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Abstract

Learning safe solutions is an important but challenging problem in multi-agent re-
inforcement learning (MARL). Shielded reinforcement learning is one approach
for preventing agents from choosing unsafe actions. Current shielded reinforce-
ment learning methods for MARL make strong assumptions about communica-
tion and full observability. In this work, we extend the formalization of the
shielded reinforcement learning problem to a decentralized multi-agent setting.
We then present an algorithm for decomposition of a centralized shield, allowing
shields to be used in such decentralized, communication-free environments. Our
results show that agents equipped with decentralized shields perform comparably
to agents with centralized shields in several tasks, allowing shielding to be used in
environments with decentralized training and execution for the first time.

1 Introduction

Recently, the advent of deep reinforcement learning has produced solutions in highly complex do-
mains such as Atari [17], and the game of Go [20]. However, the neural networks which power these
methods are opaque, and there is a significant risk of unintentional harm when a poorly understood
reinforcement learning method is applied to a safety-critical system [2].

One common approach for safe RL is the idea of a shield—a reactive system which monitors a
reinforcement learning agent and environment [1]. During each step, the agent proposes an action,
the shield evaluates whether this action is safe, and then the shield potentially replaces the proposed
action with a known-safe action. This method has been extended to multi-agent environments, but
the shield remains centralized [10]. Such methods assume instantaneous communication with a
centralized coordination algorithm, which is not realistic in many environments.

In this work, we first discuss the centralized shield synthesis problem, and outline its proposed so-
lutions. We describe several implicit communication assumptions present in the existing centralized
shield definition, and define a novel framework for decentralized shielding. These decentralized
shields enable each agent to act independently, without any coordination after shield synthesis.
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Our main technical contribution is an algorithm which, using any centralized shield as input, pro-
duces a decentralized shield that guarantees safety. We also discuss various properties of input
centralized shields, and the effect of these properties on the permissiveness of the output shield.

Lastly, we evaluate the performance of our shield decomposition algorithm on shields from several
domains. We first analyze the structure of the shield itself, ensuring that the majority of actions
allowed by the centralized shield are still allowed by the decentralized shield. We then train a
shielded reinforcement learning agent to solve these tasks, and measure the performance of the
learned policy. We find that all agents achieve a comparable value in the environment, and that, as
is to be expected from the theoretical guarantees of our framework, decentralized shielding achieves
100% safety. These results show that our shield decentralization approach can, for the first time,
allow reinforcement learning methods to be provably safe in decentralized multi-agent settings.

2 Related Work

The concept of shielded reinforcement learning [1] draws from the idea of Runtime Enforcement
[6], from the Formal Methods community. In the single-agent case, shielding has been extended
to environments with continuous action spaces [8], stochastic or adversarial environments [15], and
partially-observable environments [7]. As with all shielding methods, these extensions require a
model of the environment, with a varying degree of abstraction. This differs slightly from contract-
based decomposition [5]; instead of defining a contract first, and then constructing systems whose
interfaces satisfy this contract, shielding involves constraining an agent to act safely within an envi-
ronment whose dynamics are fixed.

Other proposed methods specify algorithms for enforcing safety in the presence of communication
constraints or delays for pathfinding agents [23], or for general LTL specifications [12], but neither
method eliminates communication entirely.

Several pieces of work focus on verifying a neural network or closed-loop reinforcement learning
system after training is complete [4, 14]. These methods could potentially succeed in a multi-agent
reinforcement learning system if successfully scaled up, but such approaches typically make no
guarantees of safety during training.

3 Preliminaries

We first describe several relevant structures, and a formalization of the centralized shielding problem.
Many elements of this framework have been described in prior formulations [1, 6], and extended to
the multi-agent setting [10].

Let �(X) be the set of all probability distributions over set X . Let R denote the set of reals.

An environment with cooperative agents and full observability is often characterized as a MMDP:

Definition 1 (MMDP) A Multi-agent Markov Decision Process (MMDP) is a tuple M =
(D, S,A, E , T, �, R, b0) where D = {1, . . . , n} is a set of agents, S is a set of states, A =

Q
i2D Ai is

a finite joint action space, factorizable into n individual action spaces, E : S! P(A) represents the
set of actions available to the agents at a given state, T : S⇥A! �(S) is the transition probability
distribution function, � 2 [0, 1] represents the discount factor for future rewards, R : S⇥A! R is
the reward given after a transition, and b0 2 �(S) is the distribution of initial states.

We call a sequence of states and joint actions ((s0, s1, . . . , sn+1), (a0, a1, . . . , an)) an environment
trace of MMDP M if every pair (si, ai, si+1) is allowed by the transition function of the MMDP.

M is said to be in a deadlock at state s 2 S if E(s) = ;. M is deadlock-free if there are no
environment traces of M that end in a deadlock state.

We will often have some prior knowledge of how to abstract the states in a meaningful way for
safety properties. For example, in a domain where we avoid collisions between agents, the relative
positions of the agents may be useful, even if the absolute positions of all agents are not known.
We call a function f : S ! L which translates MMDP states into members of a given label set
an abstraction function. Note that some prior work refers to f as the observer function [1, 10]; we
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use a different name to avoid potentially conflicting terminology. Every environment trace through a
MMDP has a corresponding label trace ((l0, a0), . . . , (ln, an)), where 8i 2 {0, . . . , n}, li = f(si).1
Several unique environment traces may correspond to the same label trace.

We note that an environment with partial observability or a more complex reward structure is accept-
able. As long as each agent can independently calculate the current label, a shield can be constructed
using this framework. However, for simplicity, we continue to use MMDPs in our description.

Definition 2 (DFA) A Deterministic Finite Automaton (DFA) is a tuple � = (Q,⌃, �, s0, F ) where
Q is a set of states, s0 2 Q is the initial state, ⌃ is an alphabet, � : Q ⇥ ⌃ ! Q is the transition
function, and F ✓ Q is the set of accepting states.

Given a word (w0, w1, . . . , wn) 2 ⌃⇤, the corresponding DFA trace (q0, q1, . . . , qn+1) 2 Q
⇤ is

obtained by stepping through the transition function. A word is accepted by the DFA iff the last
state of its corresponding DFA trace is a member of F .

For a given MMDP M = (D, S,A, E , T, �, R, b0) and label set L, we define a safety specification
over M and L to be a DFA �

s = (Qs
, (L ⇥ A), �s, ss0, F s) which accepts the empty word and

does not contain any transitions from Q
s \ F

s to F
s. M satisfies �

s (M ✏ �
s) iff all possible

label traces of M are accepted by �
s. �

s induces the accepting action function C�s

: Qs ⇥ L !
P(A) = (q, l)! {a 2 A|�s(q, (l, a)) 2 F

s}; given a DFA state and label, output the actions which
transition the DFA to an accepting state.

We can compose a DFA �
g and a MMDP M to form a new MMDP (M||�g). The state space of the

resulting MMDP is the product of the state spaces of M and �
g , and the transition function steps

through the DFA and MMDP’s states in lockstep. At state (s, q), a given action is only enabled in
the resulting MMDP if it is a member of both E(s) and C�g

(q, f(s)).

4 Centralized Shielding

We use a definition of a centralized shield based on the joint actions which are allowed at each
shield state. Note that some prior formulations define the shield as a Moore machine which outputs
a specific safe action in response to an input action [6]; the following definition is equivalent.

Definition 3 (Centralized Shield) A DFA �
g is a centralized shield for MMDP M that enforces

safety specification �
s iff M||�g ✏ �

s and M||�g is deadlock-free.

Problem 1 (Centralized Shield Synthesis) Given a MMDP M = (D, S,A, E , T, �, R, b0), a label
set L, an abstraction function f over M and L, and a safety specification �

s over M and L,
synthesize a centralized shield for M that enforces �s.

This problem has previously been explored in [1] for the single-agent case, and [10] for the multi-
agent case; we do not aim to advance the state of the art in this domain. Briefly, centralized
shield synthesis works by constructing a game with two players: the agents, and the environment.
When constructing a shield for a multiagent environment, all agents are collectively considered one
“player” whose action set equals the space of joint actions for all of the agents. The environment
proposes a label, and the agents must respond with a joint action which does not violate the safety
specification. The safety game is solved, typically by iterating to a fixpoint [9].

A complete model of the environment is not necessary for this synthesis; an abstraction which cap-
tures all possible label traces is sufficient. For example, our test environments all involve avoiding
collisions. We therefore use the relative positions of the agents as the label set. The environment
abstraction only captures information about how the relative positions of the agents change with
each joint action, not any information about rewards or walls.

When using a centralized shield, the agents never explicitly construct the full composition of M||�g ,
as M may have an infinite state space, and its exact dynamics may not be known. Instead, the agents
maintain the current centralized shield state g, initialized to s

g
0. At every time step, they observe

the label l from the environment. Using the shield’s induced accepting action function, the agents
compute the set of safe actions C�g

(g, l).
1We intentionally omit f(sn+1) to allow label traces to be a word of (L⇥ A)⇤.
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At this point, there are two common design choices in how the shield gets used [1]. In pre-posed
shielding, the agent’s action space is restricted to C�g

(g, l); it is unable to choose an unsafe action.
In post-posed shielding, the agent is free to choose any action. However, if the action is not safe,
the shield substitutes the action with an arbitrary action a

0 2 C�g

(g, l). The agent observes, and is
trained on the environment transition (s, a0, r, s0). The agent is additionally trained on the synthetic
transition (s, a, r + rp, s

0) where rp is a penalty reward. For both designs, the shield’s transition
function �

g is then used to obtain the next centralized shield state. We choose to use post-posed
shielding for our experiments, as this method is generalizable to a greater variety of agents.

5 Decentralized Shielding

The use of a centralized shield requires agents to communicate with each other for two reasons:

First, the set of safe individual actions for a given agent may depend on the action choice of all
other agents. For example, consider the safety specification where an even number of agents must
pick a given action. Unless a single joint action is decided upon in advance, the agents must all
communicate before action selection in order to choose a safe action.

Furthermore, even if the set of safe individual actions are independent, the centralized shield may
transition to different states in response to different joint actions—even if both joint actions produce
the same result in the environment. Alshiekh et al. [1] gives the example of an industrial valve
controller, where the flow of water through the valve is stochastic when the valve is open. Consider
a similar environment where multiple agents each control an independent valve, and are unable to
observe other agents’ valve states, but they do observe the flow of water through each valve. An
agent would not be able to tell the difference between other agents’ valves being closed, versus their
valves being open without water flowing during a given step due to chance. Depending on the shield
structure, there may be no way to calculate what the next shield state is based on flow rates alone.

Therefore, in a no-communication environment, each agent must be equipped with a shield which
has the following two properties: First, each agent must be able to independently choose actions. No
matter what combination of actions are chosen by the various agents, the joint action must be safe.
We call a shield with this property Cartesian, as the safe joint action set results from the Cartesian
product of each agents’ safe individual action sets. Second, each agent’s local shield must be able
to independently determine its next internal state, without direct knowledge of the actions that other
agents have taken. We call a shield with this property unambiguous.

We call a DFA an individual shield for agent i 2 D if the transition alphabet of this DFA is L⇥Ai. If
the product2 of a series of individual shields forms a centralized shield which enforces specification
�
s, we say that the individual shields collectively form a decentralized shield which enforces �s.

Problem 2 (Dec-A Shield Synthesis) Given a MMDP M = (D, S,A, E , T, �, R, b0), a label set
L, an abstraction function over M and L, and a safety specification �

s, synthesize a decentralized
shield which enforces �s.

Problem 2 is generally hard to solve, and may even be undecidable in some cases, as it is related
to decentralized controller synthesis problems [18, 21]. Therefore, instead of solving Problem 2 di-
rectly, we opt for the following approach. First, we attempt to synthesize a centralized shield (i.e., to
solve Problem 1) using the methods described in Section 4. If this fails, i.e., if no centralized shield
exists, than we can conclude that no decentralized shield exists either. If, on the other hand, we man-
age to synthesize a centralized shield, than we can decentralize it, thereby turning our decentralized
shield synthesis problem into the following shield decomposition problem:

Problem 3 (Dec-A Shield Decomposition) Given a MMDP M = (D, S,A, E , T, �, R, b0) and a
centralized shield �

g for M, synthesize a decentralized shield for M which enforces �g .

Problem 3 admits a trivial solution, where for every shield state and label, we prescribe a single
safe joint action in advance. Such a joint action is guaranteed to exist for all reachable states due to
the deadlock-free property of the centralized shield. While the result is technically a decentralized

2Unlike a standard automaton product, we synchronize on L, so the resulting automaton’s alphabet is L⇥A.
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shield that enforces �s, this trivial solution does not allow the agents any freedom to explore actions
and optimize for expected returns.

Instead, we would ideally like to synthesize a maximally permissive shield; i.e. a shield for which
there does not exist an alternate shield that admits a strict superset of label traces. However, this
is a fundamentally difficult problem in the general case. We therefore present a procedure which
produces a maximally permissive decentralized shield when the input centralized shield is Cartesian
and unambiguous, and in all other cases produces a shield which is at least as permissive as the
trivial solution. The steps of our algorithm are illustrated in Figure 1, and described in what follows.

Algorithm 1 Step 1 of Shield Decomposition: Determining Safe Actions
1: Input
2: �

g = (G, (L⇥ A), �g, sg0, F g) // A centralized shield where A =
Q

i2D Ai

3: Output
4: Di : G⇥ L! P(Ai) // A set of safe individual actions for agent i
5: R : G⇥ L! [L! G] // Uniquely determine the next state, given the observed label
6: procedure CALCULATESAFEACTIONS(�g)
7: for s 2 G, l 2 L(s) do // L(s) = set of all labels which may be observed in shield state s

8: C(s, l) {a 2 A|�g(s, (l, a)) 2 F
g} // All legal joint actions from s, l

9: Pick arbitrary a = (a1, a2, . . . , an) 2 C(s, l) // Guaranteed to exist, given that l 2 L(s)
10: 8i 2 D : Di(s, l) = {ai}
11: R(s, l) [L(�g((s, l), a))! �

g((s, l), a)]
12: for i 2 D do // Optimization: randomly permute D at each time step
13: for a

0
i 2 Ai do

14: A {a0i}⇥
Q

j2D,j 6=i Dj(s, l) // New joint actions if a0i were added to Di

15: if A ✓ C(s, l) and UNAMBIGUOUSACTIONS(R(s, l), s, l, A) then
16: Di(s, l) Di(s, l) [ {a0i}
17: 8a 2 A,R(s, l) R(s, l) [ [L(�g(s, (l, a)))! �

g(s, (l, a))]
18: end if
19: end for
20: end for
21: end for
22: return Di8i 2 D,R
23: end procedure

First, for every centralized shield state, and for every label which can be observed from that state,
find a subset of safe joint actions which is Cartesian and unambiguous. This step works by first
choosing a single safe joint action, like in the trivial solution. The algorithm then attempts to add
individual actions for each agent in turn. When considering a given individual action, the algorithm
first calculates the set of all joint actions which would be enabled if this individual action were
enabled. For example, if the algorithm has previously decided that agent 1 may take either actions
a or b, then enabling agent 2’s action b would require checking that both joint action candidates
(a, b) and (b, b) are suitable. In this manner, the set of enabled joint actions remains Cartesian. If
any joint action candidate is unsafe, or if adding any of them would cause ambiguity in the next
state, then the individual action is rejected. Since the starting joint action and the order of candidate
individual actions are arbitrary, this algorithm’s output is not unique. The details of this step are
further illustrated in Figure 2, and described more specifically in Algorithm 1.

Algorithm 1 performs most of the work in this sequence of algorithms; it takes a centralized shield as
input, and outputs a set of safe actions for every state-label combination, as well as the information
necessary to determine the next state of the environment.

Algorithm 2 (in appendix) projects the actions found by the previous step into an input-output state
machine for each agent, which we call a transient-state individual shield. This structure has two
categories of states: label states, which receive an observation from the environment (shown as black
dots in Figure 1); and action states, which show the allowed actions of the agent (shown as white
circles). Lastly, Algorithm 3 (in appendix) performs some mild post-processing so that this structure
conforms to the shield interface. Additional information about these structures and algorithms can
be found in Section A.
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Figure 1: An overview of our algorithm sequence, in a hypothetical environment where D =
{1, 2},A1 = A2 = {

N
, ,!}, {L1, L2, L3} 2 L. (a) The input centralized shield, showing

L(1) = {L1, L2},L(2) = {L1},L(3) = {L2, L3},L(4) = {L1, L3}, as well as several transitions.
(b) The output of Algorithm 1: D1..n, which denotes the allowed actions for each agent, and R,
which maps labels seen in the next state to the state number. Here, for shield state 1 and label L1, it
is safe for agent 1 to take actions

N
or , while agent 2 may take

N
or!. (c) The output of Al-

gorithm 2: transient-state individual shields for each agent, constructed using D1..n and R. (d) The
output of Algorithm 3: individual shields, constructed by transforming the transient-state individual
shields. These can be used by agents in communication-free environments to ensure safety.

If the centralized shield given as input to this sequence of algorithms enforces a given specifica-
tion, the decentralized shield will also enforce that specification. This important safety property is
formalized as the following theorem, and proven in Section B.2 of the appendix:

Theorem 1 Given a MMDP M = (D, S,A, E , T, �, R, b0) where 8s 2 S, E(s) = A, and a cen-
tralized shield �

g for M, the result of Algorithms 1, 2, and 3 is a decentralized shield for M which
enforces �g .

As mentioned previously, given an input centralized shield which is already both unambiguous and
Cartesian, the resulting decentralized shield will be maximally permissive. A shield is trivially
unambiguous if each label only appears in a single state; many safety specifications, especially in
fully observable environments, are enforceable by such a shield. This includes all stateless shields—
shields where F g = {sg0}. For input shields which are non-Cartesian, our algorithm gives one agent
“right of way”; an agent with higher priority cannot put another agent in a situation for which there
are no safe actions, but the lower-priority agent must otherwise accommodate any potential actions
that the higher-priority agent may take. A centralized shield is usually Cartesian in states where such
a “right of way” is not necessary, i.e. when agents are not in contention with each other.
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Figure 2: A detailed view of Algorithm 1, which finds a Cartesian set of safe, unambiguous actions.
The shield from Figure 1 is used as input. This figure focuses on the process of finding safe actions
for state 1, after L1 has been observed. The 3x3 grid of squares represents the joint actions allowed
by the centralized shield for a given state-label pair. The 3x1 rectangles on the top and left represent
the individual actions which the decentralized shield will allow. Green with a check mark represents
that the individual action is allowed, red with an “X” represents that the action is not allowed, and
yellow with “?” represents that the action is under consideration. The mapping from diamonds to
circles represents knowledge of what the next state will be, given the next shield. (a) A single safe
joint action—(

N
,
N

)—is chosen arbitrarily. R reflects that if the agents see L1 next, state 2 comes
next. (b) The agent considers adding agent 1, action ; it is safe so this action is allowed. (c) The
algorithm considers agent 1, action !. It may lead to an unsafe state, so this individual action is
rejected. (d) The algorithm considers agent 2, action . This would add two joint actions. Adding
state 4 as a possible next state means that the states are ambiguous if L1 or L3 is observed, so it is
rejected. (e) The algorithm considers agent 2, action!. Both joint actions which this would add are
safe, so it is allowed. We don’t consider the effects of action (!,!), as agent 1 is prevented from
selecting!. (f) The finished result, used for the next step of the shield decentralization procedure.

No matter what, the decentralized shield which our algorithm generates will always allow at least one
safe joint action, in a manner similar to the trivial solution described above. In practice (c.f. Section
6), we find that the resulting decentralized shield tends to allow a large range of joint actions, even
on input shields which are not fully unambiguous or Cartesian.

6 Experiments

We aim to show with our experiments that, as predicted by Theorem 1, decentralized shields cor-
rectly prevent the agents from taking unsafe actions, while an equivalent unshielded agent may take
unsafe actions in the same situation. Furthermore, we hypothesize that agents which use our decen-
tralized shielding method perform comparably to agents which use a centralized shield.

6.1 The Gridworld Collision Domain

We adapt the gridworld maps from Melo and Veloso [16] to test our method. These maps, shown
in Figure 3, have previously been used to test multiagent shielding, with an assumption of instan-
taneous local communication [10]. Each agent has five actions available: movement in the four
cardinal directions, or a no-op. If all agents reach their goal positions, they each receive a +100
reward. Any agents which hit a wall receive a -10 reward. The safety specification is that a collision
between two agents should never occur (including agents crossing over each other). In an unshielded
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Figure 3: The four gridworld environments adapted from Melo and Veloso [16]. One agent each
starts in the red and green squares; the goal is to switch positions.

environment, if an agent violates this specification, all agents receive a -30 reward. Agents receive
a -1 reward at all other time steps. We use the four maps “MIT,” “ISR,” “SUNY,” and “Pentagon,”
both with and without randomized start positions. These maps range in size from 8x10 to 10x23.

We synthesized a centralized shield which avoids collisions, using a reactive synthesis tool [9]. Note
that this shield is shared across all four environments—it is a coarse abstraction which operates
solely on relative agent positions, ensuring collision-free behavior in any gridworld with similar
dynamics. The synthesis tool outputs a shield with many redundant states; we remove duplicate and
unreachable states. In the resulting shield, each environment label only appears in a single state, so
the resulting shield is trivially unambiguous (though it is not fully Cartesian).

We then utilized the procedure described in Section 5 to obtain a decentralized shield which works
for all of our gridworld environments. The resulting individual shields are more conservative when
the agents are near each other, ensuring that no more than one agent moves into a potentially con-
tested area. Centralized shield synthesis took approximately five minutes on a M1 Macbook Pro,
and our decentralization algorithm ran in under 30 seconds.

We analyzed the structure of the shields to determine how much the decentralization procedure
restricts the set of actions available. With the centralized shield, there are an average of 23.30 safe
joint actions available to the agents for a given shield state. Using the trivial solution from Section 5,
every shield state would only have 1 joint action available. Our decentralization algorithm produces
a shield where there are an average of 22.07 joint actions available—not much more restrictive than
the centralized shield.

We trained independent tabular Q-learning agents using ✏-greedy exploration, with a linear ✏ an-
nealing schedule from 1 to 0.05. The discount factor is 0.9. Agents were trained with a centralized
shield, a decentralized shield, and with no shield. When an agent attempts to take an action a

which is not allowed by the shield, the penalty reward for the synthetic transition rp = �10. These
hyperparameters were chosen to closely match the parameters from [10], where possible.

Agents were trained for 2.5 million timesteps each, using 10 different random seeds for each config-
uration. Each individual run took approximately 5 minutes on a single core of an Intel server CPU;
we trained 240 agents in total. This was sufficient for convergence in all variations. Results are
shown with both fixed and random starting positions in Table 1. Extended tables and training curves
are listed in the appendix.

As guaranteed by Theorem 1, this experiment shows that, because the centralized shield protects
the agents from taking such unsafe actions, the agents which use a decentralized shield are also
prevented from taking unsafe actions. The experiment also reveals that neither shielding method
consistently performs better than the other method, as the highest-performing agent is generally
within the margin of error. Therefore, our decentralized shielding approach allows safe, high-quality
learning during training and execution in environments without communication. The training curves
(Figure 4, in the appendix) tell the same story—no method works significantly faster during training.

6.2 The Relative Particle + Momentum Domain

One advantage of formally synthesizing a shield, rather than naively blocking actions which directly
lead to an unsafe state, is that a shielded agent can avoid states which do not immediately violate
a specification, but where all future paths end in an unsafe state. This can occur in domains with
momentum; if a car is driving towards a cliff, it must slow down well before it reaches the edge.
Therefore, we would like to evaluate agents which use our shield in momentum-based environments.
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Table 1: Agent performance after 2.5 million environment steps, using the same shield for training
and testing. Results show average evaluation return and standard error over 10 seeds, as well as
average total violations over 100 testing episodes in parentheses. Note that centralized shielding is
only for comparison; in a no-communication environment, this method would not be feasible.

Start Type Map Name Centralized Decentralized No Shield

Fixed

ISR 90.4 ± 0.6 (0) 89.9 ± 0.5 (0) 90.0 ± 0.6 (12.3)
MIT 72.0 ± 0.8 (0) 71.6 ± 0.3 (0) 72.8 ± 0.5 (0)
Pentagon 89.0 ± 0.4 (0) 82.0 ± 5.8 (0) 89.7 ± 0.3 (4.8)
SUNY 83.3 ± 1.4 (0) 86.6 ± 0.6 (0) 86.2 ± 0.4 (0)

Random

ISR 78.6 ± 2.2 (0) 76.1 ± 2.0 (0) 83.6 ± 1.4 (2.0)
MIT 82.6 ± 0.2 (0) 83.2 ± 0.2 (0) 81.4 ± 0.9 (0.4)
Pentagon 88.4 ± 0.5 (0) 80.3 ± 3.5 (0) 89.1 ± 0.3 (0.9)
SUNY 78.1 ± 0.4 (0) 73.1 ± 1.7 (0) 77.3 ± 0.4 (0.4)

Table 2: Individual DQN Agent Performance in the Particle-Momentum domain.

Observability Start Type Centralized Decentralized No Shield

Partial Fixed 70.9 ± 5.8 (0) 82.8 ± 2.3 (0) 67.8 ± 3.0 (34.3)
Random 70.8 ± 1.7 (0) 80.5 ± 1.4 (0) 33.2 ± 2.4 (115.7)

Full Fixed 91.6 ± 0.0 (0) 91.6 ± 0.0 (0) 90.7 ± 0.2 (3.0)
Random 94.6 ± 0.1 (0) 94.6 ± 0.1 (0) 93.7 ± 0.2 (2.8)

We introduce an environment as follows. There are two agents, representing particles on a dis-
cretized grid. Agent 1 begins 9 units above, and 9 units to the left of agent 2, with both agents at
rest. Both agents obtain a reward of 100 when agent 1 gets to the position 9 units to the right of
and below agent 2. If the agents get more than 10 units apart in any individual dimension, or collide
or cross with each other, it is considered a safety violation (and the agents get a reward of -30).
Otherwise, all agents get a reward of -1 at each time step. Each agent can move in any of the four
cardinal directions, or do nothing. Additionally, agents have momentum; an agent’s action is added
to its previous movement to obtain its next movement in the environment. The relative velocity is
capped at 2 units per time step in each direction. In the fully observable variant of this environment,
both agents observe the relative positions and relative velocities. In the partially observable version,
the agents only observe the relative positions.

We synthesized shields which only use the relative positions of the agents as the label set; such
shields can be utilized in either variant of the environment. Using the same structure analysis as in
Section 6.1, we calculated that the centralized shield allows an average of 21.67 actions, while the
decentralized shield allows an average of 20.81 actions.

To show that our decentralized shielding algorithm is also effective regardless of the underlying
reinforcement learning algorithm used by the agent, we trained reactive DQN agents to solve this
task [17]. Full hyperparameters for this agent are located in the appendix. 10 random seeds were
used in the fully observable case, and 50 seeds were used in the partially observable version of the
environment. Each run took approximately 8 hours using 3 threads on a server CPU.

The results are shown in Table 2. Under full observability, we reach similar conclusions as in
the gridworld-collision domain: the agents protected by centralized and decentralized shields both
achieve comparable performance. As guaranteed by Theorem 1, the agent which uses the decen-
tralized shield is as safe as the agent which uses a centralized shield. This is further emphasized
under the partially observable variant of the environment, where the unshielded reactive agents do
not have sufficient information about the environment, and thus behave in a wildly unsafe manner.
In contrast, the shields are able to infer the current momentum based on the incremental changes in
relative agent positions, leading them to never take an unsafe action.
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7 Broader Impact and Limitations

We believe that the algorithms presented in this work represent progress towards the more general
goal of safe reinforcement learning. Like most provably correct methods, shielding suffers from
scalability issues such as the well-known state explosion problem [3]. For example, prior to de-
duplication and removal of unreachable states, the shield which we synthesized for the gridworld
experiments contained 71130 states. The particle environment’s shield, including momentum infor-
mation, contained 170348 states. The size of a centralized shield tends to scale exponentially with
the number of agents. Our decentralization algorithm takes linear time with respect to the number
of state-label pairs in the input shield, so we are well positioned to take advantage of methods which
synthesize a centralized shield without such state explosion.

Additionally, obtaining an environment abstraction is difficult—we wrote several iterations of our
abstractions, each containing subtle but serious bugs, before finally obtaining precise and accurate
models of the environments. If our algorithm is given an inaccurate centralized shield, the decentral-
ized shield which the algorithm outputs cannot be expected to perform well. We therefore caution
against overreliance on an abstraction which may not accurately represent the environment.

Furthermore, there exist some environments where it is difficult, or even impossible, to determine
a shared label set. For example, an environment with highly asymmetric observations would not
satisfy the assumptions of the shielding framework we use. However, there may still be sufficient
information to ensure safety in these challenging environments; we are working on developing meth-
ods to synthesize a decentralized shield without a shared label set.

As with any advance in machine learning, it may be possible to use our method to safely train an
agent to perform an unethical task. However, we hope that as a whole, a process for safe reinforce-
ment learning training and execution will reduce potential societal harms resulting from AI.

8 Conclusion & Future Work

Our experiments show that the shield decomposition method described in this paper results in shields
that are safe and do not require any communication between agents. Furthermore, agents which are
trained and evaluated with a decentralized shield perform comparably to agents which are trained
and evaluated with a centralized shield, or without any shield.

We are currently working to extend our results in several ways. First, we are implementing ad-
ditional agents and training schemes, including individual Deep Q Networks with convolutional
layers [17], and Centralized-Critic Decentralized-Actor methods [11]. Second, we are investigat-
ing methods to scale our shield decomposition method to the more complicated shields and safety
specifications necessary to describe complex continuous or partially-observable environments. Our
algorithm makes a number of arbitrary choices which do not impact safety, but which could affect
shield performance. It may be useful to define additional metrics for shield performance and per-
missiveness that do not necessarily involve training and testing agents over thousands of episodes,
and to use these metrics to improve the decisions that our algorithm makes. We would like to even-
tually develop a method which obtains a maximally permissive decentralized shield, no matter what
properties hold for the input shield. Finally, although similar problems in formal methods are unde-
cidable [18, 21], we would like to explore heuristic methods for direct decentralized shield search
and synthesis.
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the pa-
per’s contributions and scope? [Yes] We present a method to decentralize a central-
ized shield, and verify experimentally that this method does not significantly affect
performance in the gridworld domain.

(b) Did you describe the limitations of your work? [Yes] See Section 7
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We dis-

cuss the topic in Section 7
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Sections 4
and 5 discuss the relevant assumptions.

(b) Did you include complete proofs of all theoretical results? [Yes] See appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We attach our
code as supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 6, and the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] The tables and figures are all reflective of this.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] The total compute time is
mentioned in Section 6; the provider of the computation power is mentioned in the
acknowledgements section.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 6.1,

where we discuss the origins of the environment maps.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
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(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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