
A Algorithms

A.1 Binarization Test for Detection Defenses

To expand the test outlined in Algorithm 1 to detection defenses, we propose the following modifica-
tion:

Algorithm 2 Binarization Test for classifiers with a linear classification readout and a detector.
Missing functions are defined in Appendix A.2.

input: test samples Xtest, feature extractor f∗ of original classifier, adversarial detector d returning
1 for detected samples and 0 otherwise, number of inner/boundary/reference samples Ni/Nb/Nr,
distance ε, sampling functions for data from the inside/boundary of the ε-ball, relative distance (in
terms of ε) of positive and reference samples η > 1.

function BINARIZATIONTEST(f∗, d,Xtest, Nb, Ni, Nr, ε, η)
attack_successful = []
random_attack_successful = []
for all xc ∈ Xtest do
b,Xr = CreateBinaryClassifier(f∗, xc, ε)
# evaluate robustness of binary classifier
attack_success.insert (RunDetectorAttack(b, d, xc,Xr))
random_attack_success.insert (RunRandomDetectorAttack(b, d, xc))

ASR = Mean(attack_successful)
RASR = Mean(random_attack_successful)
return ASR, RASR

end function

function INVERTEDBINARIZATIONTEST(f∗, d,Xtest, Nb, Ni, Nr, ε, η)
# ¬d denotes the negated/inverted detector
return BinarizationTest(f*,¬d,Xtest,Np,Nn, ε, η

end function

function CREATEBINARYCLASSIFIER(f∗,xc, d)
# draw input samples around clean example
Xi = { xc } ∪ { SampleInnerPoint(xc, ε) }1,...,Ni

Xb = { SampleBoundaryPoint(xc, ε), d(z) = 1 }1,...,Nb

# get positive samples outside the ε-ball, e.g., as a reference for logit matching attacks
Xr = { SampleBoundaryPoint(xc, ηε), d(z) = 1 }1,...,Nr

# get features for images
Fi = { f∗(x) | x ∈ Xi }
Fb = { f∗(x) | x ∈ Xb }
Fr = { f∗(x) | x ∈ Xr }
# define labels & create labeled dataset
D = { (x̂, 0) | x̂ ∈ Fi } ∪ { (x̂, 1) | x̂ ∈ Fb } ∪ { (x̂, 1) | x̂ ∈ Fr }
# train linear readout on extracted features
b = TrainReadout(D)
return binary classifier b based on feature encoder f∗ and reference samples Xr

end function

A.2 Auxiliary Functions

In order to keep the main algorithms concise, we use the following auxiliary functions:

TrainReadout(D) Trains a binary classification readout on the labeled dataset D that uses the same
architecture as the original classification readout of the defense in question.

RunAttack(h,xc) Searches for an adversarial example for the clean example xc that fools the binary
classifier h using the adversarial attack in question.
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RunRandomAttack(h, d,xc) Searches for an adversarial example for the clean example xc that
fools the binary classifier h using a purely random attack, i.e., L random perturbations are drawn and
checked whether at least one of them is adversarial. In our experiments we sample, we set L = 400
(see Section B).

RunDetectorAttack(b, d,xc,Xr) Searches for an adversarial example for the clean example xc that
fools the binary classifier h and the detector d using the adversarial attack in question. The set Xr
contains dataset samples of different classes that might be used by feature matching attacks.

RunRandomDetectorAttack(b, d,xc) Searches for an adversarial example for the clean example
xc that fools the binary classifier h and the detector d using purely random attack, i.e., L random
perturbations are drawn and checked whether at least one of them is adversarial. In our experiments
we sample, we set L = 400 (see Section B).

SampleInnerPoint(xc, ε) Draws a random sample from inside of the ε-ball, i.e., 0 < d(xc < ε for d
being the distance measure. In our experiments we sample from a uniform distribution (see Section B
for more details).

SampleBoundaryPoint(xc, ε) Draws a random sample that lies exactly on the surface of the ε-ball,
i.e., d(xc = ε for d being the distance measure. In our experiments we sample from a uniform
distribution (see Section B for more details).

B Experimental Details

For all defenses considered, we use the source code and hyperparameters originally used by the
defenses’ authors to evaluate them. For integrating our test in the respective evaluations, we aimed to
minimally modify the original code.

The experiments were run on a computer with eight NVIDIA GeForce RTX 2080 Ti GPUs, whereby
for each experiment only a single GPU was used. In total, approximately 2500 GPU hours were
required for obtaining the results presented in this work.

All investigated defenses consider an `∞ threat model. While the defense by Shan et al. [34] focuses
on an ε = 0.01 bound, the rest uses the more common ε = 8/255 bound.

We evaluate the binarization test for 512 randomly chosen samples from the CIFAR-10 [18] test set.

For all attacks we set the gap between the boundary and inner points to η = 0.05, measured relatively
to the used ε value. We evaluated detector-based defenses using Algorithm 2, and use ξ = 1.75,
measured in terms of ε.

As outlined above in Section 4.3, we adjust the hardness of the test until the test produces conclusive
results, i.e., the random attack success rate (R-ASR) is not too high. This leads to a parameter choice
of Ninner = 999 for all defenses but that of Zhang and Wang [43] for which used Ninner = 9999.
While we set the number of boundary samples to Nboundary = 10 for Zhang and Xu [44], we set it to 1
for all other defenses. Also, we sample the boundary point(s) from the corners of the `∞ ε-box, since
this increases the test’s difficulty further.

Further, for adjusting the hardness of the test we adjust the bias of the linear classifier such that the
distance between boundary sample and decision boundary measured in terms of the distance between
boundary sample and closest inner sample is κ = 0.999 (see Section 4.3).

We sample the inner samples uniformly from the ε hypercube (i.e., the `∞ ball), and the boundary
samples from the corners of the cube. We opted for this, since it increases the hardness of the test.
Further, for calculating the R-ASR we samples both 200 points from the inner and 200 more from
the corners of the space, as this significantly increased the R-ASR and, thus, gives a more realistic
estimate of the test’s difficulty.
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C Additional Results
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Figure 4: Robust accuracy as a function of the test performance. Thicker markers denote results
for the attacks originally used by the defenses’ authors, while smaller ones correspond to that of
adaptive attacks that broke the defense. The gray arrows between these points indicate how the scores
change by using using a better suited attack. Orange points indicate false negatives/non-conclusive
test results. Triangles denote defenses leveraging detection algorithms. For these defenses we
visualize the minimum of the performance on the regular and inverted tests.
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