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Abstract

This paper introduces ActionSense, a multimodal dataset and recording frame-
work with an emphasis on wearable sensing in a kitchen environment. It provides
rich, synchronized data streams along with ground truth data to facilitate learning
pipelines that could extract insights about how humans interact with the physical
world during activities of daily living, and help lead to more capable and collab-
orative robot assistants. The wearable sensing suite captures motion, force, and
attention information; it includes eye tracking with a first-person camera, fore-
arm muscle activity sensors, a body-tracking system using 17 inertial sensors,
finger-tracking gloves, and custom tactile sensors on the hands that use a matrix
of conductive threads. This is coupled with activity labels and with externally-
captured data from multiple RGB cameras, a depth camera, and microphones. The
specific tasks recorded in ActionSense are designed to highlight lower-level
physical skills and higher-level scene reasoning or action planning. They include
simple object manipulations (e.g., stacking plates), dexterous actions (e.g., peeling
or cutting vegetables), and complex action sequences (e.g., setting a table or loading
a dishwasher). The resulting dataset and underlying experiment framework are
available at https://action-sense.csail.mit.edu. Preliminary networks and analyses
explore modality subsets and cross-modal correlations. ActionSense aims to
support applications including learning from demonstrations, dexterous robot con-
trol, cross-modal predictions, and fine-grained action segmentation. It could also
help inform the next generation of smart textiles that may one day unobtrusively
send rich data streams to in-home collaborative or autonomous robot assistants.

1 Introduction

State-of-the-art machine learning for object detection and natural language processing speak to the
power of large, high-quality datasets. We seek to facilitate similar leaps forward in the fields of
robotic assistants and human action understanding. A key ingredient in training more capable and
collaborative robots will be new, high-quality human activity datasets. These must span multiple
sensing modalities well-suited to complex, unstandardized environments such as the human home.

Towards this end, we propose ActionSense, a new multimodal activity dataset and recording
framework with a particular emphasis on wearable sensors. ActionSense aims to provide detailed
recordings of humans performing everyday actions, enabling insights into manipulation, task planning,
and teaching robots by demonstration. It has the potential to advance in-home robotics as well as our
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Figure 1: A suite of wearable and external sensors records rich activity information in a mock kitchen.

understanding of how humans perform dexterous manipulations or abstract tasks. As summarized in
Figure 1, it uses a multimodal collection of wearable sensors including body trackers, first-person
video with attention estimates, muscle activity sensors, and custom tactile gloves made with a matrix
of conductive threads. This is coupled with synchronized global perspectives and ground truth data,
including activity labels, video from multiple environment cameras, depth camera data, and audio.

Focusing on wearable sensing has multiple benefits. It circumvents issues of occlusions or workspace
restrictions, yields fine-grained motion information, and can capture valuable internal states such
as muscle activity or attention. Including multiple synchronized modalities enables cross-modal
analyses that can probe a person’s temporal and spatial reasoning or evaluate which modalities are
most useful for certain tasks. Such insights could also help guide the development of future smart
textiles. Finally, multimodal wearable sensing is valuable for allowing robots to mimic or assist a
person’s actions; for example, coupling motion, force, and attention could yield more informative
demonstrations and more accurate action predictions.

This paper presents an actively growing human activity dataset, as well as the extensible framework
used to capture it. As shown in Figure 1, the dataset is currently focused on daily tasks in a
kitchen environment. This is a common target for robot assistants, and therefore one for which
ActionSense’s insights into human behavior are especially exciting. Moreover, kitchen tasks
are structured enough to facilitate extracting commonalities from demonstrations but also abstract
enough to introduce high-level reasoning and demonstration variety. Activities are selected to
highlight dexterous manipulations, an array of objects and tools, short well-defined tasks, and longer
less-structured action sequences.

This project includes the following contributions:

• A framework for recording synchronized multimodal data from wearable and global sensors
in a real-world setting, including technical implementations and experimental considerations;

• An expanding dataset focused on daily tasks in a kitchen environment featuring 1) wearable
sensors for body and finger tracking, forearm muscle activity, tactile information, and eye
tracking with first-person video, 2) synchronized activity labels, environment-mounted color
and depth cameras, and microphones, and 3) survey data exploring expertise, workload, and
visions for robot assistants;

• Open-source code and instructions for using the presented dataset or recreating the presented
framework, which is extensible to additional sensors or environments;

• A plan for long-term retention and availability of the data and code.

The remainder of this paper first places the project in the context of prior work. The ActionSense
approach, experimental paradigm, sensors, and data management are then summarized. Conclusions
and future directions are then discussed. Supplementary materials discuss each topic further.
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2 Related Work

2.1 Activity Datasets

Many large-scale image and video datasets about activities have been presented for action classifi-
cation, recognition, and description, including Ego4D [8], ActivityNet [10], Charades [33] and its
extension to Action Genome [13], Visual Genome [15], and EPIC-KITCHEN-100 [4]. These have
amassed large corpuses via, for example, searching online or crowdsourcing. They have yielded
successes for understanding human behaviors from the perspective of vision analysis. However, these
collection methodologies can also lead to large amounts of variability that may hinder certain types of
learning pipelines, and their scale often limits them to focusing on a single modality such as vision.

To help address this issue, multimodal datasets aim to combine vision with additional streams. The
NTU RGB+D 120 dataset uses external cameras to provide RGB, depth, body joints, and infrared
data during daily activities [19]. CMU-MMAC [5] moves towards integrating wearable devices by
recording from external cameras, microphones, five IMUs, and a smart watch during cooking. The
MMAct dataset uses external cameras, first-person video, a watch with an IMU, and a smartphone
that streams IMU, barometer, and WiFi strength data during daily activities [14]. Others have focused
on augmenting first-person video with IMUs [34] or acceleration and heart rate data [23]. The UTD-
MHAD dataset combines an RGBD camera with a wearable IMU during gestures or exercise-related
motions [3]. A daily intention dataset also featured an on-wrist camera and an accelerometer to
observe hand-object interactions [39]. Such datasets explore how multimodal sensing can improve
behavior understanding. However, they typically contain a small number of wearable sensors, which
restricts the amount of body motion that can be captured, and a small number of modalities, which
limits the diversity of behavioral information and context. They also require varying amounts of
post-processing to label or parse. Nevertheless, the successes demonstrated by machine learning
pipelines built upon them have shown that multi-modal approaches can yield valuable insights.

ActionSense aims to leverage a large number of synchronized, labeled data streams to provide
detailed activity information during a set of well-defined tasks in a consistent setting. Table 1 presents
selected metrics comparing it to previous multimodal datasets. ActionSense uses wearable sensors
to capture body skeletons, hand poses, attention estimates, muscle activity, and high-resolution tactile
sensing. These are coupled with external RGB cameras, depth cameras, microphones, timestamped
activity labels, and detailed metadata. Code is provided to parse and analyze the data. These features
aim to facilitate learning pipelines that can leverage highly multimodal wearable and global data.

In addition, ActionSense provides the software used to stream, save, visualize, and parse the
data. Endeavors such as the Microsoft Platform for Situated Intelligence [2] have demonstrated the
importance of a flexible framework for online processing of multimodal data for real-time applications.
In this vein, ActionSense provides its streamlined Python infrastructure for recording from an
extensible suite of sensors and managing experiments to create an annotated hierarchical dataset.

2.2 Data-Driven Robotics

Data-driven approaches to robotics have been gaining increasing attention due to their potential for
flexibility and wide applicability. Past work has demonstrated that even single-task datasets can be
highly valuable such as for grasping [27, 16], pushing [6], and poking [1]. Multimodal data can also
facilitate fine distinctions, such as material properties of food using vision, audio, and force [30]. Such
datasets are useful for tackling particular tasks, but also highlight that collecting real-world robotic
training data can be difficult, time-consuming, and costly. This often leads to a lack of diversity

Table 1: Comparison of ActionSense to Related Multimodal Datasets
Dataset Classes Subjects Cameras Modalities Environment/Activities Year

CMU-MMAC [5] 5 43 6 RGB, Audio, 3D Joints, IMU Kitchen activities 2010
MSR-Action3D [17] 20 10 1 Depth, 3D Joints Exercise and arm motions 2010
UT-Kinect [40] 10 10 1 RGB, Depth, 3D Joints Daily motions, arm motions 2012
Multiview 3D Event [37] 8 8 3 RGB, Depth, 3D Joints Daily actions 2013
Office Activity [36] 20 10 3 RGB, Depth, 3D Joints Office activities 2014
UTD-MHAD [3] 27 8 1 RGB, Depth, 3D Joints, IMU Exercise and arm motions 2015
Egocentric Activity [34] 20 — 1 RGB, IMU Daily actions, office activities, exercise 2016
Stanford ECM [23] 24 10 1 RGB, Heart Rate, Accelerometer Physical activities 2017
Daily Intention [39] 34 12 1 RGB, Accelerometer Daily actions 2017
MMAct [14] 37 40 5 RGB, Smartphone IMU, Smartwatch IMU, Wi-Fi strength, Barometer Daily actions 2019
NTU RGB+D [19] 120 106 3 RGB, Depth, IR, 3D Joints Daily actions 2020
ActionSense 20 10+ 7 19 IMUs, 3D Body Joints, Hand Pose, Gaze, EMG, Tactile, RGB, Depth, Audio Kitchen activities 2022
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that limits applications of embodied intelligence. One way to address this is to collect datasets in
simulation. Such environments include virtual human and robotic hands [7], VirtualHome [28],
Meta-World [42], and BEHAVIOR [35]. These platforms can reduce the effort needed to generate
large amounts of data, but the gap between simulation and reality needs to be bridged.

Alternative approaches include using human supervision to provide diverse high-quality data, which
has been the core of many research domains. For example, teleoperation has been used to collect
robotic manipulation datasets [32, 21]. These can yield valuable insights, but require careful control
of dynamic systems which may be difficult to operate in the real world. Such considerations raise
challenges for creating more capable assistants for daily living tasks [38].

In addition to human supervision, learning from human behaviors can augment or simplify data
collection. This has benefited applications such as grasping by observing human poses [18], humanoid
robot imitation of simple human motions [11] and dancing [24], pouring liquid by using videos of
humans from multiple viewpoints [31], or agile quadruped locomotion by imitating a dog [26].

Such approaches demonstrate the value of data-driven robotics and high-quality datasets. However,
there is still a gap between existing systems and a future of ubiquitous personal robots. This challenge
lies in collecting multi-faceted descriptions of human behavior in structured formats for varied tasks.
ActionSense aims to take a step towards addressing this by focusing on smart wearable sensing
in a kitchen environment and recording labeled multimodal streams during common tasks.

3 ActionSense Design and Methodology

ActionSense aims to support a variety of applications and learning pipelines by providing a
dataset and a recording framework for rich multimodal descriptions of human activity in real-world
environments. This necessitates considerations such as the scope and diversity of activities, the amount
of structure in activities and instructions, the recording paradigm, and the modalities. These are
discussed below and in the supplementary materials, to elucidate the dataset and for reproducibility.

3.1 Applications and Use Cases

The sensors, activities, protocols, and data were designed to support a variety of future learning
pipelines. Applications to robotics include teaching autonomous or collaborative robots by demon-
stration; this may focus on high-level planning using ActionSense’s complex task sequences, or
on improving robot control to be closer to human-level dexterity using its more structured activities.
These range from sequence prediction models to object grasping and manipulation. Demonstrations
may also be used to teach people new skills, particularly by comparing expert and novice performance.

Additional use cases could extract generalizable insights about sensing modalities. For example,
cross-modal predictions may use one sensor to predict the output of another sensor; this could
eventually reduce the number of sensors in wearable deployments, further probe human motions and
object interactions, or explore relationships between egocentric wearable data and third-person video
or audio. Multiple modalities could also enable automatic fine-grained action segmentation beyond
the provided activity labels, such as using audio or forces to detect individual slices of a cucumber.

Finally, insights extracted from such pipelines could be used to guide future wearable systems. They
can inform sensor selection for specific tasks, and guide the development of smart textiles.

While the current work focuses on the dataset and the recording framework, preliminary analyses
related to the above envisioned applications are included in the supplementary materials. Activity
classification using various subsets of the sensors demonstrates that each modality can provide useful
information about the activities on their own, and that using multiple modalities together provides
additional insights. A cross-modal correlational analysis also suggests the feasibility of predicting
tactile data from muscle activity. Additional models and benchmarks will be explored in the future.

3.2 Activities

A paramount consideration of datasets is the selected activities and how they can support the intended
use cases. Since ActionSense aims to enable insights about how humans manipulate objects or
approach household tasks that can be conferred to robots, it features a combination of structured low-
level tasks and open-ended action sequences. The current dataset focuses on kitchen tasks; this setting
is a common target for assistive robots, provides structure to facilitate comparing iterations across
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Figure 2: The selected kitchen activities highlight a range of manipulations and action sequences.

subjects, includes high-level planning flexibility, and features dexterous manipulations. Narrowing the
scope to improve consistency across subjects helps facilitate a variety of machine learning pipelines
to develop more agile, fluid, and dexterous robot controllers. Future expansions of ActionSense
can include more diverse scenarios to increase its range of applications.

There are currently 20 unique labels in the dataset, as illustrated in Figure 2. This selection is
discussed below, where the activities are divided into 6 categories of tasks.

Peeling and slicing represent dexterous activities requiring in-hand manipulation with dynamic grasps,
coordination between hands, and tool use. They are thus well-suited to a multimodal dataset since
aspects such as hand pose, motion paths, force, and attention are all critical. Using cucumbers,
potatoes, and bread with disparate hardnesses and shapes precipitates disparate forces, techniques,
and tool selection. They can also be performed by both experts and novices, but with different
techniques and efficiencies. In addition to these low-level motion and high-level reasoning aspects,
the tasks are also interesting for computer vision pipelines since the objects change appearance and
subdivide. Finally, they yield an auxiliary labeled activity of clearing the cutting board.

Spreading almond butter or jelly on bread uses a knife in a different way. It involves two-handed
coordination, varying object appearances, and motions that are repetitive while adapting to the task
and object. The consistencies of almond butter and jelly also lead to different techniques.

Wiping pans or plates with towels or sponges all aim to clean a flat surface but can have varied
approaches. For example, large or small circular or linear periodic motions may all accomplish the
goal. The amount of force applied throughout the motion is also a key component. Whether a person,
or ultimately a robot, chooses a particular strategy may depend on preference or the object state.

Opening and closing a jar are simpler manipulations but still require precise coordination and subtle
motions. Tactile forces and muscle activity are also key components of these operations.

Pouring water can be informative for prediction or classification pipelines by introducing a transparent
liquid that can be hard to model, manipulate, or detect. Each object also continuously changes weight.

High-level tableware tasks such as setting a table or loading and unloading the dishwasher introduce
more task reasoning. They combine longer sequences of dexterous manipulations with abstracted
planning, catering to pipelines that focus on motion primitives as well as action sequence prediction.

All together, these activities span multiple levels of abstraction, manipulations, and objects. Note that
cooking tasks such as following a recipe, frying, or baking are left for future extensions; considerations
for this decision included focusing on shorter tasks to enable more unique activities and more
repetitions, reducing safety risks, and logistics such as installing ventilation and running water.

3.3 Experimental Paradigm

The type of instructions, experimental flow, and thoughtful consideration of risks and benefits are
vital to implementing effective human subjects experiments that yield impactful data.

During the ActionSense experiments, activity orderings and instruction levels are designed to
balance efficiency and amount of data variation. Each activity is performed multiple times sequentially
before advancing to the next activity; this tends to increase intra-subject consistency, which may be a
boon or drawback depending on the learning pipeline. The sequence of activities features shorter
well-structured tasks at the beginning and concludes with less-structured planning tasks; this allows
subjects to acclimate to the environment and sensors. Finally, instructions describe well-defined
objectives while being open-ended enough to introduce varying strategies. For example, table-setting
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specifies the number of place settings and the items to use but not how to approach or sequence the
task. After receiving instructions, the subject may prefer to proceed through all repetitions of that
activity on their own or wait for the experimenter’s cues. In all cases, the experimenter watches the
subject and uses the recording software to mark when activities start and stop to generate label data.

Care was also taken to ensure safety and privacy. The wearable sensors allow free movement within
the predefined space, and commercially available sensors are used when applicable. Subjects are
made aware of risks such as from tools, food, or tasks being more awkward than usual when wearing
sensors. Subjects are compensated $25 for the approximately 2-hour session, even if they pause or
stop at any time. A media release form describes the public dataset including video and audio that may
be personally identifiable, and notes that masks can be worn to help obscure identity. The protocol is
approved by MIT’s Committee on the Use of Humans as Experimental Subjects (COUHES).

3.4 Software Framework and Recording Philosophy

The recording software supports synchronized data streaming, saving, and visualizing across multiple
sensors with varying sampling rates and data formats. Its class hierarchy streamlines adding new
sensors, and multi-threading and multi-processing keep CPU and RAM usage manageable. Post-
processing interfaces can also merge streamed data with data recorded by third-party applications.

The software also aims to facilitate higher-quality data with fewer experimental artifacts by allowing
researchers to quickly identify issues, record rich metadata without tedious post-processing, and focus
more on creating a seamless experience for the subject rather than on implementation details. A GUI
allows researchers to label activities in real time, flag activities or calibrations as good or problematic,
and submit timestamped notes at any time. The system prints periodic sensor status updates, and
streams a customizable composite visualization from multiple sensors as shown in Figure 4.

ActionSense uses this framework in conjunction with a philosophy of recording as much con-
tinuous data as possible. Not starting and stopping recording between activities provides a more
comprehensive view of how humans interact in the kitchen environment, which can be critical for
training safe and effective robot assistants. It also enables pipelines that require a complete history of
sensor measurements, such as continuous pose estimation from IMUs. Finally, it does not restrict
the dataset to the pre-selected activities; researchers may label any “unintentional” activities during
post-processing, either manually or automatically via strategic combinations of modalities.

Synchronizing multiple sensors: A key aspect of the software is allowing multiple data streams to be
synchronized in a flexible and extensible way. ActionSense records a wall-clock timestamp for
every sample from every sensor. This allows each sensor to operate independently, simplifies online
processing, and streamlines adding new sensors. Timestamps may be acquired by the recording
software or by device hardware as applicable. Analysis pipelines can use the timestamps to extract
portions of data from each sensor that correspond to activity label timestamps. They can also be used to
resample streams to unify the number of elements in a given window of time. Supplementary materials
include further details about timestamps, synchronizing clocks, and sensor-specific considerations.

Extensibility: Given the above synchronization scheme, acquisition from each sensor can occur in its
own thread or process without depending on any other sensors. Adding or replacing a sensor does
not impact the rest of the pipeline; it merely comprises creating a subclass that provides methods for
acquiring samples with appropriate timestamps. Supplementary materials include additional details.

3.5 Ethical Considerations

Recording and using human activity data are associated with ethical considerations. Experiments
were designed to ensure well-informed consent regarding safety, privacy, and publishing identifiable
information. The recruitment pool may be biased for certain metrics. Systems that use the dataset for
understanding behavior or training robots should carefully consider concerns such as end-user privacy,
dangers of in-home robots, increased worker surveillance using wearables, and job displacement.
Such considerations are discussed further in the dataset metadata and supplementary materials.
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(a) Wearable Sensors (b) Environment-Mounted Sensors
Figure 3: Synchronized wearable and external sensors provide rich person-centric and global data.

4 Wearable Sensors

Figure 3a and Table 2 summarize the current suite of wearable sensors. Focusing on wearables
enables fine-grained monitoring of egocentric states or motions. It also avoids workspace limitations,
which is valuable for extensions to diverse environments and also for structured settings where
dynamic aspects such as fingers or objects may be occluded in third-person views. However, wearing
sensors may impact how a person performs tasks and thus affect the studied behaviors; for example,
gloves may hinder dexterity. Survey questions focus on the perceived obtrusiveness of each sensor,
and the dataset includes some experiments that omit certain sensors to facilitate comparative analyses.

The following sections and the supplementary materials discuss the methods of operation and
streaming, third-party software integrations, calibration routines, and limitations of each sensor.

4.1 Body and Finger Tracking

The Xsens MTw Awinda system [41] estimates body pose and position. It comprises 17 wireless
IMU modules worn on the body using elastic straps, a tight-fitting jacket, and a headband. Custom
elastic straps were created to secure the foot sensors rather than using the default shoe inserts. Manus
Prime II Xsens gloves [22] augment the skeleton with hand poses by using embedded bend sensors.

The Xsens and Manus applications process data in real time to estimate positions and orientations
of body and finger segments. To support future endeavors such as custom calibrations or accuracy
evaluations, the continuous ActionSense recordings include calibration periods. Calibrations
defined by the third-party applications feature known poses. Two custom periods also augment known
poses with known global positions: standing at the origin facing along the x axis with arms relaxed
(in N pose), and standing at (100 cm, 150 cm) facing the opposite direction with arms outstretched
(in T pose). These are performed at both the start and end of each experiment to help estimate drift.

During experiments, ActionSense records data that is streamed from the Xsens software via a
network socket. In addition, the Xsens software can record all data in a proprietary format and then
reprocess it after the experiment; ActionSense includes scripts to import these improved estimates
and synchronize them with the rest of the sensor suite. The original data is also provided separately.

Limitations: Wearable body and finger tracking facilitates freedom of motion and larger workspaces,
but may have lower accuracy than external motion-tracking infrastructure. For example, global
positions inferred from the IMUs tend to drift over time. In addition, the Manus gloves can fuse IMUs
with bend sensors, but some current experiments disable the IMUs due to observed accuracy issues;
this reduces the measured degrees of freedom to finger curling and excludes lateral finger spreading.

4.2 Eye Tracking

The Pupil Core headset by Pupil Labs [29] features a wide-angle first-person RGB camera and an
infrared camera aimed at the pupil. The Pupil Capture software detects pupil orientations in real time
and projects gazes into world-video coordinates to estimate where the person is looking. During
calibration, the user gazes at a target while moving their head to vary eye orientation; ActionSense
records from all sensors to enable re-calibration or accuracy evaluation in post-processing.
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Table 2: Wearable Sensors

The Pupil Capture software streams data to the ActionSense framework via network sockets
during experiments, and can also save all data to dedicated files. ActionSense includes scripts
to merge its recorded data into the main dataset after an experiment, to provide the most consistent
sampling rates possible. The original streamed data and the raw recorded data are also available.

Limitations: The small wearable sensor provides valuable attention estimates, but it requires a USB
cable; ActionSense uses a stretchable coiled overhead cable to reduce motion hindrance, but
a wearable computer could eliminate this tether. In addition, current experiments use a single eye
camera; leveraging binocular information may improve gaze accuracy. Finally, the wide-angle camera
is adjusted to view as much of the task as possible, but does not fully span the subject’s field of view.

4.3 Muscle Activity

A Myo Gesture Control Armband from Thalmic Labs is worn on each forearm. It contains 8
differential pairs of dry EMG electrodes to detect muscle activity, an accelerometer, a gyroscope, and
a magnetometer. It also fuses the IMU data to estimate forearm orientation, and classifies a set of five
built-in gestures. ActionSense wirelessly streams all data by leveraging a Python API [25]. The
device normalizes and detrends muscle activity without dedicated calibration, but forearm orientation
estimates are relative to an arbitrary starting pose. To facilitate transforming these into global or task
reference frames, the calibration poses described in Section 4.1 include known arm orientations.

Limitations: The current sensor suite only includes muscle activity from the forearms, which are
highly useful for the chosen manipulation tasks but which may not capture all relevant forces and
stiffnesses. In addition, the estimated orientations may drift over time.

4.4 Tactile Sensors

Custom sensors on each glove provide tactile information. Conductive threads are taped to a pressure-
sensitive material that decreases its electrical resistance when force is applied. Threads are oriented
perpendicularly to each other on opposite sides of the material, such that each intersection point acts
as a pressure sensor. Measuring resistance between each pair of threads yields a matrix of tactile
readings. This technique has been explored previously for applications such as smart carpets [20].

The current implementation features 32 threads in each direction that are routed to form a 23×19
grid on the palm, a 5×9 grid on the thumb, an 11×4 grid on the little finger, and a 13×4 grid on each
other finger. A microcontroller and a custom PCB perform processing, multiplexing, and sampling.
These are worn on the hand or arm. Data can be streamed via USB or wireless communication.

ActionSense provides two types of calibration to facilitate force or pose estimation pipelines.
First, the subject presses on a Dymo M25 Postal Scale using a flat hand or individual fingers while
weight readings are recorded from the scale via USB. The person then holds 5 unique objects. All
sensors are recorded during these activities, including the depth camera and finger joint data.

Limitations: These flexible sensors provide high-resolution tactile information, but their sampling
rate and material response time may preclude highly dynamic tasks. Calibration periods are designed
to help interpret the readings, but accuracy when converting to physical units may vary over time.
Finally, the tactile sensors do not reach the fingertips since the underlying gloves feature open fingers.
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Table 3: Environment-Mounted Sensors

5 Ground Truth, Environment-Mounted Sensors, and Surveys

While the focus on wearable sensors provides detailed activity information and facilitates expanded
workspaces, ActionSense complements them with environment-mounted sensors and manual
labels to provide global perspectives and ground truth for learning purposes. Figure 3b, Table 3, the
following sections, and the supplementary materials describe these sensors and software features.

5.1 Interactive Activity Labeling

The ActionSense software includes a GUI that enables real-time labeling while accommodating
unexpected issues or events. It allows researchers to indicate when calibrations or activities start and
stop, and to mark each one as good or bad with explanatory notes. Entries are timestamped and saved
using the common data format, so pipelines can extract labeled segments from any subset of sensors.

5.2 Cameras

RGB Cameras: Five FLIR GS2-GE-20S4C-C cameras provide ground-truth vision data of human
activities. Four cameras surround the kitchen perimeter, while one camera is mounted above the
main table. Images are captured at 22Hz with 1600×1200 resolution. A custom ROS framework
communicates with all cameras. Each camera is calibrated using a checkerboard. The calibration
result, raw-format frame images with timestamps, and generated videos are all included in the dataset.

Depth Camera: Since most of the chosen activities interact with objects on the table, detailed 3D
information of this area can be helpful. An Intel RealSense D415 Depth Camera focused on the
table streams data at 15Hz with 640×480 resolution. An Intel RealSense driver [12] is used to
communicate with the camera. Raw images and the depth point clouds are recorded, and extrinsic
calibration information is also provided.

Limitations: These cameras provide useful ground truth data about the activities in the kitchen
environment, but there may be some areas that cannot be viewed while a subject is doing certain
tasks (e.g., inside the dishwasher). In such cases, the first-person camera may still provide vision data.
In the future, multi-camera calibration can be provided for 3D reconstruction of the environment.

5.3 Microphones

Two microphones provide audio information that can be used by learning, segmentation, or auto-
labeling pipelines. One has an omnidirectional pickup pattern and is secured above the main table,
while the other has a cardioid pickup pattern and is placed on the counter behind the sink. Since the
environment is within a common lab space, background noise and speech may be included in the
data; this could be a limitation or a benefit depending on the goals of future analysis pipelines.

5.4 Survey Data

A post-experiment survey provides metadata and qualitative assessments. These help explore aspects
such as how experience levels or handedness influences actions. In addition, it probes how subjects
may want to interact with robotic assistants to guide directions of future robotic applications. It also
probes their workload and experience with the sensors to guide future wearable development.

6 Dataset and Code Repositories: Summary and Accessibility

The ActionSense dataset synchronizes streams from all of the above sensors to create a multimodal
description of human activities. Composite visualizations as demonstrated in Figure 4a are displayed
during experiments, and also included in the dataset so researchers can preview data while developing
learning pipelines or labeling. Figure 4b shows the global views captured by RGB and depth cameras.

9



(a) Wearable Sensors (b) Global RGB Cameras and Depth Camera
Figure 4: Visualizing wearable and external sensors facilitates real-time or post-processing analysis.

Data is saved in cross-platform formats and organized hierarchically for maximum accessibility and
usability. Wearable sensor data leverages the HDF5 file format [9]. Video and audio data are stored as
AVI and WAV files, respectively, and individual frames are available as raw-format images. Metadata
such as body measurements and object measurements are provided as CSV files, and future updates
plan to add 3D object scans to provide additional manipulation information.

The ActionSense code repository includes the Python-based recording framework to stream,
visualize, save, and post-process synchronized data. Template classes are included to quickly add
new sensors if desired. Explanatory scripts also include examples of analyzing the dataset; they
extract sensor streams, segment streams based on labels, and resample streams to unify rates. Code
to perform the activity classification and cross-modal analyses in the supplementary materials is also
provided. Finally, installation instructions and pre-configured Python environments are included.

All data and code are hosted in repositories with long-term availability. The dataset uses a Creative
Commons license, and code uses an open-source license. Data is hosted on MIT servers using storage
intended for long-term availability, as is a front-end website at https://action-sense.csail.mit.edu
which links to data and code. Third-party repositories may also be used to create archival copies.

7 Conclusion

The presented dataset and framework aim to enable learning pipelines that can improve understanding
of how humans perform daily activities and improve in-home robot assistants. It focuses on a suite
of highly multimodal wearable sensors to capture rich egocentric data while avoiding occlusions
and reducing sensing infrastructure. This is coupled with ground-truth labels, external cameras, and
microphones to enable, for example, training deep neural networks with various modality subsets.

ActionSense uses the framework to record kitchen activities featuring dexterous two-handed
manipulations and high-level task planning. This dataset aims to provide detailed synchronized
training data in a setting that holds great potential for home automation and collaborative robots. All
data, code, and instructions are accessible online in long-term storage repositories.

Future work can use the provided data to create learning and analysis pipelines. These could
include cross-modal evaluations, fine-grained action segmentations, sequence predictions, dexterous
robot assistants, and comparisons of expert and novice techniques. The dataset continues to grow,
and including more subjects or more activities will continue to increase the utility of the dataset.
Alternative wearable sensors or new modalities could also be explored to address limitations of the
current collection. Future work can also use the provided software to record multimodal data from
additional sensors or in additional settings.

In these ways, ActionSense strives to take a step towards enabling more capable robot assistants
and guiding the next generation of smart wearable devices.
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