the following facts: (i) For any i ∈ [n], we have that

3This result is shown for the dense case in [DKS18b]; the adaptation to the sparse case follows immediately
by taking a union bound over the

(
n
k

)
coordinates before applying the VC concentration inequality.
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Ai,jAi,ℓ = 0 almost surely if j ̸= l, and (ii) E[A2
i,j ] = E[Ai,j ] = 1/n. Using these, we obtain the

following expression for the variance of Z.

Var(Z) = E


∑

i,j

σiuiAi,jvj

2
 = E

 ∑
i,j,k,ℓ

σiσkuivjukvℓAi,jAk,ℓ


= E

∑
i,j,ℓ

σ2
i u

2
i vjvℓAi,jAi,ℓ

 = E

∑
i,j

u2
i v

2
jA

2
i,j

 =
∑
i,j

(u2
i v

2
j )/n = ∥u∥22∥v∥22/n.

where the third equation is because E[σiσj ] = 0 if i ̸= j and the next one because of Ai,jAi,ℓ = 0 if
j ̸= ℓ.

Since the variance is bounded, we can apply the Chebyshev’s inequality to get an upper bound on the
failure probability of the reduction.

We now state the SQ lower bound and sketch its proof.

Theorem C.6 (Statistical Query Lower Bound). Let k, n, t ∈ Z+ with k ≤
√
n, and c > 0 be a

small enough constant. Let A be an SQ algorithm that solves the hypothesis testing Problem C.3
with ρ = c(tα)−1/t. Then, A does one of the following:

• it uses at least one query with tolerance O
(
2t/2k−(t+1)/4 exp

(
O((tα)−2/t)

))
or

• it makes Ω
(
n
√
k/16k−(t+1)/2

)
many queries.

Proof. Let A be the one-dimensional distribution of [DKS18b, Lemma 5.5], which satisfies the
following properties: (i) A = αN (ρ, 1)+ (1−α)E for some distrinbution E, (ii) A matches the first
t moments withN (0, 1), and χ2(A,N (0, 1)) :=

∫ +∞
−∞ (A(x)−ϕ(x))2/ϕ(x)dx = exp(O(tα)−2/t),

where ϕ(x) denotes the pdf ofN (0, 1). Then, the result follows from [DKK+22a, Corollary 6.7].

Instead of using a reduction to the hypothesis testing problem, one can also obtain the exact same
lower bound directly against the list-decodable mean estimation algorithms (i.e., search version
of the problem as opposed to the decision version of the problem) by using the framework of
[DKS17, DKS18c]; see, for example, Theorem 1.3. The reduction to the hypothesis testing problem
outlined here is provided for two reasons: (i) it is conceptually insightful, and (ii) it allows us to show
lower bounds against low-degree polynomial tests (see the remark below).

Remark C.7. By using the equivalence between SQ and low-degree polynomials [BBH+21], Theo-
rem C.6 also implies qualitatively similar lower bound holds against low-degree polynomial tests.
Specifically, the relevant statement for our case is obtained by using [DKK+22a, Theorem 6.23]
with m = t, with the following interpretation: Unless the number of samples used is greater than
k(1−c)(t+1)/(2t+1χ2(A,N (0, In)), any polynomial of degree roughly up to kc log n fails to provide
a good test for the hypothesis testing problem of Problem C.3. We refer to [BBH+21] for the formal
definitions that quantify the notion of goodness of polynomial tests.

D Adaptations of Prior Work to the Sparse Setting

Here we comment on prior SoS-based techniques for list-decodable (dense) mean estimation [KS17,
RY20a]. While these prior techniques can be plausibly adapted to the sparse setting with some effort
to match our guarantees qualitatively, this would result in significantly more complicated algorithms.
We briefly point out some difficulties below.

First, to ensure that the algorithms identify subsets of the samples that satisfy certifiably bounded
moments in all k-sparse directions requires additional variables and constraints to the algorithms.
Additionally, one would need to replace the bounded moments in all directions condition by the
corresponding condition for the sparse case, and ensure that all the proof steps can be modified to
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rely only on the latter – this would result in minor modifications of the original algorithms, such as
thresholding of candidate solution vectors.

Second, at the end of this process, while the algorithm might qualitatively match the er-
ror guarantee that we achieve, the runtime would continue to be (mn)O(t) for [KS17] or
(1/α)polylog(1/α)nO(max{1/α4,t}) for [RY20a] – both of these are qualitatively worse than the runtime
we achieve when α is sufficiently small. To obtain improved runtime using these prior techniques,
one would require additional ideas, e.g., from [ST21], to be adapted to this setting, overall resulting
in a far more complicated algorithm.

On the other hand, it seems difficult to adapt the multi-filtering technique from [DKS18a] to the
setting we consider without any introduction of an SoS component. We remind the reader that the
[DKS18a] algorithm depends critically on knowing the higher moments of the good points exactly,
and does not generalize to less specific distribution families.
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