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Abstract

Extraction of latent sources of complex stimuli is critical for making sense of the
world. While the brain solves this blind source separation (BSS) problem con-
tinuously, its algorithms remain unknown. Previous work on biologically-plausible
BSS algorithms assumed that observed signals are linear mixtures of statistically
independent or uncorrelated sources, limiting the domain of applicability of these
algorithms. To overcome this limitation, we propose novel biologically-plausible
neural networks for the blind separation of potentially dependent/correlated
sources. Differing from previous work, we assume some general geometric, not
statistical, conditions on the source vectors allowing separation of potentially
dependent/correlated sources. Concretely, we assume that the source vectors are
sufficiently scattered in their domains which can be described by certain polytopes.
Then, we consider recovery of these sources by the Det-Max criterion, which
maximizes the determinant of the output correlation matrix to enforce a similar
spread for the source estimates. Starting from this normative principle, and using a
weighted similarity matching approach that enables arbitrary linear transformations
adaptable by local learning rules, we derive two-layer biologically-plausible
neural network algorithms that can separate mixtures into sources coming from
a variety of source domains. We demonstrate that our algorithms outperform other
biologically-plausible BSS algorithms on correlated source separation problems.

1 Introduction

Our brains constantly and effortlessly extract latent causes, or sources, of complex visual, auditory
or olfactory stimuli sensed by sensory organs [1–11]. This extraction is mostly done without any
instruction, in an unsupervised manner, making the process an instance of the blind source separation
(BSS) problem [12, 13]. Indeed, visual and auditory cortical receptive fields were argued to be the
result of performing BSS on natural images [1, 2] and sounds [4]. The wide-spread use of BSS in the
brain suggests the existence of generic circuit motifs that perform this task [14]. Consequently, the
literature on biologically-plausible neural network algorithms for BSS is growing [15–19].

Because BSS is an underdetermined inverse problem, BSS algorithms make generative assumptions
on observations. In most instances of the biologically-plausible BSS algorithms, complex stimuli are
assumed to be linear mixtures of latent sources. This assumption is particularly fruitful and is used to
model, for example, natural images [1, 20], and responses of olfactory neurons to complex odorants
[21–23]. However, linear mixing by itself is not sufficient for source identifiability; further assump-
tions are needed. Previous work on biologically-plausible algorithms for BSS of linear mixtures
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Figure 1: Examples of source domains leading to identifiable generative models.

assumed sources to be statistically independent [17, 19, 24] or uncorrelated [16, 18]. However, these
assumptions are very limiting when considering real data where sources can themselves be correlated.

In this paper, we address the limitation imposed by independence assumptions and provide
biologically-plausible BSS neural networks that can separate potentially correlated sources. We
achieve this by considering various general geometric identifiability conditions on sources instead
of statistical assumptions like independence or uncorrelatedness. In particular, 1) we make natural
assumptions on the domains of source vectors–like nonnegativity, sparsity, anti-sparsity or bounded-
ness (Figure 1)–and 2) we assume that latent source vectors are sufficiently spread in their domain
[25, 26]. Because these identifiability conditions are not stochastic in nature, our neural networks are
able to separate both independent and dependent sources.

We derive our biologically-plausible algorithms from a normative principle. A common method
for exploiting our geometric identifiability conditions is to disperse latent vector estimates across
their presumed domain by maximizing the determinant of their sample correlation matrix, i.e.,
the Det-Max approach [25, 27–30]. Starting from a Det-Max objective function with constraints
that specify the domain of source vectors, and using mathematical tools introduced for mapping
optimization algorithms to adaptive Hebbian neural networks [18, 31, 32], we derive two-layered
neural networks that can separate potentially correlated sources from their linear mixtures (Figure
2). These networks contain feedforward, recurrent and feedback synaptic connections updated via
Hebbian or anti-Hebbian update rules. The domain of latent sources determines the structure of the
output layer of the neural network (Figure 2, Table 1 and Appendix D).

In summary, our main contributions in this article are the following:

• We propose a normative framework for generating biologically plausible neural networks that are
capable of separating correlated sources from their mixtures by deriving them from a Det-Max
objective function subject to source domain constraints.

• Our framework can handle infinitely many source types by exploiting their source domain topology.
• We demonstrate the performance of our networks in simulations with synthetic and realistic data.

1.1 Other related work

Several algorithms for separation of linearly mixed and correlated sources have been proposed outside
the domain of biologically-plausible BSS. These algorithms make other forms of assumptions on
the latent sources. Nonnegative matrix factorization (NMF) assumes that the latent vectors are
nonnegative [13, 33–35]. Simplex structured matrix factorization (SSMF) assumes that the latent
vectors are members of the unit-simplex [25, 36, 37]. Sparse component analysis (SCA) often assumes
that the latent vectors lie in the unity `1-norm-ball [30, 38–42]. Antisparse bounded component
analysis (BCA) assumes latent vectors are in the `1-norm-ball [28, 29, 43]. Recently introduced
polytopic matrix factorization (PMF) extends the identifiability-enabling domains to infinitely many
polytopes obeying a particular symmetry restriction [26, 44, 45].

The mapping of optimization algorithms to biologically-plausible neural networks have been formal-
ized in the similarity matching framework [31, 32, 46, 47]. Several BSS algorithms were proposed
within this framework: 1) Nonnegative Similarity Matching (NSM) [16, 48] separates linear mix-
tures of uncorrelated nonnegative sources, 2) [19] separates independent sources, and 3) Bounded
Similarity Matching (BSM) separates uncorrelated anti-sparse bounded sources from `1-norm-ball
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Figure 2: Det-Max WSM neural network for blind source separation. The network takes a mixed
input x and produces latent components y at the output. The output layer depends on the choice of
source domain. Mutually sparse components are connected by inhibitory neurons at the output layer.

[18]. BSM introduced a weighted inner product-based similarity criterion, referred to as the weighted
similarity matching (WSM). Compared to these algorithm, the neural network algorithms we propose
in this article 1) cover more general source domains, 2) handle potentially correlated sources, 3)
use a two-layer WSM architecture (relative to single layer WSM architecture of BSM, which is
not capable of generating arbitrary linear transformations) and 4) offer a general framework for
neural-network-based optimization of the Det-Max criterion.

2 Problem statement

2.1 Sources

We assume that there are n real-valued sources, represented by the vector s 2 P , where P is a
particular subset of Rn. Our algorithms will address a wide range of source domains. We list some
examples before giving a more general criterion:

• Bounded sparse sources: A natural convex domain choice for sparse sources is the unit `1 norm
ball B`1 = {s | ksk1  1} (Figure 1.(a)). The use of `1-norm as a convex (non)sparsity measure
has been quite successful with various applications including sparse dictionary learning/component
analysis [30, 39, 41, 49, 50] and modeling of V1 receptive fields [2].

• Bounded anti-sparse sources: A common domain choice for anti-sparse sources is the unit `1-
norm-ball: B`1 = {s | ksk1  1} (Figure 1.(b)). If vectors drawn from B`1 are well-spread
inside this set, some samples would contain near-peak magnitude values simultaneously at all their
components. The potential equal spreading of values among the components justifies the term
“anti-sparse” [51] or “democratic” [52] component representations. This choice is well-suited for
both applications in natural images and digital communication constellations [28, 43].

• Normalized nonnegative sources: Simplex structured matrix factorization [25, 36, 37] uses the unit
simplex [35, 53] � = {s | s � 0,1T

s = 1} (Figure 1.(c)) as the source domain. Nonnegativity
of sources naturally arises in biological context, for example in demixing olfactory mixtures [54].

• Nonnegative bounded anti-sparse sources: A non-degenerate polytopic choice of the nonnegative
sources can be obtained through the combination of anti-sparseness and nonnegativity constraints.
This corresponds to the intersection of B`1 with the nonnegative orthant Rn

+, represented as
B`1,+ = B`1 \ Rn

+ [26] (Figure 1.(d)).
• Nonnegative bounded sparse sources: Another polytopic choice for nonnegative sources can

be obtained through combination of the sparsity and nonnegativity constraints which yields the
intersection of B`1 with the nonnegative orthant R+, [26]: B`1,+ = B`1 \ Rn

+ (Figure 1.(e)).

Except the unit simplex �, all the examples above are examples of an infinite set of identifi-
able polytopes whose symmetry groups are restricted to the combinations of component per-
mutations and sign alterations as formalized in PMF framework for BSS [44]. Further, in-
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stead of a homogeneous choice of features, such as sparsity and nonnegativity, globally im-
posed on all elements of the component vector, we can assign these attributes at the subvector
level and still obtain identifiable polytopes. For example, the reference [26] provides the set

Pex =

⇢
s 2 R3

����s1, s2 2 [�1, 1], s3 2 [0, 1],

����


s1
s2

�����
1

 1,

����


s2
s3

�����
1

 1

�
, as a simple il-

lustration of such polytopes with heterogeneous structure where s3 is nonnegative, s1, s2 are signed,
and [ s1 s2 ]

T , [ s2 s3 ]
T are sparse subvectors, while sparsity is not globally imposed. In this

article, we concentrate on particular source domains including the unit simplex, and the subset of
identifiable polytopes for which the attributes such as sparsity and nonnegativity are defined at the
subvector level in the general form

P =
�
s 2 Rn

��si 2 [�1, 1] 8i 2 Is, si 2 [0, 1] 8i 2 I+, ksJkk1  1, Jk ✓ Zn, k 2 ZL

 
, (1)

where I+ ✓ Zn is the index set for nonnegative sources, and Is is its complement, sJk is the subvector
constructed from the elements with indices in Jk, and L is the number of sparsity constraints imposed
in the subvector level.

The Det-Max criterion for BSS is based on the assumption that the source samples are well-spread in
their presumed domain. The references [55] and [26] provide precise conditions on the scattering of
source samples which guarantee their identifiability for the unit simplex and polytopes, respectively.
Appendix A provides a brief summary of these conditions.

We emphasize that our assumptions about the sources are deterministic. Therefore, our proposed
algorithms do not exploit any stochastic assumptions such as independence or uncorrelatedness, and
can separate both independent and dependent (potentially correlated) sources.

2.2 Mixing

The sources st are mixed through a mixing matrix A 2 Rm⇥n.

xt = Ast, t 2 Z. (2)

We only consider the (over)determined case with m � n and assume that the mixing matrix is full-
rank. While we consider noiseless mixtures to achieve perfect separability, the optimization setting
proposed for the online algorithm features a particular objective function that safeguards against
potential noise presence. We use S(t) = [ s1 . . . st ] 2 Rn⇥t and X(t) = [ x1 . . . xt ] 2
Rm⇥t to represent data snapshot matrices, at time t, for sources and mixtures, respectively.

2.3 Separation

The goal of the source separation is to obtain an estimate of S(t) from the mixture measurements
X(t) when the mixing matrix A is unknown. We use the notation yt to refer to source estimates,
which are linear transformations of observations, i.e., yi = Wxi, where W 2 Rn⇥m. We define
Y(t) = [ y1 y2 . . . yt ] 2 Rn⇥t as the output snapshot matrix. "Ideal separation" is defined
as the condition where the outputs are scaled and permuted versions of original sources, i.e., they
satisfy yt = P⇤st, where P is a permutation matrix, and ⇤ is a full rank diagonal matrix.

3 Determinant maximization based blind source separation

Among several alternative solution methods for the BSS problem, the determinant-maximization (Det-
Max) criterion has been proposed within the NMF, BCA, and PMF frameworks, [26–28, 30, 35, 44].
Here, the separator is trained to maximize the (log)-determinant of the sample correlation matrix
for the separator outputs, J(W) = log(det(R̂y(t))), where R̂y(t) is the sample correlation matrix
R̂y(t) =

1
t

P
t

i=1 yiy
T

i
= 1

t
Y(t)Y(t)T . Further, during the training process, the separator outputs

are constrained to lie inside the presumed source domain, i.e. P . As a result, we can pose the
corresponding optimization problem as [26, 35]

maximize
Y(t)

log(det(Y(t)Y(t)T )) (3a)

subject to yi 2 P, i = 1, . . . , t, (3b)
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where we ignored the constant 1
t

term. Here, the determinant of the correlation matrix acts as a spread
measure for the output samples. If the original source samples {s1, . . . , st} are sufficiently scattered
inside the source domain P , as described in Section 2.1 and Appendix A, then the global solution of
this optimization can be shown to achieve perfect separation [26, 35, 55].

4 An alternative optimization formulation of determinant-maximization

based on weighted similarity matching

Here, we reformulate the Det-Max problem 3 described above in a way that allows derivation of a
biologically-plausible neural network for the linear BSS setup in Section 2. Our formulation applies
to all source types discusses in 2.1.

We propose the following optimization problem:

minimize
Y(t),H(t),D1,11(t),...D1,nn(t),D1(t)

D2,11(t),...D2,nn(t),D2(t)

nX

i=1

log(D1,ii(t)) +
nX

i=1

log(D2,ii(t)) (4a)

subject to X(t)TX(t)�H(t)TD1(t)H(t) = 0, (4b)

H(t)TH(t)�Y(t)TD2(t)Y(t) = 0, (4c)
yi 2 P, i = 1, . . . , n, (4d)

Dl(t) = diag(Dl,11(t), . . . , Dl,nn(t)), l = 1, 2, (4e)
Dl,11(t), Dl,22(t), . . . , Dl,nn(t) > 0, l = 1, 2 (4f)

Here, X(t) 2 Rm⇥t is the matrix containing input (mixture) vectors, Y(t) 2 Rn⇥t is the matrix
containing output vectors, H(t) 2 Rn⇥t is a slack variable containing an intermediate signal
{hi 2 Rn, i = 1, . . . , t}, corresponding to the hidden layer of the neural network implementation
in Section 5, in its columns H(t) = [ h1 h2 . . . ht ]. Dl,11(t), Dl,22(t), . . . , Dl,nn(t) for
l = 1, 2 are nonnegative slack variables to be described below, and Dl is the diagonal matrix
containing weights Dl,ii for i = 1, . . . , n and l = 1, 2. The constraint (4d) ensures that the outputs
lie in the presumed domain of sources.

This problem is related to the weighted similarity matching (WSM) objective introduced in [18]. Con-
straints (4b) and (4c) define two separate WSM conditions. In particular, the equality constraint in (4b)
is a WSM constraint between inputs and the intermediate signal H(t). This constraint imposes that
the pairwise weighted correlations of the signal {hi, i = 1, . . . , t} are the same as correlations among
the elements of the input signal {xi, i = 1, . . . , t}, i.e., xT

i
xj = h

T

i
D1(t)hj , 8i, j 2 {1, . . . , t}.

D1,11(t), D1,22(t), . . . , D1,nn(t) correspond to inner product weights used in these equalities. Sim-
ilarly, the equality constraint in (4c) defines a WSM constraint between the intermediate sig-
nal and outputs. This equality can be written as h

T

i
hj = y

T

i
D2(t)yj , i, j 2 {1, . . . , t}, and

D2,11(t), D2,22(t), . . . , D2,nn(t) correspond to the inner product weights used in these equalities.
The optimization involves minimizing the logarithm of the determinant of the weighting matrices.

Now we state the relation between our WSM-based objective and the original Det-Max criterion (3).
Theorem 1. If X(t) is full column-rank, then global optimal Y(t) solutions of (3) and (4) coincide.

Proof of Theorem 1. See Appendix B for the proof. The proof relies on a lemma that states that the
optimization constraints enforce inputs and outputs to be related by an arbitrary linear transformation.

5 Biologically-plausible neural networks for WSM-based BSS

The optimization problems we considered so far were in an offline setting, where all inputs are
observed together and all outputs are produced together. However, biology operates in an online
fashion, observing an input and producing the corresponding output, before seeing the next input.
Therefore, in this section, we first introduce an online version of the batch WSM-problem (4). Then
we show that the corresponding gradient descent algorithm leads to a two-layer neural network with
biologically-plausible local update rules.
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5.1 Online optimization setting for WSM-based BSS

We first propose an online extension of WSM-based BSS (4). In the online setting, past outputs
cannot be altered, but past inputs and outputs still carry valuable information about solving the BSS
problem. We will write down an optimization problem whose goal is to produce the sources yt given
a mixture xt, while exploiting information from all the fixed previous inputs and outputs.

We first introduce our notation. We consider exponential weighting of the signals as a recipe for
dynamical adjustment to potential nonstationarity in the data. We define the weighted input data
snapshot matrix by time t as, X (t) =

⇥
�t�1

x1 . . . �xt�1 xt

⇤
= X(t)�(t), where � is the

forgetting factor and �(t) = diag(�t�1, . . . , �, 1). The exponential weighting emphasizes recent
mixtures by reducing the impact of past samples. Similarly, we define the corresponding weighted
output snapshot matrix for output as Y(t) =

⇥
�t�1

y1 . . . �yt�1 yt

⇤
= Y(t)�(t), and the

hidden layer vectors as H(t) =
⇥
�t�1

h1 . . . �ht�1 ht

⇤
= H(t)�(t). We further define

⌧ = limt!1 =
P

t�1
k=0 �

2k = 1
1��2 as a measure of the effective time window length for sample

correlation calculations based on the exponential weights.

In order to derive an online cost function, we first converted equality constraints in (4b) and (4c)
to similarity matching cost functions J1(H(t),D1(t)) =

1
2⌧2 kX (t)TX (t)�H(t)TD1(t)H(t)k2

F
,

J2(H(t),D2(t),Y(t)) = 1
2⌧2 kH(t)TH(t)�Y(t)TD2(t)Y(t)k2

F
. Then, a weighted combination

of similarity matching costs and the objective function in (4a) yields the final cost function

J (H(t),D1(t),D2(t),Y(t)) = �SM [�J1(H(t),D1(t)) + (1� �)J2(H(t),D2(t),Y(t))]

+(1� �SM )[
nX

k=1

log(D1,kk(t)) +
nX

k=1

log(D2,kk(t))]. (5)

Here, � 2 [0, 1] and �SM 2 [0, 1] are parameters that convexly combine similarity matching costs
and the objective function. Finally, we can state the online optimization problem for determining the
current output yt, the corresponding hidden state ht and for updating the gain parameters Dl(t) for
l = 1, 2, as

minimize
yt,ht,D1,11(t),...D1,nn(t),D1(t)

D2,11(t),...D2,nn(t),D2(t)

J (H(t),D1(t),D2(t),Y(t)) (6a)

subject to yt 2 P, (6b)
Dl(t) = diag(Dl,11(t), . . . , Dl,nn(t)), l = 1, 2, (6c)
Dl,11(t), Dl,22(t), . . . , Dl,nn(t) > 0, l = 1, 2 (6d)

As shown in Appendix C.1, part of J that depends on ht and yt can be written as

C(ht,yt) = 2hT

t
D1MH(t)D1(t)ht � 4hT

t
D1(t)WHX(t)xt

+2yT

t
D2(t)MY (t)D2(t)yt � 4yT

t
D2(t)WY H(t)ht + 2hT

t
MH(t)ht, (7)

where the dependence on past inputs and outputs appear in the weighted correlation matrices:

MH(t) = 1
⌧

P
t�1
k=1(�

2)t�1�k
hkh

T

k
, WHX(t) = 1

⌧

P
t�1
k=1(�

2)t�1�k
hkx

T

k
,

WY H(t) = 1
⌧

P
t�1
k=1(�

2)t�1�k
ykh

T

k
, MY (t) =

1
⌧

P
t�1
k=1(�

2)t�1�k
yky

T

k
.

(8)

5.2 Description of network dynamics for bounded anti-sparse sources

We now show that the gradient-descent minimization of the online WSM cost function in (6) can
be interpreted as the dynamics of a neural network with local learning rules. The exact network
architecture is determined by the presumed identifiable source domain P , which can be chosen in
infinitely many ways. In this section, we concentrate on the domain choice P = B1 as an illustrative
example. In Section 5.3, we discuss how to generalize the results of this section by modifying the
output layer for different identifiable source domains. We start by writing the update expressions for
the optimization variables based on the gradients of J (ht,yt,D1(t),D2(t)):
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Update dynamics for ht: Following previous work [48, 56], and using the gradient of (7) in (A.8)
with respect to ht, we can write down an update dynamics for ht in the form

dv(⌧)

d⌧
= �v(⌧)� �SM [((1� �)M̄H(t) + �D1(t)M̄H(t)D1(t))h(⌧)

+�D1(t)WHX(t)x(⌧) + (1� �)WY H(t)TD2(t)y(⌧)] (9)

ht,i(⌧) = �A

 
vi(⌧)

�SM�Hii(t)((1� �) + �D1,ii(t)
2)

!
, for i = 1, . . . n, (10)

where �H(t) is a diagonal matrix containing diagonal elements of MH(t) and M̄H(t) = MH(t)�

�H(t), �(·) is the clipping function, defined as �A(x) =

⇢
x �A  x  A,

Asign(x) otherwise. . This dy-

namics can be shown to minimize (7) [56]. Here v(⌧) is an internal variable that could be interpreted
as the voltage dynamics of a biological neuron, and is defined based on a linear transformation of ht

in (A.9). Equation (9) defines v(⌧) dynamics from the gradient of (7) with respect to ht in (A.8). Due
to the positive definite linear map in (A.9), the expression in (A.8) also serves as a descent direction
for v(⌧). Furthermore, �(·) function is the projection onto AB1, where [�A,A] is the presumed
dynamic range for the components of ht. We note that there is no explicit constraint set for ht in the
online optimization setting of Section 5.1, and therefore, A can be chosen as large as desired in the
actual implementation. We included the nonlinearity in (10) to model the limited dynamic range of
an actual (biological) neuron.

Update dynamics for output yt: We write the update dynamics for the output yt, based on (A.11) as

du(⌧)

d⌧
= �u(⌧) +WY H(t)h(⌧)� M̄Y (t)D2(t)y(⌧), (11)

yt,i(⌧) = �1

✓
ui(⌧)

�Y ii(t)D2,ii(t)

◆
, for i = 1, . . . n, (12)

which is derived using the same approach for ht, where we used the descent direction expression in
(A.11), and the substitution in (A.12). Here, �Y (t) is a diagonal matrix containing diagonal elements
of MY (t) and M̄Y (t) = MY (t)� �Y (t). Note that the nonlinear mapping �1(·) is the projection
onto the presumed domain of sources, i.e., P = B1, which is elementwise clipping operation.

The state space representations in (9)-(10) and (11)-(12) correspond to a two-layer recurrent neural
network with input xt, hidden layer activation ht, output layer activation yt, WHX (WT

HX
) and

WY H (WT

Y H
) are the feedforward (feedback) synaptic weight matrices for the first and the second

layers, respectively, and M̄H and M̄Y are recurrent synaptic weight matrices for the first and the
second layers, respectively. The corresponding neural network schematic is provided in Figure 2.(b).
The gain and synaptic weight dynamics below describe the learning mechanism for this network:

Update dynamics for gains Dl,ii: Using the derivative of the cost function with respect to D1,ii in
(A.13), we can write the dynamics corresponding to the gain variable D1,ii as

µD1

dD1,ii(t)

dt
= �(�SM�)(kMHi,:k

2
D1(t)

� kWHXi,:k
2
2)� (1� �SM )

1

D1,ii(t)
, (13)

where µD1 corresponds to the learning time-constant. Similarly, for the gain variable D2,ii, the
corresponding coefficient dynamics expression based on (A.14) is given by

µD2

dD2,ii(t)

dt
= �(�SM�)(kMY i,:k

2
D2(t)

� kWY Hi,:k
2
2)� (1� �SM )

1

D2,ii(t)
, (14)

where µD2 corresponds to the learning time-constant.

The inverses of the inner product weights Dl,ii correspond to homeostatic gain parameters. The
inspection of the gain updates in (13) and (14) leads to an interesting observation: whether the
corresponding gain is going to increase or decrease depends on the balance between the norms of the
recurrent and the feedforward synaptic strengths, which are the statistical indicators of the recent
output and input activations, respectively. Hence, the homeostatic gain of the neuron will increase
(decrease) if the level of recent output activations falls behind (surpasses) the level of recent input
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activations to balance input/output energy levels. The resulting dynamics align with the experimental
homeostatic balance observed in biological neurons [57].

Based on the definitions of the synaptic weight matrices in (8), we can write their updates as

MH(t+ 1) = �2
MH(t) + (1� �2)hth

T

t
, MY (t+ 1) = �2

MY (t) + (1� �2)yty
T

t
, (15)

WHX(t+ 1) = �2
WHX(t) + (1� �2)htx

T

t
, WY H(t+ 1) = �2

WY H(t) + (1� �2)yth
T

t
.

These updates are local in the sense that they only depend on variables available to the synapse, and
hence are biologically plausible.

5.3 Det-max WSM neural network examples for more general source domains

Det-Max Neural Network obtained for the source domain P = B1 in Section 5.2 can be extended to
more general identifiable source domains by only changing the output dynamics. In Appendix D,
we provide illustrative examples for different identifiable domain choices. Table 1 summarizes the
output dynamics obtained for the identifiable source domain examples in Figure 1.

Table 1: Example source domains from Figure 1 and the corresponding output dynamics.

Source Domain Output Dynamics Output

Activation

P = B1,+

Nonnegative yt,i(⌧) = �+

⇣
ui(⌧)

�Y ii(t)D2,ii(t)

⌘

Anti-sparse
P = B1 yt,i(⌧) = ST�1(⌧)

⇣
ui(⌧)

�SM (1��)�Y ii(t)D2,ii(t)

⌘

Sparse da(⌧)
d⌧ = �a(⌧) +

Pn
k=0 |yt,k(⌧)| � 1 + �1(⌧),

�1(⌧) = ReLU(a(⌧))

P = B1,+ yt,i(⌧) = ReLU
⇣

ui(⌧)
�SM (1��)�Y ii(t)D2,ii(t)

� �1(⌧)
⌘

Nonnegative da(⌧)
d⌧ = �a(⌧) +

Pn
k=0 yt,k(⌧) � 1 + �1(⌧),

Sparse �1(⌧) = ReLU(a(⌧))

P = � yt,i(⌧) = ReLU
⇣

ui(⌧)
�SM (1��)�Y ii(t)D2,ii(t)

� �1(⌧)
⌘

Unit d�1(⌧)
d⌧ = ��1(⌧) +

Pn
k=0 yt,k(⌧) � 1 + �1(⌧)

Simplex

We can make the following observations on Table 1: (1) For sparse and unit simplex settings,
there is an additional inhibitory neuron which takes input from all outputs and whose activation is
the inhibitory signal �1(⌧), (2) The source attributes, which are globally defined over all sources,
determine the activation functions at the output layer. The proposed framework can be applied to
any polytope described by (1) for which the corresponding Det-Max neural network will contain
combinations of activation functions in Table 1 as illustrated in Figure 2.(a).

6 Numerical experiments

In this section, we illustrate the applications of the proposed WSM-based BSS framework for both
synthetic and natural sources. More details on these experiments and additional examples are provided
in Appendix E, including sparse dictionary learning. Our implementation code is publicly available1.

6.1 Synthetically correlated source separation

In order to illustrate the correlated source separation capability of the proposed WSM neural networks,
we consider a numerical experiment with five copula-T distributed (uniform and correlated) sources.
For the correlation calibration matrix for these sources, we use Toeplitz matrix whose first row is
[1 ⇢ ⇢ ⇢ ⇢]. The ⇢ parameter determines the correlation level, and we considered the range
[0, 0.6] for this parameter. These sources are mixed with a 10⇥5 random matrix with independent and
identically distributed (i.i.d.) standard normal random variables. The mixtures are corrupted by i.i.d.

1https://github.com/BariscanBozkurt/Biologically-Plausible-DetMaxNNs-for-Blind-Source-Separation
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normal noise corresponding to 30dB signal-to-noise ratio (SNR) level. In this experiment, we employ
the nonnegative-antisparse-WSM neural network (Figure 8 in Appendix D.2) whose activation
functions at the output layer are nonnegative-clipping functions, as the sources are nonnegative
uniform random variables.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
ρ

0

5

10

15

20

25

30

35

SI
NR

 (d
B)

Nonnegative Anti-sparse Source Separation SINR Results

WSM
NSM
ICA-Infomax
LD-InfoMax
PMF

Figure 3: The SINRs of WSM, NSM, ICA, PMF, and
LD-InfoMax versus the correlation parameter ⇢.

We compared the signal-to-interference-
plus-noise-power-ratio (SINR) perfor-
mance of our algorithm with the NSM
algorithm [16], Infomax ICA algorithm
[1], as implemented in Python MNE
Toolbox [58], LD-InfoMax algorithm
[59], and PMF algorithm [26]. Figure 3
shows the SINR performances of these
algorithms (averaged over 300 realizations)
as a function of the correlation parameter ⇢.
We observe that our WSM-based network
performs well despite correlations. In
contrast, performance of NSM and ICA
algorithms, which assume uncorrelated
sources, degrade noticeably with increas-
ing correlation levels. In addition, we note

that the performance of batch Det-Max algorithms, i.e., LD-InfoMax and PMF, are also robust against
source correlations. Furthermore, due to their batch nature, these algorithms typically achieved better
performance results than our neural network with online-restriction, as expected.

6.2 Image separation

To further illustrate the correlated source separation advantage of our approach, we consider a natural
image separation scenario. For this example, we have three RGB images with sizes 324⇥ 432⇥ 3
as sources (Figure 4.(a)). The sample Pearson correlation coefficients between the images are
⇢12 = 0.263, ⇢13 = 0.066, ⇢23 = 0.333. We use a random 5⇥ 3 mixing matrix whose entries are
drawn from i.i.d standard normal distribution. The corresponding mixtures are shown in Figure 4.(b).

(a) (b)

(c) (d) (e)

Figure 4: (a) Original RGB images, (b) Mixture RGB images, (c) ICA outputs, (d) NSM outputs
(using pre-whitened mixtures), (e) WSM outputs.

We applied ICA, NSM and WSM algorithms to the mixtures. Figure 4.(c),(d),(e) shows the corre-
sponding outputs. High-resolution versions of all images in this example are available in Appendix
E.4 in addition to the comparisons with LD-Infomax and PMF algorithms. The Infomax ICA
algorithm’s outputs have SINR level of 13.92dB, and this performance is perceivable as residual
interference effects in the corresponding output images. The NSM algorithm achieves significantly
higher SINR level of 17.45dB and the output images visually reflect this better performance. Our
algorithm achieves the best SINR level of 27.49dB, and the corresponding outputs closely resemble
the original source images.
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7 Discussion and Conclusion

We proposed a general framework for generating biologically plausible neural networks that are
capable of separating correlated sources from their linear mixtures, and demonstrated their successful
correlated source separation capability through synthetic and natural sources.

Another motivation for our work is to link network structure with function. This is a long standing
goal of neuroscience, however examples where this link can be achieved are limited. Our work
provides concrete examples where clear links between a network’s architecture–i.e. number of
interneurons, connections between interneurons and output neurons, nonlinearities (frequency-current
curves)– and its function, the type of source separation or feature extraction problem the networks
solves, can be established. These links may provide insights and interpretations that might generalize
to real biological circuits.

Our networks suffer from the same limitations of other recurrent biologically-plausible BSS networks.
First, certain hyperparameters can significantly influence algorithm performance (see Appendix
E.9). Especially, the inner product gains (Dii) are sensitive to the combined choices of algorithm
parameters, which require careful tuning. Second, the numerical experiments with our neural networks
are relatively slow due to the recursive computations in (9)-(10) and (11)-(12) for hidden layer and
output vectors, which is common to all biologically plausible recurrent source separation networks
(see Appendix F). This could perhaps be addressed by early-stopping the recursive computation [60].
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