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Abstract

Inferring causal structure poses a combinatorial search problem that typically in-
volves evaluating structures with a score or independence test. The resulting search
is costly, and designing suitable scores or tests that capture prior knowledge is
difficult. In this work, we propose to amortize causal structure learning. Rather
than searching over structures, we train a variational inference model to directly
predict the causal structure from observational or interventional data. This allows
our inference model to acquire domain-specific inductive biases for causal discov-
ery solely from data generated by a simulator, bypassing both the hand-engineering
of suitable score functions and the search over graphs. The architecture of our
inference model emulates permutation invariances that are crucial for statistical
efficiency in structure learning, which facilitates generalization to significantly
larger problem instances than seen during training. On synthetic data and semisyn-
thetic gene expression data, our models exhibit robust generalization capabilities
when subject to substantial distribution shifts and significantly outperform existing
algorithms, especially in the challenging genomics domain. Our code and models
are publicly available at: https://github.com/larslorch/avici.

1 Introduction

Learning the causal structure among a set of variables is a fundamental task in various scientific
disciplines (Spirtes et al., 2000; Pearl, 2009). However, inferring this causal structure from observa-
tions of the variables is a difficult inverse problem. The solution space of potential causal structures,
usually modeled as directed graphs, grows superexponentially with the number of variables. To infer
a causal structure, standard methods have to search over potential graphs, usually maximizing either
a graph scoring function or testing for conditional independences (Heinze-Deml et al., 2018).

Specifying realistic inductive biases is universally difficult for existing approaches to causal discovery.
Score-based methods use strong assumptions about the data-generating process, such as linearity
(Shimizu et al., 2006), specific noise models (Hoyer et al., 2008; Peters and Bühlmann, 2014), and
the absence of measurement error (cf. Scheines and Ramsey 2016; Zhang et al. 2017), which are
difficult to verify (Dawid, 2010; Reisach et al., 2021). Conversely, constraint-based methods do not
have enough domain-specific inductive bias. Even with an arbitrarily large dataset, they are limited
to identifying equivalence classes that may be exponentially large (He et al., 2015b). Moreover, the
search over directed graphs itself may introduce unwanted bias and artifacts (cf. Colombo et al. 2014).
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The intractable search space ultimately imposes hard constraints on the causal structure, e.g., the
node degree (Spirtes et al., 2000), which limits the suitability of search in real-world domains.

In the present work, we propose to amortize causal structure learning. In other words, our goal is
to optimize an inference model to directly predict a causal structure from a provided dataset. We
show that this approach allows inferring causal structure solely based on synthetic data generated
by a simulator of the data-generating process we are interested in. Much effort in the sciences, for
example, goes into the development of realistic simulators for high-impact and yet challenging causal
discovery domains, like gene regulatory networks (Schaffter et al., 2011; Dibaeinia and Sinha, 2020),
fMRI brain responses (Buxton, 2009; Bassett and Sporns, 2017), and chemical kinetics (Anderson
and Kurtz, 2011; Wilkinson, 2018). Our approach based on amortized variational inference (AVICI)
ultimately allows us to both specify domain-specific inductive biases not easily represented by graph
scoring functions and bypass the problems of structure search. Our model architecture is permutation
in- and equivariant with respect to the observation and variable dimensions of the provided dataset,
respectively, and generalizes to significantly larger problem instances than seen during training.

On synthetic data and semisynthetic gene expression data, our approach significantly outperforms
existing algorithms for causal discovery, often by a large margin. Moreover, we demonstrate that
our inference models induce calibrated uncertainties and robust behavior when subject to substantial
distribution shifts of graphs, mechanisms, noise, and problem sizes. This suggests that our pretrained
models are not only fast but also both reliable and versatile for future downstream use. In particular,
AVICI was the only method to infer plausible causal structures from noisy gene expression data,
advancing the frontiers of structure discovery in fields such as biology.

2 Background and Related Work
2.1 Causal Structure

In this work, we follow Mooij et al. (2016) and define the causal structure G of a set of d variables
x = (x1, . . . , xd) as the directed graph over x whose edges represent all direct causal effects among
the variables. A variable xi has a direct causal effect on xj if intervening on xi affects the outcome
of xj independent of the other variables x\ij := x \{xi, xj}, i.e., there exists a ̸= a′ such that

p(xj | do(xi = a,x\ij = c)) ̸= p(xj | do(xi = a′,x\ij = c)) (1)

for some c. An intervention do(·) denotes any active manipulation of the generative process of x, like
gene knockouts, in which the transcription rates of genes are externally set to zero. Other models such
as causal Bayesian networks and structural causal models (Peters et al., 2017) are less well-suited
for describing systems with feedback loops, which we consider practically relevant. However, we
note that our approach does not require any particular formalization of causal structure. In particular,
we later show how to apply our approach when G is constrained to be acyclic. We assume causal
sufficiency, i.e., that x contains all common causal parents of the variables xi (Peters et al., 2017).

2.2 Related Work

Classical methods for causal structure learning search over causal graphs and evaluate them using
a likelihood or conditional independence test (Chickering, 2003; Kalisch and Bühlman, 2007; Hauser
and Bühlmann, 2012; Zheng et al., 2018; Heinze-Deml et al., 2018). Other methods combine
constraint- and score-based ideas (Tsamardinos et al., 2006) or use the noise properties of an SCM
that is postulated to underlie the data-generating process (Shimizu et al., 2006; Hoyer et al., 2008).

Deep learning has been used for causal inference, e.g., for estimating treatment effects (Shalit et al.,
2017; Louizos et al., 2017; Yoon et al., 2018) and in instrumental variable analysis (Hartford et al.,
2017; Bennett et al., 2019). In structure learning, neural networks have primarily been used to model
nonlinear causal mechanisms (Goudet et al., 2018; Yu et al., 2019; Lachapelle et al., 2020; Brouillard
et al., 2020; Lorch et al., 2021) or to infer the structure of a single dataset (Zhu et al., 2020). Prior
work applying amortized inference to causal discovery only studied narrowly defined subproblems
such as the bivariate case (Lopez-Paz et al., 2015) and fixed causal mechanisms (Löwe et al., 2022) or
used correlation coefficients for prediction (Li et al., 2020). In concurrent work, Ke et al. (2022) also
frame causal discovery as supervised learning, but with significant differences. Most importantly, we
optimize a variational objective under a model class that captures the symmetries of structure learning.
Empirically, our models generalize to much larger problem sizes, even on realistic genomics data.
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3 AVICI: Amortized Variational Inference for Causal Discovery

3.1 Variational Objective

To amortize causal structure learning, we define a data-generating distribution p(D) that models the
domain in which we infer causal structures. The observations D = {x1, . . . ,xn} ∼ p(D) are gener-
ated by sampling from a distribution over causal structures p(G) and then obtaining realizations from
a data-generating mechanism p(D |G). The data-generating process p(D |G) characterizes all direct
causal effects (1) in the system, but it is not necessarily induced by ancestral sampling over a directed
acyclic graph. Real-world systems are often more naturally modeled at different granularities or as
dynamical systems (Mooij et al., 2013; Hoel et al., 2013; Rubenstein et al., 2017; Schölkopf, 2019).

Given a set of observations D, our goal is to approximate the posterior over causal structures p(G |D)
with a variational distribution q(G; θ). To amortize this inference task for the domain distribution
p(D), we optimize an inference model fϕ to predict the variational parameters θ by minimizing the
expected forward KL divergence from the intractable posterior p(G |D) to q(G; θ) for D ∼ p(D):

min
ϕ

Ep(D) DKL

(
p(G |D)

∥∥q(G; fϕ(D)
))

(2)

Since it is not tractable to compute the true posterior in (2), we make use of ideas by Barber and
Agakov (2004) and rewrite the expected forward KL to obtain an equivalent, tractable objective:

Ep(D) DKL

(
p(G |D)

∥∥q(G; fϕ(D))
)
= Ep(D) Ep(G |D)[log p(G |D)− log q(G; fϕ(D))]

= −Ep(G) Ep(D |G)[log q(G; fϕ(D))] + const.
(3)

The constant does not depend on ϕ, so we can maximize L(ϕ) := Ep(G) Ep(D |G)[log q(G; fϕ(D))],
which allows us to perform amortized variational inference for causal discovery (AVICI). While the
domain distribution p(D) = Ep(G)[p(D |G)] can be arbitrarily complex, L is tractable whenever we
have access to the causal graph G underlying the generative process of D, i.e., to samples from the
joint distribution p(G,D). In practice, p(G) and p(D |G) can thus be specified by a simulator.

From an information-theoretic viewpoint, the objective (2) maximizes a variational lower bound on
the mutual information I[G;D] between the causal structure G and the observations D (Barber and
Agakov, 2004). Starting from the definition of mutual information, we obtain

I[G;D] = H[G]−H[G |D] = H[G] + Ep(G,D)[log p(G |D)]

≥ H[G] + Ep(G,D)[log q(G; fϕ(D))] = H[G] + L(ϕ)
(4)

where the entropy H[G] is constant. The bound is tight if Ep(D)DKL(p(G |D)∥q(G; fϕ(D))) = 0.

3.2 Likelihood-Free Inference using the Forward KL

The AVICI objective in (3) intentionally targets the forward KL DKL(p ∥ q( · ; θ)), which requires
optimizing Ep(G,D)[log q(G; θ)]. This choice implies that we both model the density q(G; θ) explic-
itly and assume access to samples from the true data-generating distribution p(G,D). Minimizing
the forward KL enables us to infer causal structures in arbitrarily complex domains—that is, even
domains where it is difficult to specify an explicit likelihood p(D |G). Moreover, the forward
KL typically yields more reliable uncertainty estimates since it does not suffer from the variance
underestimation problems common to the reverse KL (Bishop and Nasrabadi, 2006).

In contrast, variational inference usually optimizes the reverse KL DKL(q( ∥ p), which involves
the reconstruction term Eq(G;θ)[log p(D |G)] (Blei et al., 2017). This objective requires a tractable
marginal likelihood p(D |G). Unless inferring the mechanism parameters jointly (e.g. Brouillard
et al. 2020; Lorch et al. 2021), this requirement limits inference to conjugate models with linear
Gaussian or categorical mechanisms that assume zero measurement error (Geiger and Heckerman,
1994; Heckerman et al., 1995), which are not justified in practice (Friston et al., 2000; Schaffter
et al., 2011; Runge et al., 2019; Dibaeinia and Sinha, 2020). Furthermore, unless the noise scale
is learned jointly, likelihoods can be sensitive to the measurement scale of x (Reisach et al., 2021).

4 Inference Model

In the following section, we describe a choice for the variational distribution q(G; θ) and the inference
model fϕ that predicts θ given D. After that, we detail our training procedure for optimizing the
model parameters ϕ and for learning causal graphs with acyclicity constraints.
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Figure 1: Model architecture. (a) Our model maps the input to a three dimensional tensor of shape
n×d×k and remains permutation in- and equivariant over axes n and d, respectively. (b) Each of the
L layers first self-attends over axis d and then over n, sharing parameters across the other axis. (c) The
inner product of two variables’ representations models the probability of a direct causal effect.

4.1 Variational Family

While any inference model that defines a density is feasible for maximizing the objective in (3), we
opt to use a factorized variational family in this work.

q(G; θ) =
∏
i,j

q(gi,j ; θi,j) with gi,j ∼ Bern(θi,j) (5)

The inference model fϕ maps a dataset D corresponding to n samples {o1, . . . ,on} to a d-by-d
matrix θ parameterizing the variational approximation of the causal graph posterior. In addition to the
joint observation xi = (xi

1, . . . , x
i
d), each sample oi = (oi1, . . . , o

i
d) may contain interventional infor-

mation for each variable. When interventions or gene knockouts are performed, we set oij = (xi
j , u

i
j)

and ui
j ∈ {0, 1} indicating whether variable j was intervened upon in sample i. Other settings could

be encoded analogously, e.g., when the intervention targets are unknown or measurements incomplete.

4.2 Model Architecture

To maximize statistical efficiency, fϕ should satisfy the symmetries inherent to the task of causal
structure learning. Firstly, fϕ should be permutation invariant across the sample dimension (axis n).
Shuffling the samples should not influence the prediction, i.e., for any permutation π, we have
fϕ(π({o})) = fϕ({o}). Moreover, fϕ should be permutation equivariant across the variable
dimension (axis d). Reordering the variables should permute the predicted causal edge probabilities,
i.e., fϕ({oπ(1:d)})i,j = fϕ({o1:d})π(i),π(j). Lastly, fϕ should apply to any d, n ≥ 1.

In the following, we show how to parameterize fϕ as a neural network that encodes these properties.
After first mapping each oij to a real-valued vector using a position-wise linear layer, fϕ operates over
a continuous, three-dimensional tensor of n rows for the observations, d columns for the variables,
and feature size k. Figure 1 illustrates the key components of the architecture.

Attending over axes d and n The core of fϕ is composed of L = 8 identical layers. Each layer con-
sists of four residual sublayers, where the first and third apply multi-head self-attention and the second
and fourth position-wise feed-forward networks, similar to the Transformer encoder (Vaswani et al.,
2017). To enable information flow across all n×d tokens of the representation, the model alternates in
attending over the observation and the variable dimension (Kossen et al., 2021). Specifically, the first
self-attention sublayer attends over axis d, treating axis n as a batch dimension; the second attends
over axis n, treating axis d as a batch dimension. Since modules are shared across non-attended axes,
the representation is permutation equivariant over axes n and d at all times (Lee et al., 2019b).

Variational parameters After building up a representation tensor from the input using the attention
layers, we max-pool over the observation axis n to obtain a representation (z1, . . . , zd) consisting of
one vector zi ∈ Rk for each causal variable. Following Lorch et al. (2021), we use two position-wise
linear layers to map each zi to two embeddings ui,vi ∈ Rk, which are ℓ2 normalized. We then
model the probability of each edge in the causal graph with an inner product:

θi,j = σ
(
τ ui · vj + b

)
(6)

where σ is the logistic function, b a learned bias, and τ a positive scale that is learned in log space.
Since max-pooling is invariant to permutations and since (6) permutes with respect to axis d, fϕ
satisfies the required permutation invariance over axis n and permutation equivariance over axis d.
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4.3 Acyclicity

Cyclic causal effects often occur, e.g., when modeling stationary distributions of dynamical systems,
and thus loops in a causal structure are possible. However, certain domains may be more accurately
modeled by acyclic structures (Rubenstein et al., 2017). While the variational family in (5) cannot en-
force it, we can optimize for acyclicity through ϕ. Whenever the acyclicity prior is justified, we amend
the optimization problem in (2) with the constraint that q only models acyclic graphs in expectation:

F(ϕ) := Ep(D) [h(fϕ(D))] = 0 (7)

The function h is zero if and only if the predicted edge probabilities induce an acyclic graph. We
use the insight by Lee et al. (2019a), who show that acyclicity is equivalent to the spectral radius
ρ, i.e., the largest absolute eigenvalue, of the predicted matrix being zero. We use power iteration
to approximate and differentiate through the largest eigenvalue of fϕ(D) (Golub and Van der Vorst,
2000; Lee et al., 2019a):

h(W ) := ρ(W ) ≈ a⊤Wb

a⊤b
where for t steps:

a← a⊤W / ∥a⊤W∥2
b←Wb / ∥Wb∥2

(8)

and a,b ∈ Rd are initialized randomly. Since a few steps t are sufficient in practice, (8) scales with
O(d2) and is significantly more efficient than O(d3) constraints based on matrix powers (Zheng
et al., 2018; Yu et al., 2019). We do not backpropagate gradients with respect to ϕ through a,b.

4.4 Optimization

Algorithm 1 Training the inference model fϕ
Parameters: ϕ variational, λ dual, η step size
while not converged do

for l steps do
∆ϕ ∝ ∇ϕ

(
L(ϕ)− λF(ϕ)

)
λ← λ+ ηF(ϕ)

Combining the objective in (3) with our inference
model (5), we can directly use stochastic opti-
mization to train the parameters ϕ of the inference
model. The expectations over p(G,D) insideL and
F are approximated using samples from the data-
generating process of the domain. When enforcing
acyclicity, causal discovery algorithms often use
the augmented Lagrangian method for constrained
optimization (e.g., Zheng et al. 2018; Brouillard et al. 2020). In this work, we optimize the parameters
ϕ of a neural network, so we rely on methods specifically tailored for deep learning and solve the
constrained program maxϕ L(ϕ) s.t. F(ϕ) = 0 through its dual formulation (Nandwani et al., 2019):

min
λ

max
ϕ
L(ϕ)− λF(ϕ) (9)

Algorithm 1 summarizes the general optimization procedure for qϕ, which converges to a local
optimum under regularity conditions on the learning rates (Jin et al., 2020). Without an acyclicity
constraint, training reduces to the primal updates of ϕ with λ = 0.

5 Experimental Setup

Evaluating causal discovery algorithms is difficult since there are few interesting real-world datasets
that come with ground-truth causal structure. Often, the believed ground truths may be incomplete
or change as expert knowledge improves (Schaffter et al., 2011; Mooij et al., 2020). Following prior
work, we deal with this difficulty by evaluating our approach using simulated data with known causal
structure and by controlling for various aspects of the task. In Appendix E, we additionally report
results on a real-world proteomics dataset (Sachs et al., 2005).

5.1 Domains and Simulated Components

We study three domains: two classes of structural causal models (SCMs) as well as semisynthetic
single-cell expression data of gene regulatory networks (GRNs). To study the generalization of AVICI
beyond the training distribution p(D), we carefully construct a spectrum of test distributions p̃(D)
that incur substantial shift from p(D) in terms of the causal structures, mechanisms, and noise, which
we study in various combinations. Whenever we consider interventional data in our experiments,
half of the dataset consists of observational data and half of single-variable interventions.

Data-generating processes p(D |G) We consider SCMs with linear functions (LINEAR) and
with nonlinear functions of random Fourier features (RFF) that correspond to functions drawn
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Figure 2: Moving out-of-distribution in the RFF domain. Randomly sampled data-generating
components of the nonlinear SCM domain during training p(D) (top) and o.o.d. evaluation p̃(D) (bot-
tom). For visualization, the adjacency matrices (a) are topologically sorted, the causal mechanisms
(b) have two parents, where c and ℓ are output and length scales of the underlying GP, and the noise
(c) is shown as a function of one parent, where dashed lines indicate 0.66, 0.95, and 0.999 coverage.

from a Gaussian process with squared exponential kernel (Rahimi and Recht, 2007). In the
out-of-distribution (o.o.d.) setting p̃(D), we sample the linear function and kernel parameters from
the tails of p(D) and unseen value ranges. Moreover, we simulate homoscedastic Gaussian noise
in the training distribution p(D) but test on heteroscedastic Cauchy and Laplacian noise o.o.d. that is
induced by randomly drawn, nonlinear functions hj . In LINEAR and RFF, interventions set variables
to random values and are performed on a subset of target variables containing half of the nodes.

In addition to SCMs, we consider the challenging domain of GRNs (GRN) using the simulator of
Dibaeinia and Sinha (2020). Contrary to SCMs, gene expression samples correspond to draws from
the steady state of a stochastic dynamical system that varies between cell types (Huynh-Thu and
Sanguinetti, 2019). In the o.o.d. setting, the parameters sampled for the GRN simulator are drawn
from significantly wider ranges. In addition, we use the noise levels of different single-cell RNA
sequencing technologies, which were calibrated on real datasets. In GRN, interventions are performed
on all nodes and correspond to gene knockouts, forcing the transcription rate of a variable to zero.

Causal structures p(G) Following prior work, we use random graph models and known biological
networks to sample ground-truth causal structures. In all three domains, the training data distribution
p(D) is induced by simple Erdős-Rényi and scale-free graphs (Erdős and Rényi, 1959; Barabási and
Albert, 1999). In the o.o.d. setting, p̃(D) of the LINEAR and RFF domains are simulated using causal
structures from the Watts-Strogatz model, capturing small-world phenomena (Watts and Strogatz,
1998); the stochastic block model, generalizing Erdős-Rényi to community structures (Holland et al.,
1983); and geometric random graphs, modeling connectivity based on spatial distance (Gilbert, 1961).
In the GRN domain, we use subgraphs of the known S. cerevisiae and E. coli GRNs and their effect
signs whenever known. To extract these subgraphs, we use the procedure by Marbach et al. (2009)
to maintain structural patterns like motifs and modularity (Ravasz et al., 2002; Shen-Orr et al., 2002).

To illustrate the distribution shift from p(D) to p̃(D), Figure 2 shows a set of graph, mechanism,
and noise distribution samples in the RFF domain. In Appendix A, we give the detailed parameter
configurations and functions defining p(D) and p̃(D) in the three domains. We also provide details
on the simulator by Dibaeinia and Sinha (2020) and subgraph extraction (Marbach et al., 2009).

5.2 Evaluation Metrics

All experiments throughout this paper are conducted on datasets that AVICI has never seen during
training, regardless of whether we evaluate the predictive performance in-distribution or o.o.d. To
assess how well a predicted structure reflects the ground truth, we report the structural Hamming
distance (SHD) and the structural intervention distance (SID) (Peters and Bühlmann, 2015). While the
SHD simply reflects the graph edit distance, the SID quantifies the closeness of two graphs in terms
of their interventional adjustment sets. For these metrics and for single-edge precision, recall, and F1
score, we convert the posterior probabilities predicted by AVICI to hard predictions using a threshold
of 0.5. We evaluate the uncertainty estimates by computing the areas under the precision-recall curve
(AUPRC) and the receiver operating characteristic (AUROC) (Friedman and Koller, 2003). How

6



F1

Prec.

Rec.

AUPRC

AUROC

   % acyclic

    SHDratio

SIDratio

0.0
0.2
0.4
0.6
0.8

in-dist.
o.o.d. G

o.o.d. G, f
o.o.d. G, f, 

0.0 0.2 0.4 0.6 0.8 1.0
AUPRC

100

50

20

10

d

n=30
n=100

n=300
n=1000

(a) LINEAR

F1

Prec.

Rec.

AUPRC

AUROC

   % acyclic

    SHDratio

SIDratio

0.0
0.2
0.4
0.6
0.8

in-dist.
o.o.d. G

o.o.d. G, f
o.o.d. G, f, 

0.0 0.2 0.4 0.6 0.8 1.0
AUPRC

100

50

20

10

d

n=30
n=100

n=300
n=1000

(b) RFF

F1

Prec.

Rec.

AUPRC

AUROC

   % acyclic

    SHDratio

SIDratio

0.0
0.2
0.4
0.6
0.8

in-dist.
o.o.d. G

o.o.d. G, sim
o.o.d. G, sim, noise

0.0 0.2 0.4 0.6 0.8 1.0
AUPRC

100

50

20

10

d

n=30
n=100

n=300
n=1000

(c) GRN

Figure 3: Generalization properties of the inference model fϕ. Top row plots show performance
metrics of AVICI under increasing distributional shift given n = 1000 observations for d = 30
variables. SIDratio is defined as SIDin-dist./SID and analogously for SHD. Thus, higher is better for
all metrics. Bottom row shows the in-distribution AUPRC for various d as we vary the number of
observations provided to AVICI. The datasets contain interventional data (cf. Section 5.1). All values
are the mean over fifteen random task instances. Error bars indicate the interquartile range.

well these uncertainty estimates are calibrated is quantified with the expected calibration error (ECE)
(DeGroot and Fienberg, 1983). More details on the metrics are given in Appendix B.

5.3 Inference Model Configuration

We train three inference models overall, one for each domain, and perform all experiments on these
three trained models, both when predicting from only observational and from interventional data.
During training, the datasets sampled from p(D) have d = 2 to 50 variables and n = 200 samples.
With probability 0.5, these training datasets contain 50 interventional samples. The inference models
in the three domains share identical hyperparameters for the architecture and optimization, except
for the dropout rate. We add the acyclicity constraint for the SCM domains LINEAR and RFF. Details
on the optimization and architecture are given in Appendix C.

6 Experimental Results

6.1 Out-Of-Distribution Generalization

Sensitivity to distribution shift In our first set of experiments, we study the generalization
capabilities of our inference models across the spectrum of test distributions described in Section 5.1.
We perform causal discovery from n = 1000 observations in systems of d = 30 variables. Starting
from the training distribution p(D), we incrementally introduce the described distribution shifts in
the causal structures, causal mechanisms, and finally noise, where fully o.o.d. corresponds to p̃(D).
The top row of Figure 3 visualizes the results of an empirical sensitivity analysis. The radar plots
disentangle how combinations of the three o.o.d. aspects, i.e., graphs, mechanisms, and noise, affect
the empirical performance in the three domains LINEAR, RFF, and GRN. In addition to the metrics
in Section 5.2, we also report the percentage of predicted graphs that are acyclic.

In the LINEAR domain, AVICI performs very well in all metrics and hardly suffers under distribution
shift. In contrast, GRN is the most challenging problem domain and the performance degrades
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Table 1: Benchmarking results (d = 30 variables). Mean SID (↓) and F1 score (↑) with standard
error of all methods on 30 random task instances. Methods in the top section use only observational
data, in the bottom section both observational and interventional data. We highlight the best result
of each section and those within its 95% confidence interval according to an unequal variances t-test.

LINEAR RFF GRN

Algorithm SID F1 SID F1 SID F1

GES 215.6 (35.0) 0.548 (0.03) 346.3 (44.4) 0.285 (0.03) 573.6 (29.2) 0.058 (0.01)

LiNGAM 413.4 (48.4) 0.369 (0.04) 410.3 (47.6) 0.238 (0.02) 617.5 (31.7) 0.044 (0.01)

PC 400.5 (53.7) 0.338 (0.03) 370.1 (51.2) 0.421 (0.03) 594.0 (30.0) 0.061 (0.01)

DAG-GNN 474.5 (50.8) 0.154 (0.01) 425.3 (50.2) 0.221 (0.03) 588.7 (36.6) 0.078 (0.02)

GraN-DAG 466.0 (54.3) 0.200 (0.03) 328.6 (48.4) 0.476 (0.05) 582.4 (33.4) 0.073 (0.02)

AVICI (ours) 145.6 (21.5) 0.672 (0.04) 255.1 (48.2) 0.618 (0.06) 641.7 (34.7) 0.000 (0.00)

GIES 120.8 (26.2) 0.736 (0.03) 304.8 (44.0) 0.338 (0.04) 545.5 (26.9) 0.092 (0.01)

IGSP 244.0 (34.4) 0.559 (0.02) 374.1 (45.0) 0.407 (0.04) 597.4 (31.7) 0.057 (0.01)

DCDI 383.5 (45.1) 0.327 (0.03) 282.8 (46.3) 0.409 (0.04) 590.9 (30.6) 0.075 (0.02)

AVICI (ours) 110.9 (19.3) 0.819 (0.02) 192.7 (44.8) 0.707 (0.06) 416.9 (47.1) 0.338 (0.06)

more significantly for the o.o.d. scenarios. We observe that AVICI can perform better under certain
distribution shifts than in-distribution, e.g., in GRN. This is because AVICI empirically performs
better at predicting edges adjacent to large-degree nodes, a common feature of the E. coli and S.
cerevisiae graphs not present in the Erdős-Rényi training structures. We also find that acyclicity is
perfectly satisfied for LINEAR and RFF and that AUPRC and AUROC do not suffer as much from
distributional shift as the metrics based on thresholded point estimates.

In Appendix E.1, we additionally report results for generalization from LINEAR to RFF and vice versa,
i.e., to entirely unseen function classes of causal mechanisms in addition to the previous o.o.d. shifts.

Generalization to unseen problem sizes In addition to the sensitivity to distribution shift, we
study the ability to generalize to unseen problem sizes. The bottom row of Figure 3 illustrates the
AUPRC for the edge predictions of AVICI when varying d and n on unseen in-distribution data.
The predictions improve with the number of data points n while exhibiting diminishing marginal
improvement when seeing additional data. Moreover, the performance decreases smoothly as the
number of variables d increases and the task becomes harder. Most importantly, this robust behavior
can be observed well beyond the settings used during training (n = 200 and d ≤ 50).

6.2 Benchmarking

Next, we benchmark AVICI against existing algorithms. Using only observational data, we compare
with the PC algorithm (Spirtes et al., 2000), GES (Chickering, 2003), LiNGAM (Shimizu et al., 2006),
DAG-GNN (Yu et al., 2019), and GraN-DAG (Lachapelle et al., 2020). Mixed with interventional
data, we compare with GIES (Hauser and Bühlmann, 2012), IGSP (Wang et al., 2017), and DCDI
(Brouillard et al., 2020). We tune the important hyperparameters of each baseline on held-out task
instances of each domain. When computing the evaluation metrics, we favor methods that only
predict (interventional) Markov equivalence classes by orienting undirected edges correctly when
present in the ground truth. Details on the baselines are given in Appendix D.

The benchmarking is performed on the fully o.o.d. domain distributions p̃(D), i.e., under distribution
shifts on causal graphs, mechanisms, and noise distributions w.r.t. the training distribution of AVICI.
Table 1 shows the SID and F1 scores of all methods given n = 1000 observations for d = 30
variables. We find that the AVICI model trained on LINEAR outperforms all baselines, both given
observational or interventional data, despite operating under significant distribution shift. Only GIES
achieves comparable accuracy. The same holds for RFF, where GraN-DAG and DCDI perform well
but ultimately do not reach the accuracy of AVICI.

In the GRN domain, where inductive biases are most difficult to specify, classical methods fail to infer
plausible graphs. However, provided interventional data, AVICI can use its learned inductive bias to
infer plausible causal structures from the noisy gene expressions, even under distribution shift. This
is a promising step towards reliable structure discovery in fields like molecular biology. Even without
gene knockout data, AVICI achieves nontrival AUROC and AUPRC while classical methods predict
close to randomly (Table 9 in Appendix E; see also Dibaeinia and Sinha 2020; Chen and Mar 2018).
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(a)

LINEAR RFF GRN

GES∗ 0.031 (0.00) 0.068 (0.02) 0.092 (0.01)

LiNGAM∗ 0.066 (0.02) 0.054 (0.01) 0.053 (0.01)

PC∗ 0.036 (0.00) 0.033 (0.01) 0.065 (0.01)

DAG-GNN∗ 0.078 (0.01) 0.063 (0.01) 0.063 (0.01)

GraN-DAG∗ 0.046 (0.01) 0.042 (0.01) 0.199 (0.05)

AVICI (ours) 0.013 (0.00) 0.024 (0.01) 0.018 (0.00)

GIES∗ 0.027 (0.00) 0.074 (0.02) 0.094 (0.01)

IGSP∗ 0.042 (0.01) 0.083 (0.01) 0.077 (0.01)

DCDI∗ 0.068 (0.01) 0.087 (0.02) 0.170 (0.03)

DiBS 0.056 (0.02) 0.035 (0.01) 0.093 (0.01)

AVICI (ours) 0.011 (0.00) 0.022 (0.01) 0.024 (0.01)

∗ Nonparametric DAG bootstrap (Friedman et al., 1999)

(b)

Figure 4: Uncertainty calibration (d = 30 variables). As previously, datasets are held-out and
o.o.d. in terms of graph, parameters, and noise. (a) Calibration plots for AVICI aggregating the
predictions for ten test cases of each domain. The histograms on the right y-axis show the frequency
of predictions at each confidence level. (b) ECE (↓) with standard error averaged over ten test cases.
Methods in the top (bottom) section use observational (and interventional) data. We highlight the
best result and those within its 95% confidence interval according to an unequal variances t-test.

Results for in-distribution data and for larger graphs of d = 100 variables are given in Appendices
E.2 and E.3. In Appendix E.4, we also report results for a real proteomics dataset (Sachs et al., 2005).

Uncertainty quantification Using metrics of calibration, we can evaluate the degree to which
predicted edge probabilities are consistent with empirical edge frequencies (DeGroot and Fienberg,
1983; Guo et al., 2017). We say that a predicted probability p is calibrated if we empirically observe an
event in (p · 100)% of the cases. When plotting the observed edge frequencies against their predicted
probabilities, a calibrated algorithm induces a diagonal line. The expected calibration error (ECE)
represents the weighted average deviation from this diagonal. For further details, see Appendix B.

Since the baseline algorithms only infer point estimates of the causal structure, we use the non-
parametric DAG bootstrap to estimate edge probabilities (Friedman et al. 1999, Appendix D). We
additionally compare AVICI with DiBS, which infers Bayesian posterior edge probabilities like
AVICI (Lorch et al., 2021). Figure 4 gives the calibration plots for AVICI and Table 4b the ECE for all
methods. In each domain, the marginal edge probabilities predicted by AVICI are the most calibrated
in terms of ECE. Moreover, Figure 4a shows that AVICI closely traces the perfect calibration line,
which highlights its accurate uncertainty calibration across the probability spectrum.

In Appendix E.5, we additionally report AUROC and AUPRC metrics for all methods. We also
provide calibration plots analogous to Figure 4 for the baselines (Figure 6), which often show vastly
overconfident predictions where the calibration line is far below the diagonal.

6.3 Ablations

Finally, we analyze the importance of key architecture components of the inference network fϕ.
Focusing on the RFF domain, we train several additional models and ablate single architecture compo-
nents. We vary the network depth L, the axes of attention, the representation of θ, and the number of
training steps for ϕ. All other aspects of the model, training and data simulation remain unchanged.

Table 2 summarizes the results. Most noticeably, we find that the performance drops significantly
when attending only over axis d and aggregating information over axis n only once through pooling
after the 2L self-attention layers. Attending only over axis n is not sensible since variable interactions
are not processed until the prediction of θ, but we still include the results for completeness.

We also test an alternative variational parameter model given by θi,j = ϕ⊤
θ tanh

(
ϕ⊤
u u

i + ϕ⊤
v v

j
)

that uses an additional, learned vector ϕθ and matrices ϕu, ϕv. This model has been used in related
causal discovery work for searching over high-scoring causal DAGs (Zhu et al., 2020) and is a
relational network (Santoro et al., 2017). This variant also satisfies permutation equivariance (cf.
Section 4.2) since it applies the same MLP elementwise to each edge pair [ui,vj ]. Ultimately, we
find no statistically significant difference in performance to our simpler model in Eq. (6), hence we
opt for less parameters and a lower memory requirement.
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Table 2: Ablations of the architecture of fϕ. Models are evaluated on 100 interventional datasets
of d = 30 variables in the RFF domain. Top row (⋆) corresponds to the model used in the main
experiments. In (a), we vary the number of blocks L; in (b), the axes over which attention is
performed; in (c), the generative model of the variational parameters; in (d), the number of update
steps of ϕ. We again highlight the best result and those within its 95% t-test confidence interval.

RFF (in-dist.) RFF (o.o.d.)

L ax. d ax. n θ model steps SID AUPRC SID AUPRC

(⋆) 8 ✓ ✓ Eq. (6) 300k 65.2 (8.4) 0.972 (0.00) 221.5 (24.7) 0.650 (0.03)

(a)
1 267.2 (22.0) 0.635 (0.01) 394.2 (28.4) 0.242 (0.02)

2 195.9 (18.5) 0.825 (0.01) 343.1 (27.1) 0.400 (0.03)

4 116.6 (13.1) 0.937 (0.01) 264.0 (24.8) 0.566 (0.03)

(b) ✓ 351.5 (27.9) 0.552 (0.01) 414.2 (29.5) 0.209 (0.02)

✓ 416.8 (29.6) 0.256 (0.01) 390.2 (27.6) 0.078 (0.01)

(c) (Santoro et al., 2017) 72.4 (9.2) 0.971 (0.00) 225.7 (25.2) 0.634 (0.03)

(d) 100k 96.9 (11.6) 0.955 (0.00) 259.3 (26.6) 0.589 (0.04)

Lastly, Table 2 shows that the causal discovery performance of AVICI scales up monotonically with
respect to network depth and training time. Even substantially smaller models of L = 4 or shorter
training times achieve an accuracy that is on par with most baselines (cf. Table 1). Our main models
(⋆) have a moderate size of 4.2 × 106 parameters, which amounts to only 17.0 MB at f32 precision.
Performing causal discovery (computing a forward pass) given on a trained model takes only a few
seconds on CPU.

7 Discussion

We proposed AVICI, a method for inferring causal structure by performing amortized variational infer-
ence over an arbitrary data-generating distribution. Our approach leverages the insight that inductive
biases crucial for statistical efficiency in structure learning might be more easily encoded in a simula-
tor than in an inference technique. This is reflected in our experiments, where AVICI solves structure
learning problems in complex domains intractable for existing approaches (Dibaeinia and Sinha,
2020). Our method can likely be extended to other typically difficult domains, including settings
where we cannot assume causal sufficiency (Bhattacharya et al., 2021). Our approach will continually
benefit from ongoing efforts in developing (conditional) generative models and domain simulators.

Using AVICI still comes with several trade-offs. First, while optimizing the dual program empirically
induces acyclicity, this constraint is not satisfied with certainty using the variational family considered
here. Moreover, similar to most amortization techniques (Amos, 2022), AVICI gives no theoretical
guarantees of performance. Some classical methods can do so in the infinite sample limit given
specific assumptions on the data-generating process (Peters et al., 2017). However, future work
might obtain guarantees for AVICI that are similar to learning theory results for the bivariate causal
discovery case (Lopez-Paz et al., 2015).

Our experiments demonstrate that our inference models are highly robust to distributional shift,
suggesting that the trained models could be useful out-of-the-box in causal structure learning tasks
outside the domains studied in this paper. In this context, fine-tuning a pretrained AVICI model on
labeled real-world datasets is a promising avenue for future work. To facilitate this, our code and
models are publicly available at: https://github.com/larslorch/avici.
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