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Supplementary Material for submission ''A Conditional Randomization Test
for Sparse Logistic Regression in High-Dimension"'

A Proofs of theoretical results in Section

We first present some technical lemmas that are useful for the proof of the main theorem. From now
on, let 3 and = denote inequalities with a hidden constant factor, i.e. z < y means that with high
probability, there exists an absolute constant C' > 0 such that x < C'y, and vice versa. As mentioned
in the main text, in what follows, without writing it explicitly, we consider p = p(n).

Lemma A.1 (Lemma E.1, [21]). Assume Assumption [32] under the logistic model, we have

. . [logp 5 s* logp
18- B0 B and -0 3 /0L,

where s* = ||3°||o. In addition, we also have
1 & . s*log(p
S 6B (B - A 5 B
i=1

where g(x) = 1/(1 4 exp(x)) is the sigmoid function.
Lemma A.2 (Lemma E.2 [21]], concentration of the gradient and Hessian of the logistic loss function).
Assume Assumptionholds, under the logistic model, we have, with v* X (1, —w%7) € RP,

IVL(B) oo 2 V/n~tlogp, and
v TV20(8°) = Ego v T V2(B)][loo 3 V1" logp.

Lemma A.3 (Lemma E.3, [21]). Assume Assumption@holds, under logistic model, we have

. . 1
8% WPl 3 (v s,

where s* = ||3°||o and s’ = ||w%7||o. In addition, we also have

; ig%xﬁ*ﬁnxiﬁj(éd’w —woayp g V) los),

n

Lemma A.4 (Lemma E.4, [21]], local smoothness conditions on the loss function). Let 3! =
(0, [7'_]) € RP, where (3 is an estimator of 3°. It holds that

v TIVeB) — veB) — V2B (B - BY)]| 3 (s V') logp 7

n
. . s*Vs')logp
(v —v)TIve(B) - e | 3 EYs

for both B = B™! and 3 = 3, where ¥ “ (1, (,@dxw‘ ).

Remark A.1. We make a slight abuse of notation in the definition of v and v*, which formally
corresponds to the j = 1 case. We use the fact that permuting the corresponding variable indices
position of 0, v*, and V{(j3) simultaneously does not change the value of v’V £(3), and hence will
not change the proofs.

Proof of Theorem[3.1] The following proof is an adaptation from [21]]. Notice that our version of
the proof is shorter, with specific consideration on sparse logistic regression, and with elaboration on
the convergence rate of the decorreleated test score, which is missing from [21].

Denote v (1, —(B8%~.3)T), then the decorrelated test score can be written in a more general from
as

Tf“"” _ pl/2f1/2 (V 0(B) - (ﬁgdx*,j)rvﬁﬁf(ﬁ)) nl/2f- |1/2 TvB) . (14)

Jl=3
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st Moreover, denote B! = det. (0,8 ;) and v* x Qe (1, —w"%7), then we have, under the null hypothesis,
nl/2|{,Tv(Bnull) _ V*Tvg(ﬁOM < n1/2|v*T{V€(ﬁ0) o vg(ﬁnull)}‘ _’_n1/2|({, o V*)Tvg(énullﬂ
Aq Az

520 where we use the triangle inequality in the last step. From Lemma[A.4] we have

Al < n1/2 (|V*Tv2€(60)(lénull _ ,60)‘ + O]P’ <(S* \ ‘j;) 10gp)>

2 (Hﬁnu“ = B[V TV(B%)]| o + Op ((s\/i)bgp))

RGN s')logp

~Y \/ﬁ
521 where the second inequality is by Holdér inequality, and the last inequality is due to Lemma
522 and[A.2] Similarly, we can bound As, by using Lemma[A.3]and Lemma

Ay <n!/? ((\7 —v*) VB + Os ((Svi)logp))

. *Vvis')lo (s* vV s')logp
2 (5 — v 0 (5" vslogp\ ) _
<2 (15 = v I V(@) + 0 ((CLLOER ) ) (T o losp

523 This implies that,
n! 2TV (™) — v VIR ST A (s v ') log(p) - (15)

s24 The remaining part of the proof is to bound I where, by definition

il—i = Ljj—j»
L =E{¢"(X;.8°) [Xij — Xi—;w™] Xi;}

525 Evaluating the difference between ij|_ jand I,

j|—j gives

1.

J|*j_I

Jl=3j

1 ) )
= Zg"(xi,*ﬁ) [Xi,j - Xi,—jﬁdx*’”} X;; —E{¢"(X;.8°%) [Xi; — Xi—w™] X, 5}
i=1

:ngfxxi,*mxij—mg" X,.8)X J})
=1

Z X B)Xi— B X;j — E{g"(X;.8%)X; _jw’? Xi,j}>
1< .
S (n Zg//(xz,*/@)xiy - E {g// 1, */60 j})
i=1

:\*—‘

Z " (XiuB)Xi, (B — W) X,
z=1

C B
1« ;
'l Z Xi+B") = ¢" (XiuB)]Xi,— w7 X 5| +
Ba
1o : j
=~ " (KB W X~ E{g" (X0 8%)Xi ;w7 X,
i=1

Bs
s26  where the last step follows from triangle inequality.
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We have, by Cauchy-Schwartz inequality, by Lemma[A.3] and by the fact that g”(z) € (0, 1) for
every r € R; and X; _;, X; ; is sub-exponential by Assumption 3.1}

B < <Zg” X, B) (B0 —wOI)TX, )(

(5™ Vv s') log(p)

:\'—‘

S rix..s xgj>

~

Similarly, to bound B,, we have, again by Cauchy-Schwartz inequality,

By < ’Z "(X;48°) = g"(XiuB)]2 (Xi,— w07 Xy 5)°

IN

n Z "(Xi,8°) XK1 (B — BO)? (X, Xy )7,

where the second inequality comes from using the self-concordance property of the sigmoid function
(discussed at length in [2] and extended further in [22])), that is, |g” (¢t1) — ¢” (¢)| < [t1 — t|g” (t) for

a fixed constant ¢, and for every ¢; € R such that ¢; converges to t, with t; = 3, and t = 3°. By
Assumption A3 that X;; ; is sub-exponential, applying Bernstein inequality leads to
s*logp

—

B; 3

(s* VvV s')logp
n

To bound Bs, by direct application of Hoeffding inequality, we have B3 = . This

implies
(s* V') logp
-
Putting Equation (T3)) and (T6) together, we have, under the null hypothesis,
D —1/2_ 4 def.
rTjdecorr ’—>TL1/2 Ij|_/j v Tvé(ﬁO) et T

with convergence rate O(n~'/2). Finally, by noting that we can decompose V/(3°) =
L3 L VE(B%), and each V{;(B8°) has bounded first, second, and third moment, a direct ap-
plication of Berry-Esseen theorem give convergence in distribution of 77 to a standard normal law,

with rate O(n=1/2).
We also arrive at the second conclusion of Theorem [3.1] by noting that it is a straightforward by-

product of the result on normality of the distribution of decorrelated test score under null hypothesis,
based on the formula for the p-values of CRT-logit algorithm.

L — Ll 3 (16)

O

Proof of Corollary@ The proof of this result is a straightforward adaptation from [6]. For shorter

notation, we denote S« SBY crt and = By. If we denote & def. le/_ € (0, 1), then step
P2li=1 /7
1 in the procedure defined in Deﬁnitionis equivalent to finding k such that
k= max{k € pl | by < k’a} (17)

For every 4, j, k € [p], let us define

{P(@e((j—na,ja] ,ie§and|§|:k) ifj > 2
Pijk =

be . (18)
P(p; € [0,a], i € Sand |S| = k) ifj = 1.
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s49 Then, since 7 € S and |§ | = k implies that p; < p; < ka = ko, we have

AR MEIEE L e 3
|§|\/1 - |S|=k - ~ k |S|=k and i€ S

k=1
P
= Z Z E]l|§|:k and i€S and 0<p; <ka °
ieSe k=1
s50 Taking the expectation and writing that
k
Lo<pi<ka = Lpiefoal + O Lpie((-Daja]
j=2
551  Wwe get
S k p P
IS NS Y1 1
LLEE] B DD IED TR 35 3) S
| | N i€Sc k=1 j=1 €8¢ j=1 k=j
PPy P 1 P
DD BB BVED DD IP BN
i€S¢ j=1 k=j J j=1 J 1€SC k=j
A

sz Denote F(j) < Zzesc Z > p_yDijy .k forall j € {1,...,p}, and remark that p; j , = O if
553 j' > k, by definition of SBY crr- We then have

D+ 3R - F -] = 3 (3 - ) o+ 2.

1SN se| <’"1<1 1 >F F(p) |
- = - - 9
|S|v1]_z j )T, 1)

s54 This leads to

j=1
555 By the definition of p; ; , in Eq. (I8), we have

= P(pi <jaandi€S) < > P(p < ja).

iese iese
s56  Therefore
E |SQS| Z P(p; < ja) Zp(ﬁiﬁpd)
S| v 1 55 BEDE 5. p
s57  Taking the limit where n — oo and p fixed, we have, using the result in Theorem@
o 1
IS NS =1 B
limsupE | — < —+1|a

—_

P
- Z - |Sc|6& .
j=1
[e%

b §:1 1/j'

<

ss8  We conclude the proof by noting that & &t

sss,. B Controlling False Discovery Rate Procedures

se0 Definition B.1 (Benjamini-Hochberg procedure [5]). Let « € (0,1) be the predefined FDR control
s61  level. Let p1, ..., Py, be output p-values from an inference algorithm, e.g. Algorithm[I} We reorder

s62  them ascendingly, denoted by p(1y < P2y < -+ < P(yp) and 'H(()l), e ,H(()p), then
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1. Find %BH such that

~ . k
kpn zmax{k € [p] |p(k) < pOé}

2. Ifkpy exists, take S = {j € [p] D) < Pgyy,, ) Otherwise 5=0.

Definition B.2 (Benjamini-Yekutieli procedure [6]). Let « € (0, 1) be the predefined FDR control
level. Let P, . .., Pm be output p-values from Algorithm[I} We reorder them ascendingly, denoted by

Py < Pray < -+ < Py and HY .., H, then
1. Find EBY such that

~ ko
ey =max k€ [p] | p <,}.
- { 1909 < 7

2. Ifkpy exists, take S = {j € [p] D) < Pgy, |- Otherwise 5=0.

C Setting the /, —Regularization Parameter of the X, ;-distillation

A core issue is the dependency of the statistical power and FDR of CRT-logit on the ¢; — regularization
parameter A4, when doing Lasso distillation on z; in Eq. (I0). One might choose the reference value

Auniv = v/~ 1 log p with theoretical validity, as suggested in [21128]. However, experimental results
in Fig. show that at Ay, = Ay (0 1ogg A/ Auniv = 0.0 with the labeling of the figure), we do not
have the best possible FDR/Power with CRT-logit inference. For this experiment, we average the
inference results of 100 simulations (with similar setting in Section [4.1)) for different values of n
and )4, with p fixed. There is a clear phase transition in both FDR and average power when the
regularization parameter A, increases. In other words, we have found empirically that both FDR
and power of the method are sensitive to the ¢ —regularization parameter. Preferably, one wants to
return a high statistical power while controlling FDR under predefined level. Hence, it is necessary
to choose A4, wisely. In practice, we advise using cross-validation for X, ;-distillation operator, as
defined by Eq. (T0). This means we would have to find p different values of A4, with cross-validation,
and we reemphasize the importance of the screening step to reduce the number of computations.

FDR,a=0.1 Avg. Power
0.000 0.000 0.000 0.000 0.000 0.076 0.100 0.100 0.099 0.099 0.101 0.099 0.100 0.100 0.102
(OGO 0.046 0.082 0.099 0.100 0.101 0.100 0.100 0.101 0.099 0.101 0.100  {UXVVUNEXV

(OVEORVXG 0.053 0.084 0.101 0.101 0.098 0.101 0.100 0.101 0.101 0.100 0.100

(ORI ES 0.059 0.091 0.099 0.100 0.102 0.100 0.101 0.102 0.100 0.098 0.102

No. Samples (1)
200 400 600 800 1200

(ORI 10251 0.067 0.101 0.100 0.101 0.100 0.101 0.100 0.102 0.100 0.100 0.101
(OODVX 0.040 0.078 0.100 0.100 0.100 0.101 0.100 0.100 0.102 0.101 0.101 0.099

£ g85875 58 8¢8 g7 g

S S = = & o @ @ F < 4

100

10910 AAuniv 10910 AlAuniv

Figure 5: FDR/Average Power of 100 runs of simulations while varying the number of samples and
{1 regularization parameter and fixing the number of variables. Note: A4, is scaled with the factor
Auniv = +/10g(p) /n, e.g. the first value for regularization grid is Agz = 1072 \yiv. Default parameter (similar
settings in Section@: p = 400, SNR=3.0 (signal-to-noise ration), p = 0.5 (feature correlation), x = 0.05
(sparsity). FDR is controlled at level o = 0.1.
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ss¢ D Pseudocode for CRT-logit and Related Algorithms

Algorithm 2: Conditional Randomization Test [[10]

1 INPUT dataset (X,y), with X € R"*P, y € R™, number of sampling runs B, test statistic T}, conditional
distribution P;_; foreach j =1,...,p;

2 OUTPUT vector of p-values {p; }"_,;

3for;j=1,2,...,pdo

4 Compute test statistics T} for original variable;

5 forb=1,2,...,Bdo

6 1. Generate X"

585 g @ knockoff sample from P} _;;
7 2. Compute Tj(b) for knockoff variables;
8 end
9 Compute the empirical p-value

1+ 25:1 IT;b)sz
1+ B

pi =

10 end

Algorithm 3: Lasso-Distillation Conditional Randomization Test [19]

INPUT dataset (X,y), X € R"*P,y € R", test statistic 7; foreach j = 1,...,p;
OUTPUT vector of p-values {p;}/_,;

SSCREENING _ (5. ¢ [pLB}VILE £ 0} // Using Eq.

4 for j € SSCREENING g,

I

w

5 1. Distill information of X_; to X, ; and to y by finding:
+ 3% (\) < solve_sparse_logistic_cv(X_;,y) // Using Eq. (@)
A . 1 . .
see o B0 () = argming gy -1 5 X — X382 + Xaz |B]l, // with Ag, set using
cross-validation
2. Obtain test statistic:
_ Ady.j L 3%,
T =+vn (¥ X*fﬁ » X j X*JﬁAd 7)
|y = x|, [Xes = X8
2 2
3. Compute (two-sided) p-value
pj =21 - (Ty)]
6 end

Algorithm 4: Holdout Randomization Test [26]

1 INPUT dataset (X,y), with X € R"*P, y € R™, number of sampling runs B, test statistic T}, conditional
distribution P;|_; foreach j = 1, ..., p, empirical risk L(-) ;

2 OUTPUT vector of p-values {p; }*_,;

(Xtraim ytrain)7 (Xtesu ytest) <~ data_Splitting(X, y),

w

4 fg < model_fitting(Ximin, Yirain);

s forj=1,2,...,pdo

6 Tj — L(Xtesty Ytest, f@ (X—Iest));

587 7 forb=1,2,...,Bdo

8 1. Generate Xibg ~ Pj_j;

9 2. T+ LX), yiew, fo(XO)):;

10 end

11 Compute the empirical p-value

1+ Zf:l l’f.(b)>T7

~ _ i 21
Dy 1+ B

12 end
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E Time complexity of Related Methods

We present the time complexity of benchmarked methods in Table

Table 2: Time complexities of related methods with CRT-logit, where p is the dimension size (number of

variables), B is the number of sampling runs, and k< p the cardinality of the screening set (see Section@]for
more details).

Methods Time (Iteration) Complexity  References
Debiased Lasso O(ph) (331128 [16]
Knockoff Filter O(p?) [4.[10]
CRT O(Bp*) (0]

HRT O(p® + Bp?) 126]

dCRT (with screening ) O(kp?) (19]
CRT-logit (with screening) O(/%p3) (this work)

F Additional Details on Experiments in Section 4]

F.1 Preprocessing of the brain-imaging dataset

The Human Connectome Project dataset (HCP) is a collection of brain imaging data on healthy young
adult subjects with age ranging from 22 to 35. The participants performed different tasks while being
scanned by a magnetic resonance imaging (MRI) device to record blood oxygenation level dependent
(BOLD) signals of the brain. The aim of this analysis is to investigate which areas of the brain can
predict cognitive activity across participants, while taking into account the information from other
brain regions. The brain imaging modalities include, among others, resting-state fMRI (R-fMRI) and
task-evoked fMRI (T-fMRI). In this work, we only deal with decoding the task-evoked fMRI dataset.
The four classification problems we are working with are as follows.

* Relational: predict whether the participant matches figures or identified feature similarities.
* Gambling: predict whether the participant gains or loses gambles.

* Emotion: predict whether the participant watches an angry face or a geometric shape.

* Social: predict whether the participant watches a movie with social behavior or not.

To perform dimension reduction, we apply a clustering scheme that preserves the spatial structure of
the data. This is achieved with data-driven parcellation along with a spatially constrained clustering
algorithm, following the conclusions by [29] and [27]]. The hierarchical clustering scheme that we use
recursively merges pair of clusters of features based on a criterion that minimized the within-cluster
variance. This algorithm is implemented in scikit-learn [23], a popular package for applied
machine learning.

G Extra experiment: application on genome-wide association study with
Human Brain Cancer Dataset

Description The last in our benchmark is a Genome-wide Association Study (GWAS) on the The
Cancer Genome Atlas (TCGA) dataset [30, 31]. We choose to analyze the Glioma cohort, which
consists of n = 1026 patients across a wide age range, diagnosed with this type of brain tumor, with
a total of p = 24776 genes in the data matrix, recorded as copy number variations (CNVs) at the
gene level in log ratio format. As with the brain-imaging inference in Section[d.3] we use clustering
to reduce the dimension to C' = 1000 clusters. However, we use different criterion to merge variables
(genes) to clusters of variables, which is the pairwise Linkage Disequilibrium, following [1, Section
4] (with available R library). For the response, a long-term survivor (LTS) is defined as a patient who
survived more than five years after diagnosis and would be labeled y = 0, and otherwise would be a
short-term survivor (STS), labeled y = 1. The objective is to identify significant genes that contribute
to classification of the LTS/STS status. Similar to the Human Connectome Project dataset, there is no
real ground-truth for the TCGA Glioma. However, we have the list of mutations and the frequency of
those detected in the diagnosed patients. We therefore select the 1000 most frequent gene mutations
that appeared in this list, i.e. the ground truth list consists of 1000 genes (variables).
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Table 3: List of detected genes associated with Glioma Cancer from the TCGA dataset. n = 1026,
p = 24776 (clustered to C' = 1000). Empty line (—) signifies no detection. Methods listed in the table are the
clustering version. Commonly detected genes between methods are put in bold text. Most detected genes are
listed in the mutant list database that can be found in the recorded patients [30].

Methods Detected Genes

dLasso —

KO ABCC10, ANK3, CDH23, PTEN, SPEN, SVIL, ZMIZ1

dCRT ANK3, ANKRD30A, CDH23, PTEN, RET, SPEN,ZMIZ1

CRT-logit ABCC10, ANKRD30A, BCOR, EPHA3, PPL, SPAG17, SPEN, SVIL, USP9X
Original CRT ABCC10, BCOR, EPHA3, SPEN, SVIL

HRT ABCC10, SPEN

Result  The result from Table [3]shows that CRT-logit finds the largest number of genes. Moreover,
most of selected genes in this table are detected in the list of mutated genes found on recorded patients.
Some genes are detected by all the benchmarked methods, most prominently SPEN, which is found
on over 10 % of patients in the cohort. Furthermore, this gene is known to be associated not only
with brain cancer, but also with other types of cancer in The Human Protein Atlas project [17]. Note
that, in the absence of a ground-truth, this does not guarantee all genes found are associated with
glioma, but this experiment demonstrates the capability of CRT-logit in GWAS studies.

H Example of decoding maps in semi-realistic brain-analysis experiment of
Section

(d) Distilled-CRT (dCRT) (e) CRT-logit (our method)

Figure 6: Decoding maps of Relational task in semi-realistic HCP900 experiment, using 400 subjects and
dimension reduction to 1000 clusters (i.e. one random seed for generating labels y). We omit Holdout
Randomization Test (HRT) as the method does not select any brain region. For dlasso, dCRT and CRT-logit,
we plot the test-statistics; for KO the sign of selected coefficients, and for CRT the —logio of the empirical
p-values.

I Ineffectiveness of CRT in extremely high-dimensional problems

When the number of observations n is too small compared to the number of variables p, e.g. when
n/p < 0.2 as shown in Figure the inference problem becomes too ill-posed. Indeed, the statistical
power of both the original dCRT and our proposed solution CRT-logit decrease dramatically from a
large value in the easy setting (p < n) to zero when p > 1600. The failure to detect any significant
variable when the dimension of the problem becomes too high hints on future direction of performing
statistical inference on clusters of variables. For instance, the works of 9} [12] have provided detailed
discussions on this matter.
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Figure 7: FDR/Average Power of 100 runs of simulations while varying the number of variables p and
fixing the number of observations n = 400. Default parameter: SNR = 2.0, p = 0.5, x = 0.04. FDR is
controlled at level a = 0.1. The experimental setup is similar to Section[4.1] Both methods (dCRT: original
dCRT and CRT-logit: our version of CRT) perform well in easy settings where n > p, but cannot detect any
variables when p becomes large compared to n.
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