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A Proofs of theoretical results in Section 3495

We first present some technical lemmas that are useful for the proof of the main theorem. From now496

on, let ≾ and ≿ denote inequalities with a hidden constant factor, i.e. x ≾ y means that with high497

probability, there exists an absolute constant C > 0 such that x ≤ Cy, and vice versa. As mentioned498

in the main text, in what follows, without writing it explicitly, we consider p = p(n).499

Lemma A.1 (Lemma E.1, [21]). Assume Assumption 3.1, under the logistic model, we have500

∥β̂ − β0∥1 ≾ s∗
√

log p

n
and ∥β̂ − β0∥2 ≾

√
s∗ log p

n
,

where s∗ = ∥β0∥0. In addition, we also have501

1

n

n∑
i=1

g′′(Xi,∗β
0)[Xi,−j(β̂ − β0)]2 ≾

s∗ log(p)

n
,

where g(x) = 1/(1 + exp(x)) is the sigmoid function.502

Lemma A.2 (Lemma E.2 [21], concentration of the gradient and Hessian of the logistic loss function).503

Assume Assumption 3.1 holds, under the logistic model, we have, with v∗ def.
= (1,−w0,j) ∈ Rp,504

∥∇ℓ(β0)∥∞ ≾
√

n−1 log p, and

∥v∗⊤∇2ℓ(β0)− Eβ0 [v∗⊤∇2ℓ(β0)]∥∞ ≾
√

n−1 log p.

Lemma A.3 (Lemma E.3, [21]). Assume Assumption 3.1 holds, under logistic model, we have505

∥β̂dX∗,j −w0,j∥1 ≾ (s′ ∨ s∗)

√
log p

n
,

where s∗ = ∥β0∥0 and s′ = ∥w0,j∥0. In addition, we also have506

1

n

n∑
i=1

g′′(Xi,∗β̂)[Xi,−j(β̂
dX∗,j −w0,j)]2 ≾

(s′ ∨ s∗) log(p)

n
.

Lemma A.4 (Lemma E.4, [21], local smoothness conditions on the loss function). Let β̂null =507

(0, β̂−j) ∈ Rp, where β̂ is an estimator of β0. It holds that508

|v∗⊤[∇ℓ(β)−∇ℓ(β0)−∇2ℓ(β0)(β − β0)]| ≾ (s∗ ∨ s′) log p

n
,

|(v̂ − v∗)⊤[∇ℓ(β)−∇ℓ(β0)] | ≾ (s∗ ∨ s′) log p

n
.

for both β = β̂null and β = β̂, where v̂
def.
= (1, (β̂dX∗,j )⊤).509

Remark A.1. We make a slight abuse of notation in the definition of v̂ and v∗, which formally510

corresponds to the j = 1 case. We use the fact that permuting the corresponding variable indices511

position of v̂, v∗, and ∇ℓ(β) simultaneously does not change the value of vT∇ℓ(β), and hence will512

not change the proofs.513

Proof of Theorem 3.1. The following proof is an adaptation from [21]. Notice that our version of514

the proof is shorter, with specific consideration on sparse logistic regression, and with elaboration on515

the convergence rate of the decorreleated test score, which is missing from [21].516

Denote v̂ def.
= (1,−(β̂dX∗,j )⊤), then the decorrelated test score can be written in a more general from517

as518

T decorr
j = n1/2Î

−1/2
j|−j

(
∇jℓ(β̂)− (β̂dX∗,j )⊤∇β−j

ℓ(β̂)
)
= n1/2Î

−1/2
j|−j v̂

⊤∇ℓ(β̂) . (14)
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Moreover, denote β̂null def.
= (0, β̂−j) and v∗ def.

= (1,−w0,j), then we have, under the null hypothesis,519

n1/2|v̂⊤∇(β̂null)− v∗⊤∇ℓ(β0)| ≤ n1/2|v∗⊤{∇ℓ(β0)−∇ℓ(β̂null)}|︸ ︷︷ ︸
A1

+n1/2|(v̂ − v∗)⊤∇ℓ(β̂null)|︸ ︷︷ ︸
A2

where we use the triangle inequality in the last step. From Lemma A.4, we have520

A1 ≤ n1/2

(
|v∗⊤∇2ℓ(β0)(β̂null − β0)|+OP

(
(s∗ ∨ s′) log p

n

))
≤ n1/2

(
∥β̂null − β0∥1∥v∗⊤∇2ℓ(β0)∥∞ +OP

(
(s∗ ∨ s′) log p

n

))
≾

(s∗ ∨ s′) log p√
n

where the second inequality is by Holdër inequality, and the last inequality is due to Lemma A.1521

and A.2. Similarly, we can bound A2, by using Lemma A.3 and Lemma A.4522

A2 ≤ n1/2

(
|(v̂ − v∗)⊤∇ℓ(β0)|+OP

(
(s∗ ∨ s′) log p

n

))
≤ n1/2

(
∥v̂ − v∗∥1∥∇ℓ(β0)∥∞ +OP

(
(s∗ ∨ s′) log p

n

))
≾

(s∗ ∨ s′) log p√
n

This implies that,523

n1/2|v̂⊤∇(β̂null)− v∗⊤∇ℓ(β0)| ≾ n−1/2(s∗ ∨ s′) log(p) . (15)

The remaining part of the proof is to bound Îj|−j − Ij|−j , where, by definition524

Ij|−j = E
{
g′′(Xi,∗β

0)
[
Xi,j −Xi,−jw

0,j
]
Xi,j

}
Evaluating the difference between Îj|−j and Ij|−j gives525

Îj|−j - Ij|−j

=
1

n

n∑
i=1

g′′(Xi,∗β̂)
[
Xi,j −Xi,−jβ̂

dX∗,j

]
Xi,j − E

{
g′′(Xi,∗β

0)
[
Xi,j −Xi,−jw

0,j
]
Xi,j

}
=

(
1

n

n∑
i=1

g′′(Xi,∗β̂)X
2
i,j − E

{
g′′(Xi,∗β

0)X2
i,j

})

+

(
1

n

n∑
i=1

g′′(Xi,∗β̂)Xi,−jβ̂
dX∗,j Xi,j − E

{
g′′(Xi,∗β

0)Xi,−jw
0,j Xi,j

})

≤

(
1

n

n∑
i=1

g′′(Xi,∗β̂)X
2
i,j − E

{
g′′(Xi,∗β

0)X2
i,j

})
︸ ︷︷ ︸

C

+

∣∣∣∣∣ 1n
n∑

i=1

g′′(Xi,∗β̂)Xi,−j(β̂
dX∗,j −w0,j)Xi,j

∣∣∣∣∣︸ ︷︷ ︸
B1

+

∣∣∣∣∣ 1n
n∑

i=1

[g′′(Xi,∗β
0)− g′′(Xi,∗β̂)]Xi,−jw

0,j Xi,j

∣∣∣∣∣︸ ︷︷ ︸
B2

+

∣∣∣∣∣ 1n
n∑

i=1

g′′(Xi,∗β
0)Xi,−jw

0,j Xi,j − E
{
g′′(Xi,∗β

0)Xi,−jw
0,j Xi,j

}∣∣∣∣∣︸ ︷︷ ︸
B3

,

where the last step follows from triangle inequality.526
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We have, by Cauchy-Schwartz inequality, by Lemma A.3, and by the fact that g′′(x) ∈ (0, 1) for527

every x ∈ R; and Xi,−j , Xi,j is sub-exponential by Assumption 3.1:528

B1 ≤

√√√√( 1

n

n∑
i=1

g′′(Xi,∗β̂)((β̂
dX∗,j −w0,j)⊤Xi,−j)2

)(
1

n

n∑
i=1

g′′(Xi,∗β̂)X2
i,j

)

≾

√
(s∗ ∨ s′) log(p)

n
.

Similarly, to bound B2, we have, again by Cauchy-Schwartz inequality,529

B2 ≤

√√√√ 1

n

n∑
i=1

[g′′(Xi,∗β0)− g′′(Xi,∗β̂)]2 (Xi,−jw0,j Xi,j)
2

≤

√√√√ 1

n

n∑
i=1

[g′′(Xi,∗β0)Xi,∗(β̂ − β0)]2 (Xi,−jw0,j Xi,j)
2
,

where the second inequality comes from using the self-concordance property of the sigmoid function530

(discussed at length in [2] and extended further in [22]), that is, |g′′(t1)− g′′(t)| ≤ |t1 − t|g′′(t) for531

a fixed constant t, and for every t1 ∈ R such that t1 converges to t, with t1 = β̂, and t = β0. By532

Assumption 3.1-A3 that Xi,j is sub-exponential, applying Bernstein inequality leads to533

B2 ≾

√
s∗ log p

n
.

To bound B3, by direct application of Hoeffding inequality, we have B3 ≾

√
(s∗ ∨ s′) log p

n
. This534

implies535

|Îj|−j − Ij|−j | ≾
√

(s∗ ∨ s′) log p

n
. (16)

Putting Equation (15) and (16) together, we have, under the null hypothesis,536

T decorr
j

D−→ n1/2 I
−1/2
j|−j v

∗⊤∇ℓ(β0)
def.
= T ∗

j ,

with convergence rate O(n−1/2). Finally, by noting that we can decompose ∇ℓ(β0) =537
1
n

∑n
i=1 ∇ℓi(β

0), and each ∇ℓi(β
0) has bounded first, second, and third moment, a direct ap-538

plication of Berry-Esseen theorem give convergence in distribution of T ∗
j to a standard normal law,539

with rate O(n−1/2).540

We also arrive at the second conclusion of Theorem 3.1 by noting that it is a straightforward by-541

product of the result on normality of the distribution of decorrelated test score under null hypothesis,542

based on the formula for the p-values of CRT-logit algorithm.543

544

Proof of Corollary 3.1. The proof of this result is a straightforward adaptation from [6]. For shorter545

notation, we denote Ŝ def.
= ŜBY-CRT and k̂

def.
= k̂BY . If we denote ᾱ

def.
=

α

p
∑p

i=1 1/i
∈ (0, 1), then step546

1 in the procedure defined in Definition B.2 is equivalent to finding k̂ such that547

k̂ = max
{
k ∈ [p] | p̂(k) ≤ kᾱ

}
. (17)

For every i, j, k ∈ [p], let us define548

pi,j,k =

{
P
(
p̂i ∈ ((j − 1)ᾱ, jᾱ] , i ∈ Ŝ and |Ŝ| = k

)
if j ≥ 2

P
(
p̂i ∈ [0, ᾱ] , i ∈ Ŝ and |Ŝ| = k

)
if j = 1.

(18)

15



Then, since i ∈ Ŝ and |Ŝ| = k implies that p̂i ≤ p̂k̂ ≤ k̂ᾱ = kᾱ, we have549

|Ŝ ∩ Sc|
|Ŝ| ∨ 1

=

p∑
k=1

1|Ŝ|=k

∑
i∈Sc 1i∈Ŝ

k
=
∑
i∈Sc

p∑
k=1

1

k
1|Ŝ|=k and i∈Ŝ

=
∑
i∈Sc

p∑
k=1

1

k
1|Ŝ|=k and i∈Ŝ and 0≤p̂i≤kᾱ .

Taking the expectation and writing that550

10≤p̂i≤kᾱ = 1p̂i∈[0,ᾱ] +

k∑
j=2

1p̂i∈((j−1)ᾱ,jᾱ] ,

we get551

E

[
|Ŝ ∩ Sc|
|Ŝ| ∨ 1

]
=
∑
i∈Sc

p∑
k=1

1

k

k∑
j=1

pi,j,k =
∑
i∈Sc

p∑
j=1

p∑
k=j

1

k
pi,j,k

≤
∑
i∈Sc

p∑
j=1

p∑
k=j

1

j
pi,j,k =

p∑
j=1

1

j

∑
i∈Sc

p∑
k=j

pi,j,k︸ ︷︷ ︸
A

.

Denote F (j)
def.
=
∑

i∈Sc

∑j
j′=1

∑p
k=1 pi,j′,k for all j ∈ {1, . . . , p}, and remark that pi,j′,k = 0 if552

j′ > k, by definition of ŜBY-CRT. We then have553

A = F (1) +

p∑
j=2

1

j

[
F (j)− F (j − 1)

]
=

p−1∑
j=1

(
1

j
− 1

j + 1

)
F (j) +

F (p)

p
.

This leads to554

E

[
|Ŝ ∩ Sc|
|Ŝ| ∨ 1

]
≤

p−1∑
j=1

(
1

j
− 1

j + 1

)
F (j) +

F (p)

p
(19)

By the definition of pi,j,k in Eq. (18), we have555

F (j) =
∑
i∈Sc

P(p̂i ≤ jᾱ and i ∈ Ŝ) ≤
∑
i∈Sc

P(p̂i ≤ jᾱ).

Therefore556

E

[
|Ŝ ∩ Sc|
|Ŝ| ∨ 1

]
≤
∑
i∈Sc

p−1∑
j=1

P(p̂i ≤ jᾱ)

j(j + 1)
+
∑
i∈Sc

P(p̂i ≤ pᾱ)

p

Taking the limit where n → ∞ and p fixed, we have, using the result in Theorem 3.1,557

lim sup
n→∞

E

[
|Ŝ ∩ Sc|
|Ŝ| ∨ 1

]
≤
∑
i∈Sc

p−1∑
j=1

1

j + 1
+ 1

 ᾱ

=

 p∑
j=1

1

j

 |Sc|ᾱ .

We conclude the proof by noting that ᾱ def.
=

α

p
∑p

j=1 1/j
.558

B Controlling False Discovery Rate Procedures559

Definition B.1 (Benjamini-Hochberg procedure [5]). Let α ∈ (0, 1) be the predefined FDR control560

level. Let p̂1, . . . , p̂m be output p-values from an inference algorithm, e.g. Algorithm 1. We reorder561

them ascendingly, denoted by p̂(1) ≤ p̂(2) ≤ · · · ≤ p̂(p) and H(1)
0 , . . . ,H(p)

0 , then562

16



1. Find k̂BH such that563

k̂BH = max

{
k ∈ [p] | p̂(k) ≤

kα

p

}
.

2. If k̂BH exists, take Ŝ = {j ∈ [p] : p̂(j) ≤ p̂k̂BH
}. Otherwise Ŝ = ∅.564

Definition B.2 (Benjamini-Yekutieli procedure [6]). Let α ∈ (0, 1) be the predefined FDR control565

level. Let p̂1, . . . , p̂m be output p-values from Algorithm 1. We reorder them ascendingly, denoted by566

p̂(1) ≤ p̂(2) ≤ · · · ≤ p̂(p) and H(1)
0 , . . . ,H(p)

0 , then567

1. Find k̂BY such that568

k̂BY = max

{
k ∈ [p] | p̂(k) ≤

kα

p
∑p

i=1 1/i

}
.

2. If k̂BY exists, take Ŝ = {j ∈ [p] : p̂(j) ≤ p̂k̂BY
}. Otherwise Ŝ = ∅.569

C Setting the ℓ1−Regularization Parameter of the X∗,j-distillation570

A core issue is the dependency of the statistical power and FDR of CRT-logit on the ℓ1− regularization571

parameter λdx when doing Lasso distillation on xj in Eq. (10). One might choose the reference value572

λuniv =
√
n−1 log p with theoretical validity, as suggested in [21, 28]. However, experimental results573

in Fig. 5 show that at λdx = λuniv (or log10 λ/λuniv = 0.0 with the labeling of the figure), we do not574

have the best possible FDR/Power with CRT-logit inference. For this experiment, we average the575

inference results of 100 simulations (with similar setting in Section 4.1) for different values of n576

and λdx, with p fixed. There is a clear phase transition in both FDR and average power when the577

regularization parameter λdx increases. In other words, we have found empirically that both FDR578

and power of the method are sensitive to the ℓ1−regularization parameter. Preferably, one wants to579

return a high statistical power while controlling FDR under predefined level. Hence, it is necessary580

to choose λdx wisely. In practice, we advise using cross-validation for X∗,j-distillation operator, as581

defined by Eq. (10). This means we would have to find p different values of λdx with cross-validation,582

and we reemphasize the importance of the screening step to reduce the number of computations.583
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Figure 5: FDR/Average Power of 100 runs of simulations while varying the number of samples and
ℓ1 regularization parameter and fixing the number of variables. Note: λdx is scaled with the factor
λuniv =

√
log(p)/n, e.g. the first value for regularization grid is λdx = 10−2λuniv. Default parameter (similar

settings in Section 4.1): p = 400, SNR=3.0 (signal-to-noise ration), ρ = 0.5 (feature correlation), κ = 0.05
(sparsity). FDR is controlled at level α = 0.1.
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D Pseudocode for CRT-logit and Related Algorithms584

Algorithm 2: Conditional Randomization Test [10]
1 INPUT dataset (X,y), with X ∈ Rn×p, y ∈ Rn, number of sampling runs B, test statistic Tj , conditional

distribution Pj|−j for each j = 1, . . . , p ;
2 OUTPUT vector of p-values {p̂j}pj=1;
3 for j = 1, 2, . . . , p do
4 Compute test statistics Tj for original variable;
5 for b = 1, 2, . . . , B do
6 1. Generate X̃

(b)
∗,j , a knockoff sample from Pj|−j ;

7 2. Compute T̃
(b)
j for knockoff variables;

8 end
9 Compute the empirical p-value

p̂j =
1 +

∑B
b=1 1

T̃
(b)
j ≥Tj

1 +B

10 end

585

Algorithm 3: Lasso-Distillation Conditional Randomization Test [19]
1 INPUT dataset (X,y), X ∈ Rn×p, y ∈ Rn, test statistic Tj for each j = 1, . . . , p;
2 OUTPUT vector of p-values {pj}pj=1;
3 ŜSCREENING = {j : j ∈ [p], β̂MLE

j ̸= 0} // Using Eq. (2)
4 for j ∈ ŜSCREENING do
5 1. Distill information of X−j to X∗,j and to y by finding:

• β̂dy,j(λ)← solve_sparse_logistic_cv(X−j ,y) // Using Eq. (2)

• β̂
dX∗,j (λ) = argminβ∈Rp−1

1

2
∥X∗,j −X−jβ∥22 + λdx ∥β∥1 // with λdx set using

cross-validation

2. Obtain test statistic:

Tj =
√
n
⟨y −X−jβ̂

dy,j ,X∗,j −X−jβ̂
dX∗,j ⟩∥∥∥y −X−jβ̂dy,j

∥∥∥
2

∥∥∥X∗,j −X−jβ̂
dX∗,j

∥∥∥
2

3. Compute (two-sided) p-value
p̂j = 2 [1− Φ(Tj)]

6 end

586

Algorithm 4: Holdout Randomization Test [26]
1 INPUT dataset (X,y), with X ∈ Rn×p, y ∈ Rn, number of sampling runs B, test statistic Tj , conditional

distribution Pj|−j for each j = 1, . . . , p, empirical risk L(·) ;
2 OUTPUT vector of p-values {p̂j}pj=1;
3 (Xtrain,ytrain), (Xtest,ytest)← data_splitting(X,y);
4 f̂θ ← model_fitting(Xtrain,ytrain);
5 for j = 1, 2, . . . , p do
6 Tj ← L(Xtest,ytest, f̂θ(Xtest));
7 for b = 1, 2, . . . , B do
8 1. Generate X̃

(b)
∗,j ∼ Pj|−j ;

9 2. T̃ (b)
j ← L(X̃

(b)
∗,j ,ytest, f̂θ(X̃

(b)
∗,j));

10 end
11 Compute the empirical p-value

p̂j =
1 +

∑B
b=1 1

T̃
(b)
j ≥Tj

1 +B

12 end

587
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E Time complexity of Related Methods588

We present the time complexity of benchmarked methods in Table 2.589

Table 2: Time complexities of related methods with CRT-logit, where p is the dimension size (number of
variables), B is the number of sampling runs, and k̂ ≪ p the cardinality of the screening set (see Section D for
more details).

Methods Time (Iteration) Complexity References

Debiased Lasso O(p4) [33, 28, 16]
Knockoff Filter O(p3) [4, 10]
CRT O(Bp4) [10]
HRT O(p3 +Bp2) [26]
dCRT (with screening ) O(k̂p3) [19]
CRT-logit (with screening) O(k̂p3) (this work)

F Additional Details on Experiments in Section 4590

F.1 Preprocessing of the brain-imaging dataset591

The Human Connectome Project dataset (HCP) is a collection of brain imaging data on healthy young592

adult subjects with age ranging from 22 to 35. The participants performed different tasks while being593

scanned by a magnetic resonance imaging (MRI) device to record blood oxygenation level dependent594

(BOLD) signals of the brain. The aim of this analysis is to investigate which areas of the brain can595

predict cognitive activity across participants, while taking into account the information from other596

brain regions. The brain imaging modalities include, among others, resting-state fMRI (R-fMRI) and597

task-evoked fMRI (T-fMRI). In this work, we only deal with decoding the task-evoked fMRI dataset.598

The four classification problems we are working with are as follows.599

• Relational: predict whether the participant matches figures or identified feature similarities.600

• Gambling: predict whether the participant gains or loses gambles.601

• Emotion: predict whether the participant watches an angry face or a geometric shape.602

• Social: predict whether the participant watches a movie with social behavior or not.603

To perform dimension reduction, we apply a clustering scheme that preserves the spatial structure of604

the data. This is achieved with data-driven parcellation along with a spatially constrained clustering605

algorithm, following the conclusions by [29] and [27]. The hierarchical clustering scheme that we use606

recursively merges pair of clusters of features based on a criterion that minimized the within-cluster607

variance. This algorithm is implemented in scikit-learn [23], a popular package for applied608

machine learning.609

G Extra experiment: application on genome-wide association study with610

Human Brain Cancer Dataset611

Description The last in our benchmark is a Genome-wide Association Study (GWAS) on the The612

Cancer Genome Atlas (TCGA) dataset [30, 31]. We choose to analyze the Glioma cohort, which613

consists of n = 1026 patients across a wide age range, diagnosed with this type of brain tumor, with614

a total of p = 24776 genes in the data matrix, recorded as copy number variations (CNVs) at the615

gene level in log ratio format. As with the brain-imaging inference in Section 4.3, we use clustering616

to reduce the dimension to C = 1000 clusters. However, we use different criterion to merge variables617

(genes) to clusters of variables, which is the pairwise Linkage Disequilibrium, following [1, Section618

4] (with available R library). For the response, a long-term survivor (LTS) is defined as a patient who619

survived more than five years after diagnosis and would be labeled y = 0, and otherwise would be a620

short-term survivor (STS), labeled y = 1. The objective is to identify significant genes that contribute621

to classification of the LTS/STS status. Similar to the Human Connectome Project dataset, there is no622

real ground-truth for the TCGA Glioma. However, we have the list of mutations and the frequency of623

those detected in the diagnosed patients. We therefore select the 1000 most frequent gene mutations624

that appeared in this list, i.e. the ground truth list consists of 1000 genes (variables).625
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Table 3: List of detected genes associated with Glioma Cancer from the TCGA dataset. n = 1026,
p = 24776 (clustered to C = 1000). Empty line (—) signifies no detection. Methods listed in the table are the
clustering version. Commonly detected genes between methods are put in bold text. Most detected genes are
listed in the mutant list database that can be found in the recorded patients [30].

Methods Detected Genes

dLasso —
KO ABCC10, ANK3, CDH23, PTEN, SPEN, SVIL, ZMIZ1
dCRT ANK3, ANKRD30A, CDH23, PTEN, RET, SPEN,ZMIZ1
CRT-logit ABCC10, ANKRD30A, BCOR, EPHA3, PPL, SPAG17, SPEN, SVIL, USP9X
Original CRT ABCC10, BCOR, EPHA3, SPEN, SVIL
HRT ABCC10, SPEN

Result The result from Table 3 shows that CRT-logit finds the largest number of genes. Moreover,626

most of selected genes in this table are detected in the list of mutated genes found on recorded patients.627

Some genes are detected by all the benchmarked methods, most prominently SPEN, which is found628

on over 10 % of patients in the cohort. Furthermore, this gene is known to be associated not only629

with brain cancer, but also with other types of cancer in The Human Protein Atlas project [17]. Note630

that, in the absence of a ground-truth, this does not guarantee all genes found are associated with631

glioma, but this experiment demonstrates the capability of CRT-logit in GWAS studies.632

H Example of decoding maps in semi-realistic brain-analysis experiment of633

Section 4.3634
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Figure 6: Decoding maps of Relational task in semi-realistic HCP900 experiment, using 400 subjects and
dimension reduction to 1000 clusters (i.e. one random seed for generating labels y). We omit Holdout
Randomization Test (HRT) as the method does not select any brain region. For dlasso, dCRT and CRT-logit,
we plot the test-statistics; for KO the sign of selected coefficients, and for CRT the −log10 of the empirical
p-values.

I Ineffectiveness of CRT in extremely high-dimensional problems635

When the number of observations n is too small compared to the number of variables p, e.g. when636

n/p < 0.2 as shown in Figure 7, the inference problem becomes too ill-posed. Indeed, the statistical637

power of both the original dCRT and our proposed solution CRT-logit decrease dramatically from a638

large value in the easy setting (p < n) to zero when p > 1600. The failure to detect any significant639

variable when the dimension of the problem becomes too high hints on future direction of performing640

statistical inference on clusters of variables. For instance, the works of [9, 12] have provided detailed641

discussions on this matter.642
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Figure 7: FDR/Average Power of 100 runs of simulations while varying the number of variables p and
fixing the number of observations n = 400. Default parameter: SNR = 2.0, ρ = 0.5, κ = 0.04. FDR is
controlled at level α = 0.1. The experimental setup is similar to Section 4.1. Both methods (dCRT: original
dCRT and CRT-logit: our version of CRT) perform well in easy settings where n ≥ p, but cannot detect any
variables when p becomes large compared to n.
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