
Dataset

Solution

Forward Pass

Backward Pass

Figure 4: The overall procedure of SATNet, SymSATNet, and SYMFIND. The original SATNet takes
as input the assignment pairs in the dataset, and learns the parameter matrix C which describes the
logical rules to solve. Our SYMFIND algorithm receives the learnt parameter C of SATNet, and
uses the subroutine algorithms SUMFIND and PRODFIND and the Reynolds operator prj to find the
candidate groups, and returns the strongest group G among the candidates. Finally, SymSATNet
exploits the groups symmetries in logical rules provided by domain experts, or automatically detected
group G by SYMFIND.
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A Notation

For natural numbers n1 and n2 with n1 ≤ n2, we write [n1 : n2] for the set {n1, n1 + 1, . . . , n2}.
For an m ×m matrix M , 1 ≤ a ≤ b ≤ m, and 1 ≤ c ≤ d ≤ m, we define M [a : b, c : d] by a
(b− a+ 1)× (d− c+ 1) matrix M :

M [a : b, c : d]i,j = Ma+i−1,c+j−1 for i ∈ [b− a+ 1] and j ∈ [d− c+ 1].

Also, if H is a subgroup of G, we denote it by H ≤ G.

B Proof of Theorem 2.3

In this section, we prove Theorem 2.3. Here we prove the direct sum, direct product, and wreath
product cases by an argument similar to the previous work [27]. For the wreath product case, we
slightly generalise the previous results [27], which considered only transitive group actions. We will
use the notation from Theorem 2.3. Let G and H be permutation groups over [p] and [q], respectively.
Also, let A ∈ B(G), B ∈ B(H), O ∈ O(G), and O′, O′′ ∈ O(H).
Claim B.1. The matrices A⊕0q , 0p⊕B, 1O×(p+O′), and 1(p+O)×O′ are (G⊕H)-equivariant. Also,
the matrices of these types for all possible choices of A, B, O, and O′ form a linearly independent
set.

Proof. Pick arbitrary group elements g ∈ G and h ∈ H . Let Pg and Ph be the permutation matrices
corresponding to g and h, respectively.

We prove the claimed equivariance below:
(Pg ⊕ Ph)(A⊕ 0p) = (PgA)⊕ 0p = (APg)⊕ 0p = (A⊕ 0p)(Pg ⊕ Ph),

(Pg ⊕ Ph)(0q ⊕B) = 0q ⊕ (PhB) = 0q ⊕ (BPh) = (0q ⊕B)(Pg ⊕ Ph),

(Pg ⊕ Ph)1O×(p+O′) = 1O×(p+O′) = 1O×(p+O′)(Pg ⊕ Ph),

(Pg ⊕ Ph)1(p+O′)×O = 1(p+O′)×O = 1(p+O′)×O(Pg ⊕ Ph).

The third and fourth lines use the fact that 1O×(p+O′) and 1(p+O′)×O are invariant under the left
or right multiplication of the permutation matrix Pg ⊕ Ph. This holds because the orbits of G are
preserved by any permutation in G, and those of H are preserved by all permutations in H , so that

Pg1O×O′ = 1O×O′ = 1O×O′Ph, Ph1O′×O = 1O′×O = 1O′×OPg. (6)

Next, we show the claimed linear independence by analysing the indices of the nonzero entries of the
four types of matrices in the claim.

1. The matrices of the type A⊕ 0q for some A ∈ B(G) are linearly independent, since their A
parts are linearly independent.

2. The matrices of the type 0p ⊕ B for some B ∈ B(H) are also linearly independent by
similar reason.

3. Different matrices of the type 1O×(p+O′) for some O and O′ do not share an index of a
nonzero entry, since different orbits of a group are disjoint. Thus, the matrices of this type
are linearly independent.

4. Different matrices of the type 1(p+O)×O′ for some O and O′ do not share an index of a
nonzeron entry. Thus, the matrices of this form are linearly independent.

Also, any matrices of the above four types form a linearly independent set because those linear
combinations do not share any indices of nonzero entries. From this and the above reasoning for each
of the four types of matrices it follows that the matrices of those four types are linearly independent,
as claimed.

Claim B.2. The matrix A ⊗ B is (G ⊗ H)-equivariant. Also, the matrices of this shape for all
possible choices of A and B form a linearly independent set.

Proof. Pick arbitrary group elements g ∈ G and h ∈ H . Let Pg and Ph be the permutation matrices
corresponding to g and h, respectively. Then,

(Pg ⊗ Ph)(A⊗B) = (PgA)⊗ (PhB) = (APg)⊗ (BPh) = (A⊗B)(Pg ⊗ Ph).

For linear independence, we can prove it using the fact ⟨A⊗B, A′ ⊗B′⟩ = ⟨A, A′⟩ · ⟨B, B′⟩.
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Claim B.3. Recall A ∈ B(G) and B ∈ B(H). The matrices A ⊗ 1O′×O′′ such that Ai,i = 0 for
i ∈ [p] and IO ⊗B are (H ≀G)-equivariant. Also, the matrices of these types for all possible choices
of A, B, O, O′, and O′′ form a linearly independent set.

Proof. Pick arbitrary group elements g ∈ G and h⃗ = (h1, . . . , hp) ∈ Hp. Let Pg−1 and Phi
be the

permutation matrices corresponding to g−1 and hi for i ∈ [p]. We can express wr(⃗h, g) and Pg−1 by

wr(⃗h, g) =

p∑
i=1

1{i}×{g(i)} ⊗ Phi
, Pg−1 =

p∑
i=1

1{i}×{g(i)}.

Then, we prove the following equivariance:

wr(⃗h, g) (A⊗ 1O′×O′′) =

(
p∑

i=1

1{i}×{g(i)} ⊗ Phi

)
(A⊗ 1O′×O′′)

=

p∑
i=1

(
1{i}×{g(i)}A⊗ Phi1O′×O′′

)
=

(
p∑

i=1

1{i}×{g(i)}

)
A⊗ 1O′×O′′ (7)

= Pg−1A⊗ 1O′×O′′ = APg−1 ⊗ 1O′×O′′

= A

(
p∑

i=1

1{i}×{g(i)}

)
⊗ 1O′×O′′

=

p∑
i=1

(
A1{i}×{g(i)} ⊗ 1O′×O′′Phi

)
(8)

= (A⊗ 1O′×O′′)

(
p∑

i=1

1{i}×{g(i)} ⊗ Phi

)
= (A⊗ 1O′×O′′) wr(⃗h, g),

wr(⃗h, g) (IO ⊗B) =

(
p∑

i=1

1{i}×{g(i)} ⊗ Phi

)
(IO ⊗B)

=

p∑
i=1

(
1{i}×{g(i)}IO ⊗ PhiB

)
=

p∑
i=1

(
1{i}×({g(i)}∩O) ⊗ Phi

B
)

=

p∑
i=1

(
1({i}∩O)×{g(i)} ⊗BPhi

)
(9)

=

p∑
i=1

(
IO1{i}×{g(i)} ⊗BPhi

)
= (IO ⊗B)

(
p∑

i=1

1{i}×{g(i)} ⊗ Phi

)
= (IO ⊗B) wr(⃗h, g).

Here, (7) and (8) use the same argument in (6), and (9) uses the fact that i ∈ O ⇐⇒ g(i) ∈ O for
any g ∈ G and O ∈ O(G). For linear independence, we again use the fact ⟨A ⊗ B, A′ ⊗ B′⟩ =
⟨A, A′⟩ · ⟨B, B′⟩ to show the orthogonality of all possible matrices of types A ⊗ 1O′×O′′ and
IO ⊗B.
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Claim B.4. The number of basis elements of G⊕H , G⊗H , and H ≀G can be computed as follows:

|B(G⊕H)| = |B(G)|+ |B(H)|+ 2|O(G)||O(H)|,
|B(G⊗H)| = |B(G)||B(H)|,
|B(H ≀G)| = |O(G)||B(H)|+ (|B(G)| − |O(G)|) |O(H)|2.

Proof. First, we derive some general fact on a finite permutation group. Let G be a permutation group
on [r] for some r. Consider the action of G on the space of r-dimensional vectors X = Rr by the
row permutation action g · v = Pgv for any g ∈ G. Define F(G) = {v ∈ X : g · v = v, ∀g ∈ G}.
Consider the following linear operator

ϕG : X → X , ϕG(v) =
1

|G|
∑
g∈G

g · v,

which can also be represented as the following matrix:

ϕG =
1

|G|
∑
g∈G

Pg.

The operator ϕG is a projection map, since

ϕG(ϕG(v)) =
1

|G|2
∑
g1∈G

∑
g2∈G

g1 · (g2 · v)

=
1

|G|2
∑
g1∈G

∑
g∈G

g · v

=
1

|G|
∑
g∈G

g · v.

Also, we have im(ϕG) = F(G) where im(f) is the image of the function f . Now, by noting that a
linear projection map has only eigenvalues 0 and 1, the dimension of F(G) can be computed by the
sum of eigenvalues of ϕG, i.e., tr(ϕG). Also, using Burnside’s lemma, we can count the orbits of G
(acting on [r]) by

|O(G)| = 1

|G|
∑
g∈G

tr(Pg)

= tr

 1

|G|
∑
g∈G

Pg


= tr(ϕG).

Putting together, we get
dimF(G) = tr(ϕG) = |O(G)|. (10)

Next, we instantiate what we have just shown above for the following case that G is the following
group:

G⊗2
0 = {g ⊗ g : g ∈ G0}

for some permutation group G0 on [n]. Note that G is a permutation group on [n2]. As explained
above, G⊗2

0 can act on the space of n2-dimensional vectors Rn2

. By vectorizing matrices, we can
express the space E(G0) of G0-equivariant linear maps on Rn by

vec(E(G0)) =
{
vec(M) : PgMPT

g = M, ∀g ∈ G0

}
= {vec(M) : (Pg ⊗ Pg) vec(M) = vec(M), ∀g ∈ G0}
= {vec(M) : (g ⊗ g) · vec(M) = vec(M), ∀g ∈ G0}
= F(G⊗2

0 ).
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Thus, |B(G0)| = dimvec(E(G0)) = dimF(G⊗2
0 ). We now calculate the dimension of F(G⊗2

0 )
using the relationship in (10):

|B(G0)| = dimF(G⊗2
0 ) = tr(ϕG⊗2

0
)

=
1

|G⊗2
0 |

∑
g⊗g∈G⊗2

0

tr(Pg⊗g) =
1

|G0|
∑
g∈G0

tr(Pg)
2. (11)

Finally, we complete the proof by calculating (11) for G0 = G⊕H , G0 = G⊗H , and G0 = H ≀G:

|B(G⊕H)| = 1

|G⊕H|
∑

g⊕h∈G⊕H

tr(Pg⊕h)
2

=
1

|G||H|
∑
g∈G

∑
h∈H

(tr(Pg) + tr(Ph))
2

=
1

|G|
∑
g∈G

tr(Pg)
2 +

1

|H|
∑
h∈H

tr(Ph)
2 +

2

|G||H|

∑
g∈G

∑
h∈H

tr(Pg) tr(Ph)


= |B(G)|+ |B(H)|+ 2|O(G)||O(H)|,

|B(G⊗H)| = 1

|G⊗H|
∑

g⊗h∈G⊗H

tr(Pg⊗h)
2

=
1

|G||H|
∑
g∈G

∑
h∈H

tr(Pg)
2 tr(Ph)

2

= |B(G)||B(H)|,

|B(H ≀G)| = 1

|H ≀G|
∑

wr(h⃗,g)∈H≀G

tr(wr(⃗h, g))2

=
1

|G||H|p
∑

g∈G,(h1,...,hp)∈Hp

tr

(
p∑

i=1

1{i}×{g(i)} ⊗ Phi

)2

=
1

|G||H|p
∑

g∈G,(h1,...,hp)∈Hp

(
p∑

i=1

tr
(
1{i}×{g(i)} ⊗ Phi

))2

=
1

|G||H|p
∑

g∈G,(h1,...,hp)∈Hp

(
p∑

i=1

1{i=g(i)} tr(Phi
)

)2

=
1

|G||H|p
∑

g∈G,(h1,...,hp)∈Hp

(
p∑

i=1

1{i=g(i)} tr(Phi
)2

+
∑
i ̸=j

1{i=g(i),j=g(j)} tr(Phi
) tr(Phj

)


=

1

|G||H|p
∑
g∈G


p∑

i=1

1{i=g(i)}

 ∑
(h1,...,hp)∈Hp

tr(Phi
)2


+
∑
i ̸=j

1{i=g(i),j=g(j)}

 ∑
(h1,...,hp)∈Hp

tr(Phi
) tr(Phj

)


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=
1

|G||H|p
∑
g∈G

{(
p∑

i=1

1{i=g(i)}

)
|H|p|B(H)|

+

∑
i ̸=j

1{i=g(i),j=g(j)}

 |H|p|O(H)|2


=
1

|G|
∑
g∈G

{(
p∑

i=1

1{i=g(i)}

)
|B(H)|

+

 p∑
i=1

1{i=g(i)}

p∑
j=1

1{j=g(j)}−
p∑

i=1

1{i=g(i)}

 |O(H)|2


=
1

|G|
∑
g∈G

(
tr(Pg)|B(H)|+

(
tr(Pg)

2 − tr(Pg)
)
|O(H)|2

)
= |O(G)||B(H)|+ (|B(G)| − |O(G)|) |O(H)|2.

Proof of Theorem 2.3 Claims B.1, B.2, and B.3 show that each set of matrices on the right-hand
side of the equations in Theorem 2.3 consists of linearly independent matrices, and it is contained in
the corresponding space of equivariant linear maps. Furthermore, Claim B.4 shows that the matrices
in the set span the whole of the space of equivariant linear maps, since their number coincides with
the dimension of the space. Hence, these three claims complete the proof of the theorem.

C Proofs of Theorem 3.2 and Lemma 3.3

Proof of Theorem 3.2 Assume that C is G-equivariant. Pick any g ∈ G. Then, C preserves
the standard action of g on Rn via its permutation matrix. Thus, Cg = gC, where g denotes the
permutation matrix Pg . This equation is equivalent to

gTCg = C, (12)

since gT = g−1. Using this equality, we show that the optimisation objective is invariant with respect
to g’s action:

⟨C, (V g−1)T (V g−1)⟩ = ⟨C, (g−1)T (V TV )g−1⟩
= tr(CT g(V TV )gT ))

= tr((gTCT g)(V TV ))

= tr((gTCg)T (V TV ))

= ⟨gTCg, V TV ⟩
= ⟨C, V TV ⟩.

Here tr is the usual trace operator on matrices, the third equality uses the cyclic property of tr, and
the last equality uses (12).

We move on to the proof of the converse. Assume k = n and the equation (3) holds for every
V ∈ Rk×n and g ∈ G. Pick any g ∈ G. Then, for all V ∈ Rk×n,

⟨C, V TV ⟩ = ⟨C, (V g−1)T (V g−1)⟩ = ⟨gTCg, V TV ⟩.

The first equality follows from (3), and the second from our derivation above. But the space of
matrices of the form V TV is precisely that of n×n symmetric positive semi-definite matrices, which
is known to contain n(n+ 1)/2 independent elements. Since n(n+ 1)/2 is precisely the dimension
of the space of n × n symmetric matrices, the above equality for every V ∈ Rk×n implies that
C = gTCg, that is, Cg = gC. This gives the G-equivariance of C, as desired.
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Proof of Lemma 3.3 Pick arbitrary V ∈ Rk×n and g ∈ G. Let v1, . . . , vn be the columns of V
in order, and v′1, . . . , v

′
n be those of V g−1 in order. Then, ∥vi∥ = 1 for every i ∈ [n] if and only

if ∥vg−1(i)∥ = 1 for all i ∈ [n]. The latter is equivalent to the statement that ∥v′i∥ = 1 for every
i ∈ [n].

D Subroutines of SYMFIND

In this section, we describe the subroutines SUMFIND and PRODFIND of our SYMFIND algorithm.

D.1 Detection of direct sum

We recall the distributivity law of group constructors [13, 17]:

G⊗ (H ⊕H ′) = (G⊗H)⊕ (G⊗H ′), (G⊕G′)⊗H = (G⊗H)⊕ (G′ ⊗H),

G ≀ (H ⊕H ′) = (G ≀H)⊕ (G ≀H ′), (G⊕G′) ≀H = (G ≀H)⊕ (G′ ≀H).

By this law and the fact that Im =
m⊕
i=1

Z1 for all m, any permutation group G definable in our

grammar can be expressed as a direct sum

G =

N⊕
i=1

H(i,1) ⋄ · · · ⋄H(i,ni). (13)

where each H(i,j) ∈ {Zm(i,j), Sm(i,j)} and ⋄ is either ⊗ or ≀. Let

Hi = H(i,1) ⋄ · · · ⋄H(i,ni),

and pi be the natural number such that Hi is a permutation group on [pi]. Since both Zm and Sm
have only one orbit for all m, each Hi also has only one orbit. Hence, by Theorem 2.3,

B(G) =
⋃

i,j∈[N ]

Bij ,

where

Bii = {0p1+···+pi−1
⊕A⊕ 0pi+1+···+pN

: A ∈ B(Hi)} for i ∈ [N ], and
Bij = {1(p1+···+pi−1+[pi])×(p1+···+pj−1+[pj ])} for i, j ∈ [N ] with i ̸= j.

This means that all off-diagonal blocks of any G-equivariant matrices are constant matrices, just like
the matrix shown in (b) of Figure 5.

Given a matrix M ∈ Rm×m, the subroutine SUMFIND aims at finding a permutation σ : [m]→ [m]
and the split m = p1 + . . . + pN for p1, . . . , pN > 0 such that PT

σ MPσ is approximately G-
equivariant for some permutation group G on [m] and this group G has the form in (13) where
Hi = H(i,1) ⋄ · · · ⋄H(i,ni) is a permutation group on [pi]. The result of the subroutine is (G, σ).

SUMFIND achieves its aim using two key observations. The first is an important implication of
the G-equivariance condition on Mσ−1 = PT

σ MPσ that we mentioned above: when the split
m = p1+ . . .+pN is used to group entries of Mσ−1 into blocks, the G-equivalence of Mσ−1 implies
that the off-diagonal blocks of Mσ−1 are constant matrices. This implication suggests one approach:
for every permutation σ on [m], construct the matrix Mσ−1 , and find a split m = p1 + . . .+ pN for
some N such that off-diagonal blocks of Mσ−1 from this split are constant matrices. Note that this
approach is not a feasible option in practice, though, since there are exponentially many permutations
σ. The second observation suggests a way to overcome this exponential blow-up issue of the approach.
It is that when Mσ−1 is G-equivariant, in many cases its diagonal blocks are cyclic in the sense that
the (i, j)-th entry of a block is the same as the (i+ 1, j + 1)-th entry of the block. This pattern can
be used to search for a good permutation σ efficiently.

SUMFIND works as follows. It first finds a permutation σ : [m]→ [m] and a split m = p1+ . . .+pN
using the process that we will explain shortly. Figure 5 illustrates the input matrix M , and its
permuted Mσ−1 that has nine blocks induced by the split of m = p1 + p2 + p3. Then, SUMFIND
calls SYMFIND recursively on each diagonal block of Mσ−1 and gets, for every i ∈ [N ],

(Hi, σi) = SYMFIND(Mσ−1 [pi−1 + 1 : pi, pi−1 + 1 : pi])

19



(a) Original matrix M (b) Permuted matrix Mσ−1 = PT
σ MPσ

Figure 5: Block pattern which commonly appears in the equivariant matrices under a direct-sum
group. In this example, Mσ−1 ∈ E(Z4 ⊕ Z4 ⊕ Z4). The red and blue "L-shaped" clusters have the
same values.

where p0 = 0. Finally, SUMFIND returns(
N⊕
i=1

Hi, σ ◦

(
N⊕
i=1

σi

))
where

σi ⊕ σj : [pi + pj ]→ [pi + pj ],

(σi ⊕ σj)(a) =

{
σi(a) if a ∈ [pi],

σj(a− pi) + pi otherwise.

We now explain the first part of SUMFIND that finds a permutation σ and a split m = p1 + . . .+ pN .
For simplicity, we ignore the issue of noise, and present a simpler version that uses equality instead
of approximate equality (i.e., being close enough). We start by initialising σ = σI , the identity
permutation, and Mσ−1 = M . Then, we pick an index k1 from the set K = {k1 ∈ [2 : m] :
(Mσ−1)k1,k1 = (Mσ−1)1,1}. Then, we locate (Mσ−1)1,k1 in the (1, 2)-th entry by swapping the
indices 2 and k1, which can be done by updating

Mσ−1 ← Pσ(2,k1)
Mσ−1PT

σ(2,k1)
,

σ ← σ ◦ σ−1
(2,k1)

.

Here σ(a,b)(a) = b, σ(a,b)(b) = a, and σ(a,b)(c) = c for c ̸= a, b. Next, we find a new index
k2 ∈ [3 : m] which is suitable to swap with the index 3 in the updated Mσ−1 . As Figure 5
shows, we need to find k2 such that (Mσ−1)2,k2

= (Mσ−1)1,2, (Mσ−1)k2,k2
= (Mσ−1)2,2, and

(Mσ−1)k2,2 = (Mσ−1)2,1. Once we find such k2, we swap the indices 3 and k2 by updating

Mσ−1 ← Pσ(3,k2)
Mσ−1PT

σ(3,k2)
,

σ ← σ ◦ σ−1
(3,k2)

.

We repeat this process to find an index kl ∈ [l + 1 : m] and the "L-shaped" entries which preserve
the cyclic pattern. If we cannot find such kl, we stop the process, and check (i) whether all rows in
(Mσ−1)[1 : l, l+ 1 : m] are the same and also (ii) whether all columns in (Mσ−1)[l+ 1 : n, 1 : l] are
the same. If the answers for both (i) and (ii) are yes, we move on to find the next diagonal block in
Mσ−1 in the same manner.

If (i) or (ii) has a negative answer, we go back to the step right before choosing k1 from K and
resetting σ and M to the values at that step. Then, we repeat the above process with a new choice
of k1 from K. If no choice of k1 ∈ K leads to the situation where both (i) and (ii) have positive
answers, then we conclude that p1 = 1, and move on to find the next diagonal block of M starting
from the index 2.
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D.2 Detection of direct product

Let M be a m×m matrix. Assume that we are given p, q ∈ N with pq = m. If for some permutation
groups H ≤ Sp and K ≤ Sq , the matrix M lies in E(H ⊗K) (i.e., M is H ⊗K-equivariant), then
M can be represented as a linear combination of Kronecker products:

M =

γ∑
i=1

(Xi ⊗ Yi) (14)

where Xi ∈ E(H), Yi ∈ E(K), and γ is a natural number.

The representation suggests the following strategy of finding a group G of symmetries of M that is the
direct product of two permutation groups on [p] and [q]. First, we express M as a linear combination
of Kronecker products Xi ⊗ Yi for Xi ∈ Rp×p and Yi ∈ Rq×q . Second, we pick a pair Xi and Yi in
the linear combination. Third, we call SYMFIND recursively on Xi and Yi to get group-permutation
pairs (H,σH) and (K,σK). Finally, we return (H ⊗K,σH ⊗ σK) where

σH ⊗ σK : [m]→ [m],

(σH ⊗ σK)((a− 1)q + b) = (σH(a)− 1)q + σK(b) for all a ∈ [p] and b ∈ [q].

Our PRODFIND is the implementation of the strategy just described. The only non-trivial steps of the
strategy are the first two, namely, to find the representation of M in (14), and to pick good Xi and Yi.
PRODFIND also has to account for the fact that the representation in (14) holds only approximately
at best in our context.

For the representation finding, PRODFIND uses the technique [24] that solves the following optimisa-
tion problem for given γ:

argmin
Xi∈Rp×p,Yi∈Rq×q

∥∥∥∥∥M −
γ∑

i=1

(Xi ⊗ Yi)

∥∥∥∥∥
F

. (15)

The technique performs the singular value decomposition of the rearranged matrix M̂ ∈ Rp2×q2 of
M defined by

M̂(i′−1)p+i,(j′−1)q+j = M(i−1)q+j,(i′−1)q+j′ (16)

for i, i′ ∈ [p] and j, j′ ∈ [q]. To understand why it does so, note that the optimisation problem in (15)
is equivalent to the following problem:

argmin
Xi∈Rp×p,Yi∈Rq×q

∥∥∥∥∥M̂ −
γ∑

i=1

vec(Xi) vec(Yi)
T

∥∥∥∥∥
F

. (17)

This new optimisation problem can be solved using SVD. Concretely, if we have the SVD of M ,
namely,

M̂ =

rank(M̂)∑
i=1

si(uiv
T
i ) (18)

where rank(M̂) is the rank of M̂ , si is the i-th largest singular value, and ui and vi are the corre-
sponding left and right singular vectors, we can solve the minimisation problem (17) by reshaping
each term of (18) corresponding to the γ largest singular values, i.e.,

M̂ ≈
γ∑

i=1

vec(Xi) vec(Yi)
T where vec(Xi) =

√
siui and vec(Yi) =

√
sivi for every i ∈ [γ].

The first step of PRODFIND is to apply the above technique [24]. PRODFIND performs the SVD of
the matrix M̂ and gets si, ui, vi in (18) where s1 ≥ s2 ≥ . . . ≥ sl for some l. Then, it sets L = s1/5,
and picks γ so that all i’s with si ≥ L are included when we approximate M̂ .

The second step of PRODFIND is to pick Xi and Yi. PRODFIND simply picks X1 and Y1 that
correspond to matrices (reshaped from u1 and v1) for the largest singular value s1. We empirically

21



observed that the matrices X1 and Y1 are most informative about the symmetries of M , and are least
polluted by noise from the training of SATNet.

The third and fourth steps of PRODFIND are precisely the last two steps of the strategy that we
described above.

Our description of SYMFIND in the main text says that PRODFIND gets called for all the divisors p
of n with q being n/p, since we do not know the best divisior p a priori, and that each invocation
generates a new candidate in the candidate list A. However, in practice, we ignore some divisors
that violates our predefined criteria. In particular, we set an upper bound U on γ, and use a divisor p
only when PRODFIND for p picks γ with γ ≤ U , i.e., not too many terms are considered in the linear
combination of Kronecker products. This criterion can be justified by the following lemma:

Lemma D.1. Let G = H ⊗K be the direct product of permutation groups H and K on [p] and
[q], respectively. Consider a G-equivariant matrix M ∈ E(G) and its rearranged version M̂ in (16).
Then, rank(M̂) ≤ min (|B(H)|, |B(K)|).

Proof. Let M ∈ E(G). The matrix M can be expressed as a linear combination of the basis elements
in B(G):

M =

|B(H)|∑
i=1

|B(K)|∑
j=1

αij(Ai ⊗Bj)

=

|B(K)|∑
j=1

|B(H)|∑
i=1

αijAi

⊗Bj (19)

=

|B(H)|∑
i=1

Ai ⊗

|B(K)|∑
j=1

αijBj

 (20)

where Ai ∈ B(H) and Bj ∈ B(K). We can also rewrite (19) and (20) with equations for M̂ :

M̂ =

|B(K)|∑
j=1

vec(A′
j) vec(Bj)

T =

|B(H)|∑
i=1

vec(Ai) vec(B
′
i)

T

where A′
j =

|B(H)|∑
i=1

αijAi

 and B′
i =

|B(K)|∑
j=1

αijBj

 .

Since the summands vec(A′
j) vec(Bj)

T and vec(Ai) vec(B
′
i)

T are rank-1 matrices, by the
subadditivity of rank, i.e., rank(X + Y ) ≤ rank(X) + rank(Y ), we have rank(M̂) ≤
min(|B(H)|, |B(K)|).

Having fewer basis elements is generally better because it leads to a small number of parameters to
learn in SymSATNet. The above lemma says that a divisor p with large γ (which roughly corresponds
to the large rank of M̂ in the lemma) leads to large |B(H)| and |B(K)|. Our criterion is designed to
avoid such undesirable cases.

D.3 Detection of wreath product

Assume that the permutation groups G and H act transitively on [p] and [q] (i.e., for all i, j ∈ [p]
and i′, j′ ∈ [q], there are g ∈ G and h ∈ H such that g(i) = j and h(i′) = j′). We recall that in
this case, every equivariant matrix M under the wreath product of groups H ≀G can be expressed as
follows [27]:

M = A⊗ 1q + Ip ⊗B (21)
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for some A ∈ E(G) and B ∈ E(H), where 1m, Im are everywhere-one, identity matrices in Rm×m.
We use this general form of B(H ≀G)-equivariant matrices and make PRODFIND detect the case that
symmetries are captured by a wreath product.

Our change in PRODFIND is based on a simple observation that the form in (21) is exactly the one in
(14) with γ = 2. We change PRODFIND such that if we get γ = 2 while runnning PRODFIND(M,p),
we check whether M can be written as the form in (21). This checking is as follows. Using given p
and q, we create blocks

M (i,j) = M [(i− 1)× q + 1 : i× q, (j − 1)× q + 1 : j × q]

of q× q submatrices in M for all i, j ∈ [p]. Then, we test whether all M (i,i) −M (j,j) and M (i,j) for
i ̸= j are constant matrices (i.e., matrices of the form α1q for some α ∈ R). If this test passes, M
has the desired form. In that case, we compute A and B from M , and recursively call SYMFIND on
A and B.

We can also make SUMFIND(M) detect wreath product. The required change is to perform a similar
test on each diagonal block of the final Mσ−1 computed by SUMFIND(M). The only difference
is that when the test fails, we look for a rearrangement of the rows and columns of the diagonal
block that makes the test succeed. If the test on a diagonal block succeeds (after an appropriate
rearrangement), the group corresponding to this block, which is one summand of a direct sum,
becomes a wreath product.

E Computational Complexity of SYMFIND

In this section, we analyse the computational complexity of our SYMFIND algorithm in terms of the
dimension of the input matrix. Suppose that an n× n matrix is given to SymFind as an input. The
complexity of SymFind shown in Algorithm 1 is O(n3+ϵ) for any arbitrarily small ϵ > 0.

We can show the claimed complexity of SYMFIND using induction. When SumFind is called
in the line 9 of Algorithm 1, it first spends O(n3) time for clustering, and then makes recursive
calls to SymFind with ni × ni submatrices for

∑
ni = n. Each of these calls takes O(n3+ϵ

i )

time by induction, and the total cost of all the calls is
∑

i O(n3+ϵ
i ) = O(n3+ϵ). Also, when

ProdFind is called in the lines 11-12 of Algorithm 1, for each divisor p of n, ProdFind performs
SVD in O(n3) steps, and makes recursive calls to SymFind. The recursive calls here together
cost O(p3+ϵ/2 + (n/p)3+ϵ/2) = O(n3+ϵ/2) by induction. Thus, the loop in lines 11-14 costs
O(n3+ϵ/2d(n)) = O(n3+ϵ), where d(n) is the number of divisors of n, since d(n) = O(nϵ/2) for
any arbitrarily small ϵ > 0. It remains to show that applying the Reynolds operator (in the lines 2 and
6) and counting the number of basis elements (in the line 15) take O(n3+ϵ) steps. The former costs
O(n2) since it is actually an average pooling operation when we consider permutation groups. The
latter costs at most O(n) (when it is given B(

⊕n
i=1 Z1)).

F Symmetries in Sudoku and Rubik’s Cube Problems

In this section, we describe the group symmetries in Sudoku and the completion problem of Rubik’s
cube. In both problems, we can find certain group G ≤ Sn acting on Rk×n such that for any valid
assignment V ∈ Rk×n of problem, g · V is also valid for any g ∈ G.

In 9× 9 Sudoku, we denote the first three rows of a Sudoku board by the first band, and the next three
rows by the second band, and the last three rows by the third band. In the same manner, we denote
each three columns by a stack. For Sudoku problem, one can observe that any row permutations
within each band preserve the validity of the solutions. Also, the permutations of bands preserve the
validity. We can represent this type of hierarchical actions by wreath product groups. In this case, 3
bands are permuted in a higher level, and 3 rows in each band are permuted in a lower level, which
corresponds to the group action of S3 ≀ S3. The same process can be applied to the stacks and the
columns, which also corresponds to the group S3 ≀ S3. Furthermore, the permutations of number
occurences in Sudoku (e.g., switching all the occurences of 3’s and 9’s) also preserves the validity of
the solutions. In this case, any permutations over [9] are allowed, thus S9 represents this permutation
action. Overall, we have three permutation groups, G1 = S3 ≀ S3, G2 = S3 ≀ S3, and G3 = S9. These
three groups are in different levels; G1 is at the outermost level, and G3 is at the innermost level.
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Algorithm 2 Forward pass of SATNet

1: Input: VI
2: init random unit vectors vo, ∀o ∈ O
3: compute Ω = V ST

4: repeat
5: for o ∈ O do
6: compute go = Ωso − ∥so∥2vo
7: compute vo = −go/∥go∥
8: update Ω = Ω+ (vo − vprev

o )sTo
9: end for

10: until not converged
11: Output: VO

Algorithm 3 Forward pass of SymSATNet

1: Input: VI
2: init random unit vectors vo, ∀o ∈ O
3: repeat
4: for o ∈ O do
5: compute go = V co − Co,ovo
6: compute vo = −go/∥go∥
7: update V = V + (vo − vprev

o )1T
o

8: end for
9: until not converged

10: Output: VO

Note that these three types of actions are commutative, i.e., the order does not matter if we apply the
actions in different levels. This relation forms a direct product between each level, and we conclude
G = (S3 ≀ S3)⊗ (S3 ≀ S3)⊗ S9.

For Rubik’s cube, we first introduce some of the conventional notations. We are given a 3× 3× 3
Rubik’s cube composed of 6 faces and 9 facelets in each face. There are also 26 cubies in the Rubik’s
cube, and they are classified into 8 corners, 12 edges, and 6 centers. To change the color state of
Rubik’s cube, we can move the cubies with 9 types of rotations, which are denoted by U , D, F , B, L,
R, M , E, S. We can represent each color state of the Rubik’s cube by a function from F = [6]× [9]
to C = [6], where F encodes the face and facelets, and C encodes the colors. The initial state of
Rubik’s cube is s : F → C satisfying s(i, j) = i for all (i, j) ∈ F . If there exists a sequence of
rotations that transforms s to the initial state, then s is solvable. Our completion problem of Rubik’s
cube is to find a color assignment such that the assignment is solvable. For example, if a corner cubie
contains 2 same colors, it is not solvable because these adjacent same colors cannot be separated by
the 9 types of rotations.

We can observe the following group symmetries in the completion problem of Rubik’s cube: any
solvable color state is still solvable after being transformed by the 9 types of rotations. These 9
rotations generate a permutation groupR54 acting on the 6× 9 facelets of a Rubik’s cube, which is
called the Rubik’s cube group. Furthermore, like Sudoku, we can also consider the permutations of
color occurences. In this case, if we assume the colors 0 and 5 are initially on the opposite sides, then
the solvability can be broken by switching the colors 0 and 1 since the colors 0 and 5 are then no
longer on the opposite sides. Considering this, computing all possible permutations acting on the
color occurences is not trivial. Instead, we can generate such groupR6 by 3 elements, each of which
corresponds to the 90◦ rotation in one of the three axes in 3-dimension. Finally, these two groups
R54 andR6 form different levels of actions, and actions from different levels commute each other.
Therefore, we conclude G = R54 ⊗R6.

G Efficient Implementation of SymSATNet

Our SymSATNet includes forward-pass and backward-pass algorithms as described in Section 3.
Here, we describe slight changes of the forward-pass and backward-pass algorithms in SymSATNet,
and the improvement of efficiency obtained by these changes. Algorithms 2 and 3 are the forward pass
algorithms of SATNet and SymSATNet, and Algorithms 4 and 5 are the backward pass algorithms of
SATNet and SymSATNet. In those algorithms, we let co be the o-th column of the matrix C, and
vprev
o and uprev

o be the previous o-th columns of V and U before the update. Also, let Po = Ik − vov
T
o ,

and 1o be the n-dimensional one-hot vector whose only o-th element is 1. Note that our algorithms
are only slightly different from the ones of original SATNet, and the only difference is that the inner
products sTi sj are substituted by Ci,j which can be directly derived from C = STS. This allows us
to implement the forward-pass and the backward-pass algorithm of SymSATNet in the same manner
as the original SATNet.

The above changes bring a small difference in the computational complexity. In SATNet, new
matrices Ω and Ψ are required for the rank-1 update in each loop. Recall that V,U ∈ Rk×n and
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Algorithm 4 Backward pass of SATNet

1: Input: {∂ℓ/∂vo : o ∈ O}
2: init UO = 0 and Ψ = UOS

T
O = 0

3: repeat
4: for o ∈ O do
5: compute dgo = Ψso − ∥so∥2uo − ∂ℓ/∂vo
6: compute uo = −Podgo/∥go∥
7: update Ψ = Ψ+ (uo − uprev

o )sTo
8: end for
9: until not converged

10: Output: UO

Algorithm 5 Backward pass of SymSATNet

1: Input: {∂ℓ/∂vo : o ∈ O}
2: init UO = 0
3: repeat
4: for o ∈ O do
5: compute dgo = Uco−Co,ouo− ∂ℓ/∂vo
6: compute uo = −Podgo/∥go∥
7: update U = U + (uo − uprev

o )1T
o

8: end for
9: until not converged

10: Output: UO

S ∈ Rm×n imply Ω,Ψ ∈ Rk×m. SATNet costs O(nmk) twice every iteration, in the lines 6, 8 of
Algorithm 2 and in the lines 5, 7 of Algorithm 4. SymSATNet costs O(n2k) once every iteration,
in the line 5 of Algorithm 3 and in the line 5 of Algorithm 5. Another slight difference is in the
first line of the body of each for loop, where SATNet computes ∥so∥2, but SymSATNet uses the
constant Co,o. If we denote the required number of iterations by t, then SATNet costs O(nmk · 2t),
and SymSATNet costs O(n2k · t) inside the loop. These make one of the major differences between
the runtime of SATNet and SymSATNet, since these are scaled by t, the number of iterations until
convergence. Outside the loop, SATNet additionally costs O(nmk) in the line 3 of Algorithm 2, and
SymSATNet costs O(n2d) in the forward computation of C in (4), and in the backward computation
with the chain rule in (5). These costs are not significant because each of these occurs only once
every gradient update in SATNet and SymSATNet.

We also inspected the values of t in SATNet and SymSATNet in a training run for Sudoku and Rubik’s
cube problem in the configuration we used in our experiments. For Sudoku, SATNet repeated the
loop t = 21.39 times on average, in the range of 15 ≤ t ≤ 32, while SymSATNet finished the loop
in t = 19.10 on average, in the scope of 3 ≤ t ≤ 26. For Rubik’s cube, SATNet completes the
loop in t = 9.25 on average, whose scope was 3 ≤ t ≤ 25, while SymSATNet iterates t = 7.30
times on average, with the range 2 ≤ t ≤ 26. These results show that the component t is reduced in
SymSATNet for those two problems, and bring further improvement of efficiency in practice.

H Hyperparameters

In this section, we specify the hyperparameters to run SymFind algorithm and the validation steps in
SymSATNet-Auto. Each validation step requires a threshold of improvement of validation accuracy
to measure the usefulness of each smaller part in a given group, i.e., only the smaller parts showing
improvement greater than the threshold were considered to be useful, and were combined to construct
the whole group. We determined this threshold by the number of corruption in the dataset; 0.05
for the dataset with 0 and 1 corruption, 0.15 for 2 corruption, and 0.2 for 3 corruption. Also, our
SymFind algorithm receives λ as an input, which determines the degree of sensitivity of SymFind.
In practice, this tolerance was implemented by two hyperparameters, say λ1 and λ2. λ1 was used
to compute a threshold to decide whether a pair of entries have the same value within our tolerance
so that they have to be clustered. We computed this threshold by the multiplication of λ1 and the
norm of input matrix, and λ1 was fixed by 0.1 for both problems. λ2 played a role of a threshold
to conclude that the input matrix truly has the symmetries under the discovered group by SymFind.
λ2 was used in the last step of SymFind, where the largest group is selected among the candidates.
With the Reynolds operator, we computed the distance between the input matrix and the equivariant
space under each candidate group, and filtered out the groups whose distance is greater than λ2. We
determined λ2 by the number of corruption in the dataset; 0.4 for the dataset with 0 corruption, 0.5
for 1 corruption, 0.55 for 2 corruption, and 0.6 for 3 corruption.
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I GPU Usage

The implementation of SymSATNet is based on the original SATNet code, and thus the calculations
in the forward-pass and the backward-pass algorithms of SymSATNet can be accelerated by GPU.
We used GeForce RTX 2080 Ti for every running of SATNet and SymSATNet.

J Ablation Study of Validation Steps

0 1 2 3
Number of Corruption

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Validation No Validation

Figure 6: Best test accuracies of SymSATNet-Auto
with or without the validation step using noisy
Rubik’s cube datasets.

In this section, we present the results of abla-
tion study for the additional validation step in
SymSATNet-Auto. All the configurations are
the same, except that the discovered group sym-
metries by SYMFIND are directly exploited by
SymSATNet without the subsequent validation
step. We used noisy Sudoku and Rubik’s cube
datasets, and repeated our experiment with each
dataset ten times. Here we report the average
test accuracies with 95% confidence interval.

In Sudoku, our SYMFIND algorithm always suc-
ceeded in finding the full group symmetries, and
these correct symmetries were preserved by the
validation step since they always significantly
improved the validation accuracies after projecting the parameter C of SATNet. For this reason,
omitting the validation step did not change the performance of SymSATNet-Auto. Thus, we do not
plot the results for the Sudoku case. For Rubik’s cube, the results are shown in Figure 6. Without
the validation step, SymSATNet-Auto often overfit into the wrong group symmetries induced by
the noise in the parameter matrix C of SATNet, resulting in lower improvement of performance.
These results show that the additional validation step is useful not only when the training and the
test examples share the same distribution, but also when the distribution of training examples is the
perturbation of that of test examples by noise.

K Emergence of Symmetries in SATNet
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Figure 7: Projection errors of the SATNet’s pa-
rameter C during 100 epochs. We repeated 30
training trials for each problem to report the pro-
jection errors.

In this section, we report our experiment for detect-
ing the appearance and disappearance of symme-
tries in the SATNet’s parameter matrix C through-
out the training epochs. We measured how close
C is to E(G), the space of equivariant matrices un-
der G, by computing ∥prj(G,C)−C∥F (denoted
by projection error below) where G is the ground-
truth permutation group for a given learning prob-
lem (e.g., Sudoku or Rubik’s cube). We evalu-
ated the projection errors throughout 100 training
epochs. Our experiment for each problem was
repeated 30 times.

Figure 7 shows the results. For Sudoku, in multi-
ple cases out of 30 trials, the projection error hit
the lowest point around the 5-10th epochs, and
after these epochs, the projection error started to
increase until certain epochs, so that the training
ended with a high projection error. We did not ob-
serve any clear difference in the training loss (or
the test loss) between these cases with high projec-
tion errors and the other cases (which showed low
projection errors). This result suggests possible
overfitting from the perspective of symmetry dis-
covery in the original SATNet. For Rubik’s cube,

26



Table 3: Best train and test accuracies during 100 epochs and average total train times (102 sec).
Each experiment was repeated 10 times and its average and 95% confidence interval are reported.
Additional times for automatic symmetry detection (SYMFIND and validation) are reported after +.

MODEL SUDOKU CUBE
TRAIN ACC. TEST ACC. TIME TRAIN ACC. TEST ACC. TIME

SATNET-PLAIN 93.5% 88.1% 48.0 99.4% 55.7% 1.8
±1.2% ±1.3% ±0.17 ±0.1% ±0.5% ±0.01

SATNET-300AUX 99.8% 97.9% 90.3 99.8% 56.5% 14.0
±0.0% ±0.2% ±0.68 ±0.0% ±0.6% ±0.12

SYMSATNET-PLAIN 98.8% 99.2% 25.6 67.1% 66.9% 1.1
±0.1% ±0.2% ±0.14 ±0.2% ±0.9% ±0.00

SYMSATNET-300AUX 99.2% 99.3% 53.6 69.6% 67.6% 9.5
±0.1% ±0.1% ±0.56 ±0.4% ±0.5% ±0.29

SYMSATNET-AUTO 99.3% 99.5% 22.7 70.2% 68.1% 3.4
±0.1% ±0.2% +0.14

±0.35 ±3.1% ±2.0% +0.66
±0.19

in all of our trials, the projection error always decreased throughout the epochs, and no sign of overfit-
ting was detected. Answering why this is the case is an interesting topic for future research. Also, in
the very beginning of the training for both problems, the projection errors were not sufficiently small.
By choosing proper stopping epochs in SymSATNet-Auto, we can avoid high projection errors, as
we did (i.e., we picked the 10th epoch for Sudoku, and the 20th epoch for Rubik’s cube). Finally, we
point out that there may be factors other than the projection error that influence the performance of
our symmetry-discovery algorithm. If found, those factors would become useful tools for analysing
the theoretical guarantees of SYMFIND algorithm, and we leave it to future work.
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Figure 8: Test accuracies throughout the first 100
training epochs. Each training run was repeated
10 times to compute the average and the 95%
confidence interval.

By introducing auxiliary variables, the original
SATNet can achieve higher expressive power and
better performance while trading-off the runtime
efficiency. The similar process can be done in
SymSATNet. If a permutation group G captures
group symmetries of a problem to be solved with-
out auxiliary variables, then G⊕Im represents the
extension of the same symmetries with the m aux-
iliary variables. The singleton group Im here acts
trivially (i.e., permutes nothing) on those auxiliary
variables.

We now report the findings of our experiments
with SymSATNet with 300 auxiliary variables
(SymSATNet-300aux) that retains the above ex-
tension of group symmetries. We compared
the performance of SymSATNet-300aux with the
other four models that we used before, on the
0-corrupted Sudoku and Rubik’s cube datasets.
We denote SymSATNet without auxiliary vari-
ables by SymSATNet-Plain to distinguish it from
SymSATNet-300aux. We repeated the training
for each dataset 10 times. Here we report the
average and best test accuracies, the average train-
ing times, and 95% confidence interval. We
trained SymSATNet-300aux with the learning rate
η = 4× 10−2, which is the same as SymSATNet-Plain. All the experimental setups were the same
as before.
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Figure 8 and Table 3 show the results. In both tasks, SymSATNet-300aux outperformed all the other
models except SymSATNet-Auto. Also, for Rubik’s cube, SymSATNet-300aux showed the fastest
convergence in epoch among all the models. Note that both the test accuracies and the training
times of SymSATNet-300aux were remarkably improved over those of SATNet baselines. These
results demonstrate that SATNet with auxiliary variables still enjoyed the benefits by exploiting a
minor extension of group symmetries, although the benefits were not as significant as in the case of
SymSATNet-Plain.
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(a) Training losses in Sudoku with 0 corruption
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(b) Test losses in Sudoku with 0 corruption0 20 40 60 80 100
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(c) Training losses in Sudoku with 1 corruption
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(d) Test losses in Sudoku with 1 corruption
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(e) Training losses in Sudoku with 2 corruptions
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(f) Test losses in Sudoku with 2 corruptions0 20 40 60 80 100
Epoch

0.10

0.15

0.20

0.25

Tr
ai

n 
Lo

ss

SATNet-Plain
SATNet-300aux

SymSATNet
SymSATNet-Auto

0 20 40 60 80 100
Epoch

0.10

0.15

0.20

0.25

Tr
ai

n 
Lo

ss

SATNet-Plain
SATNet-300aux

SymSATNet
SymSATNet-Auto

(g) Training losses in Sudoku with 3 corruptions
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(h) Test losses in Sudoku with 3 corruptions

Figure 9: Training and test loss curves for Sudoku. Each loss is averaged over 10 trials and each 95%
confidence interval is included.
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(a) Training losses in Rubik’s cube with 0 corruption
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(b) Test losses in Rubik’s cube with 0 corruption
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(c) Training losses in Rubik’s cube with 1 corruption
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(d) Test losses in Rubik’s cube with 1 corruption
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(e) Training losses in Rubik’s cube with 2 corruptions
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(f) Test losses in Rubik’s cube with 2 corruptions
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(g) Training losses in Rubik’s cube with 3 corruptions
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(h) Test losses in Rubik’s cube with 3 corruptions

Figure 10: Training and test loss curves for the Rubik’s cube problem. Each loss is averaged over 10
trials and each 95% confidence interval is included.
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