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Abstract

The sample compressibility of concept classes plays an important role in learning
theory, as a sufficient condition for PAC learnability, and more recently as an avenue
for robust generalisation in adaptive data analysis. Whether compression schemes
of size O(d) must necessarily exist for all classes of VC dimension d is unknown,
but conjectured to be true by Warmuth. Recently Chalopin, Chepoi, Moran, and
Warmuth (2018) gave a beautiful unlabelled sample compression scheme of size
VC dimension for all maximum classes: classes that meet the Sauer-Shelah-Perles
Lemma with equality. They also offered a counterexample to compression schemes
based on a promising approach known as corner peeling. In this paper we simplify
and extend their proof technique to deal with so-called extremal classes of VC
dimension d which contain maximum classes of VC dimension d− 1. A criterion
is given which would imply that all extremal classes admit unlabelled compression
schemes of size d. We also prove that all intersection-closed classes with VC
dimension d admit unlabelled compression schemes of size at most 11d.

1 Introduction

Littlestone and Warmuth (1986) initiated the study of sample compression schemes as an alternative
characterisation of probably approximately correct (PAC) learnability, to finite Vapnik-Chervonenkis
(VC) dimension. Informally a sample compression scheme for a concept class comprises a compressor
and reconstructor: while the compressor represents samples labelled by the class as a labelled or
unlabelled subsample, the reconstructor must be able to recover a concept consistent with the original
labelled sample given only this representation. Littlestone and Warmuth (1986) demonstrated a
remarkably simple proof of PAC learnability for any concept classes with labelled compression
schemes provided compressed representations have bounded size, constant in the original sample
size. They conjectured that bounded labelled compression schemes should also be necessary for
PAC learnability—completing the characterisation—specifically that all VC-d concept classes (those
having VC dimension d) have labelled compression schemes of size d. This conjecture, for size
O(d), remains open now more than 35 years later, and stands as one of the oldest open problems
in learning theory. In addition to proving PAC generalisation bounds (von Luxburg, Bousquet, and
Schölkopf, 2004; Langford, 2005), compression has found important connections to generalisation in
the adaptive data analysis setting (Cummings, Ligett, Nissim, Roth, and Wu, 2016).

While Littlestone and Warmuth (1986) conjectured the existence of labelled schemes of size d for
all VC-d classes, Warmuth (2003) later relaxed this to O(d), while Kuzmin and Warmuth (2007)
conjectured size O(d) unlabelled compression schemes. (In unlabelled schemes, the compressor’s
representations omit labels; such schemes of size k imply labelled schemes of size k.) Indeed VC-d
classes are known that cannot be unlabelled compressed to size d (Pálvölgyi and Tardos, 2020).
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Notable progress towards resolving the sample compression conjecture has involved compressing
families of concept classes. Shortly after the original conjecture Floyd (1989) proved that all
maximum concept classes C (those meeting the Sauer-Shelah-Perles Lemma with equality) can
be label compressed to size VC(C) (Floyd and Warmuth, 1995). Chalopin et al. (2018) recently
proved the same bound but with unlabelled compression, while also providing an elegant counter
example to the same result for so-called corner peeling schemes. This shows that the constructions of
corner peeling schemes by Kuzmin and Warmuth (2007) and Rubinstein and Rubinstein (2012) are
incorrect. Moran and Yehudayoff (2016) proved that all VC-d classes can be label compressed to
size exponential in d. Recently Pálvölgyi and Tardos (2020) offered examples of VC classes which
cannot admit unlabelled compression schemes of size d.

Moran and Warmuth (2016) discover labelled compression schemes for extremal classes, which
contain cubes for any coordinates shattered by the class, and generalise maximum classes. It is
unknown if all extremal classes admit unlabelled compression schemes of sizeO(d). In this paper, we
give a criterion on extremal classes to admit unlabelled compression schemes of size VC dimension

Note that in Chalopin et al. (2018), a beautiful counterexample is given to the possibility of all
maximum classes having corner peeling unlabelled compression schemes of size VC dimension.
This shows that the constructions of corner peeling schemes in Kuzmin and Warmuth (2007) and
Rubinstein and Rubinstein (2012) are incorrect.

A promising approach to the general conjecture—and a strong motivation for compressing special
families of concept classes–is via embedding, as a compression scheme restricts to any subclass.
So, there is interest in embedding general VC-classes into larger classes with good compression
properties. Rubinstein, Rubinstein, and Bartlett (2015) proved that VC-d classes cannot always be
embedded in maximum classes of VC dimension less than 2d − 1. Embedding VC-d classes into
maximum classes of VC-dimension O(d) could still achieve compression to size O(d) in general.

Intersection-closed classes—those closed under coordinate-wise multiplication—are another promis-
ing focus for compression, as any class can be embedded into an intersection-closed class. In this
paper, we show that any intersection-closed class can be embedded into an extremal intersection-
closed class with the VC dimension increasing from d to 11d. These extremal intersection-closed
classes have VC-sized unlabelled compression schemes by Chalopin et al. (2018). As such, we
establish for the first time that intersection-closed classes can be unlabelled compressed to size linear
in their VC dimension. We offer a short proof of the result by Chalopin et al. (2018) that maximum
classes have VC dimension d-size unlabelled compression schemes and extend this to extremal
classes which contain maximum classes of VC dimension d− 1. Finally we give an efficient method
to compute the VC dimension of the intersection closure of a class. In particular, this could be useful
in searching for collections of classes for which the VC dimension does not increase by much when
passing to the intersection closure and then constructing the above unlabeled compression scheme.

2 Preliminaries

Given n ∈ N we call a subset of the binary n-cube C ⊆ {0, 1}n, a concept class with elements v ∈ C
concepts. These come from restrictions of classifier families, on samples of n instances.1 We equate
each instance in [n] = {1, . . . , n} with coordinates, axes or colours of the n-cube. An important
combinatorial parameter is the VC dimension, which is used to bound concept class cardinality.

Definition 2.1 (Vapnik and Chervonenkis, 1971). The VC dimension of concept class C ⊆
{0, 1}n is defined as VC(C) = max

{
|I| : I ⊆ [n],projI (C) = {0, 1}|I|

}
, where projI (C) ={

(vi)i∈I : v ∈ C
}

is the set of coordinate projections of the concepts of C on coordinates I ⊆ [n].
C is said to shatter I when the projection projI (C) = {0, 1}|I| is onto the |I|-cube.

Lemma 2.2 (Sauer-Shelah-Perles Lemma, Vapnik and Chervonenkis, 1971; Shelah, 1972; Sauer,
1972). The cardinality of any concept class C ⊆ {0, 1}n is bounded by |C| ≤

∑VC(C)
i=0

(
n
i

)
.

Concept classes meeting equality in Sauer’s Lemma are called maximum (Welzl, 1987). A cubical–
complex structure can be put on concept classes C ⊆ {0, 1}n. To begin, each v ∈ C is a vertex, and

1Consider family of classifiers F mapping input domain X to labels {0, 1}. On sample x ∈ Xn, the family
is represented by induced concept class C = {(f(x1), . . . , f(xn) : f ∈ F}.
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pairs of Hamming-1 separated vertices are edges, of the one-inclusion graph of C (Haussler, Little-
stone, and Warmuth, 1994). Each higher-order cube is all points varying over a set of coordinates, the
cube’s colours; a cube’s common values on non-colour coordinates make up its anchor. (Equivalently
d-cubes are pre-images of points under a projection from the binary (m + d)-cube to the binary
m-cube.) Any d-maximum class has a special structure as a complete collection of d-cubes:

Definition 2.3 (Rubinstein, Bartlett, and Rubinstein, 2009). A set of d-cubes S of cardinality
(
n
d

)
is

called d-complete if for all I ⊆ [n] of cardinality d, there exists cI ∈ S with projI (cI) = {0, 1}d.

Another property of a concept class C is of being shortest-path closed—also known as isometric
(Chalopin et al., 2018)—where every pair of points in C has a shortest path contained in C (Kuzmin
and Warmuth, 2007; Rubinstein and Rubinstein, 2012). We will be especially interested in extremal
classes—also known as ample classes (Chalopin et al., 2018).

Definition 2.4. A class C ⊆ {0, 1}n is extremal if whenever C shatters some I ⊆ [n], then there is a
subcube c ⊆ C which maps bijectively to the |I|-cube via projI (·). That is, projI (c) = {0, 1}|I|.

All maximum classes are extremal and extremal classes are shortest-path closed (Moran and Warmuth,
2016), while the complements of extremal classes are themselves extremal (Bandelt, Chepoi, Dress,
and Koolen, 2006; Bollobás and Radcliffe, 1995; Lawrence, 1983). As an example, a VC one
dimensional maximum (respectively extremal) class is a tree with one (respectively at most one) edge
for each colour. An extremal counter-part to Sauer’s Lemma was independently discovered by Pajor
(1985), Bollobás and Radcliffe (1995), Dress (1997), and Anstee, Rónyai, and Sali (2002).

Lemma 2.5 (Sandwich Lemma). For any extremal class C, its cardinality is equal to both the number
of shatterings of C and the number of cube types (an equivalence class of cubes which all have the
same set of colours) in C.

Extremal and maximum classes have an elegant recursive structure that is best studied by inductive
arguments. One such tool is the projection operator projI (C). The reduction CI ⊆ projI (C) is
the subset of points with non-unique pre-images under the projection, while the tail is the subset of
projI (C) with unique pre-image under the projection (Welzl, 1987; Kuzmin and Warmuth, 2007).

Unlabelled compression schemes are defined by representation mappings. A party known as the
compressor uses a representation mapping to summarise a C-labelled sample of any size with a
small unlabelled subset of instances. A second party, the reconstructor, can invert this representation
thanks to condition 1, to a concept that is consistent with the original labelled sample, thanks to
condition 2, (Chalopin et al., 2018).

Definition 2.6 (Kuzmin and Warmuth, 2007). Mapping r is a representation mapping of size k < n,
also known as an unlabelled compression scheme of size k, of class C ⊆ {0, 1}n if it satisfies:

1. r is an injection between C and subsets of [n] of size at most k; and
2. (non-clashing) projr(v)∪r(v′) (v) 6= projr(v)∪r(v′) (v

′) for all v 6= v′ ∈ C.

3 The intersection closure operator

Examples of intersection-closed classes include axis-aligned hyperrectangles in Rm, monomials,
which are unions of orthogonal subcubes, and any union of orthogonal intersection-closed sub-
classes (Moran and Warmuth, 2016). Closed-below classes (Rubinstein et al., 2009) are intersection
closed and extremal. All extremal classes of VC dimension 1 are intersection closed, so long as the
origin is located in the class (Moran and Warmuth, 2016).

Note the property of being intersection closed depends on the choice of origin.

We will use the notation v � w to denote the intersection of the vertices v, w. This is just the
operation of bitwise Boolean multiplication v � w = (v1w1, . . . , vnwn). We can likewise let
u1 � . . .� uk = (

∏k
i=1 u

i
1, . . . ,

∏k
i=1 u

i
n) denote the (iterated) intersection of vertices u1, . . . , uk.

Definition 3.1. A class C in the binary n-cube is called intersection closed if v � w ∈ C, whenever
v, w ∈ C. Let C = �(C) = {u1 � . . . � uk) : k ≤ n, {u1, . . . , uk} ⊆ C} denote the intersection
closure of any class C obtained via intersections of all finite subsets of C’s concepts.
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Lemma 3.2. For any concept class C ⊂ {0, 1}n, the intersection closure C is the unique smallest
intersection-closed class containing C, and it is contained in any intersection-closed class containing
C. Moreover for any J ⊆ [n], we must have projJ (C) = projJ

(
C
)
.

Next is a useful result on computing the VC dimension of the intersection closure of a class. The key
idea is that to verify projJ

(
C
)

shatters, it is necessary and sufficient to show C has |J |+ 1 vertices
which project to the vertices with at most one coordinate 0.

Definition 3.3. Suppose C is a class in the binary n-cube with VC dimension d. We will say that
C satisfies the k-close cube condition if there is a vertex v ∈ {0, 1}n and a complete union of
(n− k − 1)-cubes in the complement of C so that each cube is distance at most one from v. For any
k′ > k, C then also satisfies the k′-close cube condition.

Theorem 3.4. Suppose C is a class in the binary n-cube. The smallest VC dimension d for the
intersection closure of C over all choices of origin, is the same as the smallest k for which C satisfies
the k-close cube condition.

Proof. Suppose first that d achieves the smallest VC dimension of the intersection closure of C over
all choices of origin. Let C denote the corresponding intersection closure of C. Then any projection
p of C to a (d + 1)-cube is not onto. Assume p(C) contained the vertex w = (1, 1, . . . , 1) and
all vertices wi = (1, 1, . . . , 1, 0, 1, . . . , 1) with 0 in the ith position and all other entries 1. Then
since p(C) is intersection closed, the image is the whole (d+ 1)-cube contrary to assumption. The
reason is that taking intersections of combinations of the vertices wi gives all the vertices in the
(d+1)-cube. So at least one of the vertices w,w1, . . . , wd+1 must not be in p(C). But then there is an
(n− d− 1)-cube with anchor of this form in the complement of C by taking the inverse image under
p of this vertex. By choosing v as the vertex with all entries 1 in the n-cube, we have shown that C
satisfies the d-close cube condition. For clearly each of our (n− d− 1)-cubes in the complement of
C has distance at most one from v. So this establishes that d ≥ k, where k is the smallest value so
that C satisfies the k-close cube condition.

Conversely suppose that C has a collection of (n− k − 1)-cubes in its complement, validating that
C satisfies the k-close cube condition. We claim that d ≤ k′, where d is the VC dimension of the
intersection closure of C for a suitable choice of origin. This shows that the smallest possible VC
dimension d of the intersection closure of C over all choices of origin is not larger than the smallest
possible k where C satisfies the k-close cube condition.

For suppose that any projection p of C to the (k+1)-cube is selected. By Lemma 3.2, p(C) = p(C). In
fact the intersection operator commutes with the projection operator, i.e., p(I(u,w)) = I(p(u), p(w))
so the claim follows by Lemma 3.2. But now by assumption, if we choose the origin so that v is
the vertex with all entries 1, then there is an (n − k − 1)-cube in the complement of C which has
anchor with entries all 1’s except for at most one entry 0 and the anchor projects to a vertex of the
(k + 1)-cube. Hence the projection p of C is not onto and d ≤ k.

We end with a useful property of the intersection closure operator. We will abuse notation by saying a
class A is shortest path closed inside a class B, if A ⊂ B and any two vertices of A are connected by
a shortest path inside B. The main idea in the following theorem is that if C is shortest-path closed,
then X = {v : v = u� w, u,w ∈ C} is shortest path closed inside C.

Theorem 3.5. If C is shortest-path closed then its intersection closure C is also shortest-path closed.

Proof. We first observe the easy fact that if λ is a shortest path in C consisting of vertices
v1, v2, . . . , vk and u ∈ C then u � λ := {u � vi : i ∈ [k]} is a shortest path in C possibly
with repetitions. For an edge between successive vertices vi, vi+1 is transformed into u�vi, u�vi+1

which is either an edge of the same colour or a single vertex.

Our main claim that if C is shortest-path closed then X = {v : v = u�w, u,w ∈ C} is shortest path
closed inside C. Once this claim is established, the proof follows easily by repeating this step. For we
can apply the claim to the class X to prove that the class {v : v = u� w, u,w ∈ X} consisting of
all elements of C together with intersections of up to 4 elements of C is shortest-path closed. inside
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X = C. Repeating at most log2n times, C is obtained and is shortest-path closed. (Note that since
v = v � v, elements of C can be written as intersections of pairs of elements of C).

The first step in proving the main claim is to observe that there is a shortest path in X connecting any
element u ∈ C to any element u� v ∈ X . To construct this path, start with a shortest path λ between
u, v in C and then form u� λ. As above this is a shortest path, possibly with repetitions, between
u, u� v in X . We conclude that given two vertices u, v ∈ C, there is a shortest path in X from u to
v passing through u� v, by concatenating shortest paths in X from u to u� v and u� v to v.

To prove the main claim, choose elements v, v′ ∈ X . We want to find a shortest path in C connecting
v, v′. Let v = u� w, v′ = u′ � w′ where u,w, u′, w′ ∈ C. By the first step, there are shortest paths
λ, λ′ in X connecting u, u′ and w,w′ and passing through u� u′, w � w′ respectively.

Next, observe that v � v′ = u�w � u′ �w′ = u� u′ �w �w′. Split λ, λ′ into λi, λ′i for i = 1, 2
so that λ1, λ′1 join u,w and u � u′, w � w′ respectively and λ2, λ′2 join u � u′, w � w′ and u′, w′

respectively. To establish the main claim, it clearly suffices to construct shortest paths in C from v to
v � v′ and from v � v′ to v′. By symmetry, we will focus on the first of these.

We will prove a slightly stronger claim. Namely assume λ1 consists of ordered vertices u =
z1, z2, . . . , zk = u � u′ and λ′1 has ordered vertices w = y1, y2, . . . , yr = w � w′. We will show
that a shortest path in X connecting v, v � v′ can be chosen to have all vertices of the form zi � yj .

To complete the proof, consider the rectangular grid of intersections zi � yj , for 1 ≤ i ≤ k and
1 ≤ j ≤ r with k, r ≥ 1. Each small square of this grid is either a single vertex, one edge or a
2-cube in X by the previous paragraph. We claim that there is a shortest path between the diagonally
opposite entries v = z1 � y1, v � v′ = zk � yr using vertices in this grid.

It suffices to use the boundary of the grid to do this. So for example, consider the first path zi� y1 for
1 ≤ i ≤ k, followed by a second path zk � yj for 1 ≤ j ≤ r. By the first observation in this proof,
the first path is shortest with possible repetitions, as is the second path. To complete the argument,
we need to show that the concatenation of these two paths is also shortest with possible repetitions.

Notice that the path λ1 = z1, z2, . . . , zk runs between ends z1, zk where zk is between the origin
of the binary n-cube and z1. So the same follows for the path with possible repetitions zi � y1 for
1 ≤ i ≤ k. The second path zk � yj for 1 ≤ j ≤ r is of the same form and hence the concatenation
of these two paths is also shortest with repetitions and the theorem proof is complete.

4 Extremal intersection-closed classes

In this section, we start with a useful way of finding extremal intersection-closed classes, namely
by checking they are shortest-path and intersection-closed. We use this to establish the main result
about intersection-closed classes, namely that they can be embedded into extremal intersection closed
classes, with the VC dimension d increasing to at most 11d. We then use a result of Chalopin et al.
(2018) to conclude this gives unlabelled compression schemes of size 11d for an intersection-closed
class of VC dimension d.
Theorem 4.1. Suppose that C is shortest-path and intersection closed. Then C is extremal.

Proof. Suppose a projection p : {0, 1}n → {0, 1}k shatters C. We will prove there is a k-subcube c
of C which witnesses the shattering.

Consider all the vertices of C which map to the vertex w = (1, 1, . . . , 1) in the k-cube. Choose a
vertex v in this set which has smallest distance to the origin. (Since C is shortest-path closed and
intersection closed, the origin is in C and distance in C is the same as distance in the n-cube.)

Our claim is that there are vertices vi ∈ C, i ∈ [k], so that the distance from v to each vi is one and
p(vi) = (1, 1, . . . , 0, . . . , 1) = wi the vertex in the k-cube with all coordinates 1 except a single 0 at
the ith coordinate. Once this claim is established, it follows that since C is intersection closed, taking
the intersections of subcollections of the vertices {vi : i ∈ [k]} generates the required k-subcube c
of C. Note c witnesses the shattering, since projection commutes with intersection and the vertices
w,wi generate c under the operation of taking intersections.

To prove the claim, choose any vertex u ∈ C so that p(u) = wi. Since C is intersection closed,
u′ = v � u ∈ C. Then p(u′) = p(v � u)) = p(v)� p(u) = w � wi = wi. Note that u′ is a vertex
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Algorithm 1 Shortest-Path Closure
1: Input: intersection-closed class C ⊆ {0, 1}n
2: (x1, . . . , xn)← arbitrary ordering of [n]
3: C∗ ← C
4: for v ∈ C do
5: for w ∈ C\{v}, w ≤ v do
6: λ(v, w)← ∅ //v-w shortest path
7: (i, j, v1)← (1, 1, v)
8: while ‖vi − w‖1 > 1 do
9: vi+1 ← vi //next point on path

10: while vi,xj
= wxj

do j ← j + 1
11: vi+1,xj

← 0 //step towards w

12: λ(v, w)← λ(v, w) ∪ {vi+1}
13: i← i+ 1
14: end while
15: C∗ ← C∗ ∪ λ(v, w)
16: end for
17: end for
18: return C∗

between v and the origin, i.e., for any coordinate where u′ has value 1 then v must also. Since C is
shortest-path closed, a shortest path λ exists in C from v to u′. Moreover λ has vertices in order with
distances decreasing to the origin, since u′ is between v and the origin.

Let v′ be the first vertex on λ after v. Since p(λ) is a shortest path in the k-cube from w to wi, it
follows that p(v′) is either w or wi. If the former, this contradicts our choice of v as a closest vertex
in C to the origin which projects to w. If the latter then we have found our vertex vi with distance 1
to v and which projects to wi. So this completes the proof of the claim and the result.

Remark 4.2. Chalopin et al. (2018) discusses the significance of properties of extremal intersection-
closed classes, also known as conditional antimatroids.
Remark 4.3. There is a partial order on the binary n-cube given by w ≤ v when w is between v and
the origin or equivalently there is a shortest path from v to the origin passing through w. Choose an
arbitrary ordering on [n]. We will denote by λ(v, w) the shortest path between v, w with vertices
v = v1, v2, . . . vk = w where vi.vi+1 differ in the first coordinate xj in the ordering of indices j
amongst all coordinates where vi, w differ.

In the next result, we enlarge an intersection closed class C to become intersection-closed and shortest-
path closed by adding all the vertices in the shortest paths λ(v, w) between all pairs v, w ∈ C.

Theorem 4.4. Any intersection-closed class C embeds in a shortest-path closed and intersection-
closed class C∗ given by Algorithm 1 so that d∗ ≤ 11d where d, d∗ are the VC dimensions of C, C∗
respectively. To construct C∗, for every pair of vertices v, w ∈ C with w < v, add all the vertices in
λ(v, w) to C.

Lemma 4.5. If C is intersection closed then C∗ as constructed by Theorem 4.4 is intersection closed.

Proof. By definition, for any vertices u, u′ ∈ C∗, there are vertices v, w, v′, w′ ∈ C so that u ∈
λ(v, w), u′ ∈ λ(v′, w′). Moreover, w ≤ v, w′ ≤ v′.
Since C is intersection closed, both v � v′ and w � w′ are in C. We claim that u� u′ is on the path
λ(v � v′, w � w′)—note that as part of this claim, we require that w � w′ ≤ v � v′.
We begin with the latter claim. This is easy—w � w′ has entry 1 at precisely the coordinates where
both w,w′ have entry 1. But since w ≤ v, w′ ≤ v′, v, v′ has entry 1 at all the coordinates where
w,w′ respectively has entry 1. So for any coordinate where w�w′ has entry 1, it follows immediately
that both v, v′ have entry 1 and so does v � v′.
Next, the set of coordinates where v has entry 1 and u has entry 0 forms an initial segment of the
coordinates where v has entries 1, using the ordering of the coordinates, since u ∈ λ(v, w). A similar
analysis applies to the set of coordinates of u′ which are 0 but the entries for v′ are 1.
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To complete the proof that C∗ is intersection closed, we show that the set of coordinates where the
entries of v � v′ are 1 and the entries of u� u′ are 0, forms an initial segment of the ordering of the
coordinates where the entries of v � v′ are 1. It will then follow that u� u′ ∈ λ(v � v′, w � w′).
Now the set of coordinates where v � v′ has entries 1 are exactly those coordinates where both v, v′
have entries 1. Moreover u� u′ has entry 0 at a coordinate if either u or u′ has entry 0. We complete
the proof using an argument by contradiction. Suppose that there is a coordinate xi such that u� u′
has entry 1 but this occurs before a coordinate xj where u� u′ has entry 0 and moreover v � v′ has
entry 1. Then at xj , either u or u′ has entry 0. Without loss of generality assume the former. Since
u� u′ has entry 1 at xi it follows that u has entry 1 at xi. Note also that v has entry 1 at both xi, xj .
But this is a contradiction since the coordinates where v has entry 1 but u has entry 0 should form an
initial segment of the set of coordinates where v has entry 1. But we have found j > i where u has
entry 1 at xi and 0 at xj . This establishes that C∗ is intersection closed.

Lemma 4.6. If C is intersection closed then C∗ as constructed by Theorem 4.4 is shortest-path closed.

Proof. By Lemma 4.5, it suffices to show that if v, w ∈ C∗ then there are shortest paths from v, w to
v � w, since putting these together will give a shortest path from v to w. Next, it suffices to show
there is a shortest path in C∗ between any pair of vertices v, u in C∗, where u ≤ v, for we can then
apply this to the pairs v, v � w and w, v � w.

We claim that there is a vertex v1 ∈ C so that u ≤ v1, v ≤ v1 and there are shortest paths in C∗ joining
both v1, u and v1, v. Firstly, since v ∈ C∗, there are vertices v1, v2 ∈ C so that v is in λ(v1, v2).
Hence v ≤ v1 and there is a shortest path in C∗ from v1 to v, namely a segment of λ(v1, v2).

Next, since u ≤ v, then u ≤ v1. Moreover u lies on a path λ(u1, u2) where u1, u2 ∈ C, since u ∈ C∗.
Then v1 � u1 ∈ C and v1 � u1 ≤ u1. Since u ≤ v1, u ≤ u1, it follows that u ≤ v1 � u1.

Notice that u must lie on λ(v1 � u1, u2). To verify this, observe all the coordinates where entries
of v1 � u1 differ from entries of u are also coordinates where u1 entries differ from u entries.
Consequently, coordinates where entries of u and u2 differ, are lower in the coordinate ordering than
those where entries of v1 � u1 and u differ. So this confirms that u ∈ λ(v1 � u1, u2).
Combining λ(v1, v1 � u1) and λ(v1 � u1, u) gives a shortest path from v1 to u in C∗. So this
completes the proof of the claim about v1.

To recapitulate, we have constructed shortest paths in C from v1 to both u, v in C∗, where v ≤ v1, u ≤
v1, u ≤ v. To complete the proof that there is a shortest path from v to u in C, we use induction on
the Hamming distance from v1 to v. To begin the induction, suppose this distance is 0. Then clearly
we are done, since there is a shortest path in C∗ from v to u.

Assume the distance from v1 to v is k and the result is true for v1∗, v∗, u∗ as above, where the
distance from v1∗ to v∗ is less than k. Let v′ be the first vertex in the shortest path from v1 to v. Our
aim is to show that there is a shortest path in C∗ from v′ to u. By induction, it then follows there is a
shortest path in C∗ from v to u.

The argument is similar to that in Theorem 3.5. Let v1 = y1, y2, . . . , yr = u be a shortest path in
C∗. We can construct a shortest path v′ = v′ � y1, v′ � y2, . . . , v′ � yr = u where there is a single
repetition. Namely, since one of the edges joining yj , yj+1 must have the same colour as the edge
between v1, v′, then v′ � yj = v′ � yj+1. All other pairs of vertices are distance one apart and since
C∗ is intersection closed, this shortest path is in C∗. So this completes the proof.

Proof. (Theorem 4.4) It remains to prove that the VC dimension of C∗ is at most 11d.

Choose any projection p : {0, 1}n → {0, 1}11d. By Sauer’s Lemma, since the VC dimension of p(C)
is at most d, the cardinality |p(C)| is at most F (d; 11d, 12 )× 211d where F (k;n, p) is the cumulative
binomial probability function.

Algorithm 1 constructing C∗ involves finding and adjoining shortest paths connecting suitable ordered
pairs of points in C. So |C∗| ≤ n × |C|2 . Similarly we see that |p(C∗)| ≤ 11d × |p(C)|2, since
the process of adjoining shortest paths is preserved under projection. Hence |p(C∗| ≤ 11d ×
F (d; 11d, 12 )

2 × 222d × 1
2 . Note that as pairs (v, w) are ordered by requiring that w ≤ v, we get a

factor of 1
2 . We claim that this upper bound is strictly less than 211d. Then p cannot shatter and the

VC dimension of C∗ is at most 11d− 1.
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The key idea is to use Chernoff’s inequality to estimate F (d; 11d, 12 ). This is:

F

(
d; 11d,

1

2

)
≤ exp

(
(−11d)×D

(
1

11

∥∥∥∥ 1

2

))
,

where D( 1
11 ||

1
2 ) = 1

11 log
2
11 + (1 − 1

11 ) log 2(1 −
1
11 ). Substituting this into the previous upper

bound and simplifying, we obtain |p(C∗)| ≤ 11d×222d
2 exp(22d log 11− 2d log 2− 20d log 20).We

can further simplify this to |p(C∗)| ≤ 11d × 1122d × 10−20d × 1
2 . To complete the argument, we

need to show the right side is strictly less than 211d. Hence it suffices to show that

(11d)
1
d × 1122 × 10−20 × 1

2
1
d

< 211

Now if d ≥ 5 then 11
1
d < 1.7 and d

1
d < 1.4. So we can compute the left side is at most

1.7× 1.4× 121× 11
10

20
< 1937 whereas the right side is 2048. (Here we leave out the factor 2−

1
d .)

If d = 4 then 11
2

1
4 < 1.6 and 4

1
4 < 1.42. So we can compute the left side is as at most 1.6× 1.42×

121× 11
10

20
= 1810 whereas the right side is 2048. So this completes the case when d ≥ 4. For the

other cases, it is convenient to work directly, as Chernoff’s inequality is not sharp.

For d = 1, |p(C)| ≤ 12, as it has VC dimension at most 1 in the 11-cube. Hence |p(C∗)| ≤
11× 122 × 1

2 = 792 which is less than 2048.

Next suppose d = 2. |p(C)| ≤ 254, as it has VC dimension at most 2 in the 22-cube. Hence |p(C∗)|
is bounded above by 22× 2542 × 1

2 = 709, 676 which is less than 20482 = 4, 194, 304.

Finally assume d = 3. |p(C)| ≤ 6018, as it has VC dimension at most 3 in the 33-cube. Hence |p(C∗)|
is bounded above by 33×60182× 1

2 = 597, 569, 346 which is less than 20483 = 8, 589, 934592.

Corollary 4.7. If C is an intersection-closed class, then C has a (corner peeling) unlabelled compres-
sion scheme of size at most 11d.

Proof. This follows immediately by combining Theorem 4.4 and (Chalopin et al., 2018, Theorem
4.9).

5 Unlabelled compression schemes for extremal classes

The aim is to give a condition on extremal classes which implies that they have unlabelled compression
schemes. We then give some situations where this criterion is satisfied. We conjecture that it is always
valid.

For a maximum class C of VC dimension d, a reduction is a maximum subclass of VC dimension
d− 1 . So a reduction contains cubes with the same set of colours as any non-maximal cube of C. It
will turn out this is the key property we require of extremal classes to have unlabelled compression
schemes of size d, namely they have proper extremal subclasses which have the same properties as
reductions of maximum classes.

5.1 High-level strategy

The idea is inspired by Chalopin et al. (2018). Start with a pair (C,D) consisting of an extremal class
and a proper extremal subclass. The condition is that for every cube in C which is not maximal, there
is a cube with the same colours in D. We call this the cubical colour condition of the pair C,D and
abbreviate it by ccc.

We will construct a bijection φ between the set S of maximal cubes c of C not in D and C \ D, so that
v = φ(c) ∈ c. Note the cardinalities of these two sets are the same, by the Sandwich Lemma 2.5
applied to the two extremal classes C,D. Then φ−1 : C \D → S gives a representation map for C \D,
which also separates the vertices of C \ D from the vertices of D. Therefore, any representation of D
can be combined with the representation of C \ D to give a representation of C.

Suppose we can find a sequence of proper pairs of extremal subclasses (C,D), (D, E), . . . , (X ,Y),
all satisfying ccc, ending with VC(Y) ≤ 2. Then we can start with a representation map of the VC-2
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class Y (Chalopin et al., 2018) and extend to a representation of X , then extending the representation
all the way to C using this strategy.

5.2 Detailed construction

We construct φ : C \ D → S and show it is a bijection. Firstly, denote the extremal class which is the
complement of D by D∗. Then every vertex of C \ D is in at least one maximal cube of D∗.
Define two cubes c, c∗ in {0, 1}n to be complementary if the dimensions d, d∗ of c, c∗ satisfy
d+ d∗ = n and c ∩ c∗ is a single vertex. Recall that S is the set of maximal cubes c of C not in D.
Denote the set of maximal cubes of D∗ which intersect C by S∗.
Lemma 5.1. Assume (C,D) is a proper pair of extremal classes satisfying ccc. If c ∈ S, then there is
a complementary maximal cube c∗ of D∗. Conversely, if c∗ is a maximal cube of S∗, then there is
a complementary cube c ∈ S. A maximal cube c∗ of S∗, cannot have two different complementary
cubes in S.

Given Lemma 5.1, we will call v = c ∩ c∗ the special vertex of c. We now note properties of v,
assuming Lemma 5.1.

Corollary 5.2. Assume that (C,D) is a proper pair of extremal classes satisfying ccc. Let v = c ∩ c∗
where c ∈ S and c∗ ∈ S∗ are complementary maximal cubes. Then

• The set of vertices v = c ∩ c∗, for all pairs of complementary maximal cubes c ∈ S and
c∗ ∈ S∗, is C \ D.

• The mappings between c, c∗, v are bijections between S,S∗ and C \ D.

Proof. Lemma 5.1 gives a bijection between S and S∗, by the mapping from cubes c to complementary
cubes c∗. Moreover by the Sandwich Lemma applied to extremal classes C,D, the cardinalities of
C \ D,S∗ are the same. Since the map from maximal cubes in S to special vertices is an injection by
Lemma 5.1, it must be a bijection onto C \ D.

Proof of Lemma 5.1. Let p : {0, 1}n → {0, 1}d be the projection to the colours of c ∈ S. Recall ccc
for the pair C,D says that for any cube of C which is not maximal, there is a cube of D with the
same set of colours. So p(D) = {0, 1}d \ {w} for some vertex w. For the only other case is that
p(D) = {0, 1}d. But sinceD is extremal, this would implyD contained a cube with the same colours
as c. This contradicts the assumption that c is maximal in C, since for an extremal class, maximal
cubes are unique for their sets of colours.

Define v, c∗ by v = p−1(w) ∩ c, c∗ = p−1(w) respectively. Clearly c ∩ c∗ = v. It remains to show
that c∗ is maximal in D∗ and c∗ cannot intersect some other cube of S in a single vertex.

Suppose that c∗ was properly contained in a larger cube c̃ in D∗. Then p(c̃) would properly contain
{w}. Moreover c̃ = p−1p(c̃). But this contradicts our observation above that p(D) = {0, 1|d \ {w}.
So this completes the argument that c∗ is maximal.

Next, assume that c∗ is complementary to a second maximal cube ĉ ∈ S. Consider the projection p̂
of {0, 1}n to {0, 1}d̂ given by the d̂ colours of ĉ. As above, p̂(D) consists of {0, 1}d̂ with a single
vertex ŵ removed. Moreover, p̂−1(ŵ) is a maximal cube c′ of D∗.
Now as c∗ ∩ ĉ = u∗ is a single vertex, p̂(c∗) = p̂(u∗) = u. As the cubes c∗, ĉ are complementary,
c∗ = p̂−1(u). But now we see that the colours of the anchor of c∗ are both the colours of c and of ĉ.
This gives a contradiction, since two maximal cubes of C cannot have the same set of colours. This
completes the proof of Lemma 5.1.

Finally we show that the map from a special vertex v to the colours of the corresponding maximal
cube c of S gives a representation mapping of C \ D which also separates C \ D from D.

The second property follows immediately. For recall that if p is the projection given by the d colours
of c, then p(D) = {0, 1}d \ {p(v)}. So the colours of c clearly separate v from all the vertices of D.
By this we mean that given any vertex w ∈ D, v, w differ on at least one coordinate from the colours
of c.
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Next suppose two vertices v, v′ have the same values at all the coordinates corresponding to the
colours of their corresponding cubes c, c′ ∈ S of dimensions d, d′ respectively. Project {0, 1}n to
the union of the colours of c, c′ by a mapping p′′. The image of p′′ is a cube {0, 1}d′′

of dimension
d′′ ≤ d + d′. In this cube, C,D map to extremal classes p′′(C) = C′′, p′′(D) = D′′. We want to
check that the pair of extremal classes (C′′,D′′) satisfy ccc. But this follows easily. Choose any non
maximal cube c̃ ∈ C′′. As C is extremal, there is a cube c0 in C which projects one-to-one to c̃ and
therefore has the same colours as c̃. Since c0 is not maximal, there is a cube c1 in D with the same
colours as c0. Then p′′(c1) is the required cube in D′′ with the same colours as c̃ as required.

Finally, c, c′ project one-to-one by p′′ to cubes with colours spanning all of {0, 1}d′′
. We claim

that p′′(v) 6= p′′(v′). Since p′′(v), p′′(v′) are the special points for p′′(c), p′′(c′) in {0, 1}d′′, they
cannot coincide, by Lemma 5.1. But then p′′(v), p′′(v′) must have at least one different value of their
coordinates at the colours of c, c′ and hence the same is true for v, v′. So this gives a representation
for C \ D, as we have verified the no-clashing condition.

6 Applications

We apply the construction in Section 5 to two special collections of extremal classes.
Theorem 6.1. Suppose that C is an extremal class of VC dimension d containing a maximum class D
of VC dimension d− 1. Then C has a d-size unlabelled compression scheme.

Proof. This follows immediately by the construction in Section 5. We only have to check that there
is a sequence of pairs of extremal classes starting at C,D, all satisfying ccc. But this is easy since
any maximum class of VC dimension i is a union of a complete collection of maximal cubes of
dimension i. Moreover any maximum class of VC dimension i has reductions which are products of
maximum classes of VC dimension i− 1 with {0, 1}.

Theorem 6.2. Suppose that C is an extremal class of VC dimension 2. Then C contains a proper
extremal class D so that for every edge of C, there is an edge of D of the same colour. Hence C has a
compression scheme of size 2.

Proof. Rubinstein and Rubinstein (2008) develops the idea of splitting classes along a reduction
(associated to a coordinate projection). Choose a reduction C1 of C which splits off a component E
with a smallest number of vertices, amongst all choices of reductions and complementary components.
Let D = C \ E . We claim that D is extremal and contains edges of each colour in C.

The reason is that for any other reduction C2 ofC, if C2∩E 6= ∅, thenC2∩C1 6= ∅. For ifC2∩C1 = ∅,
there is a smaller component which C2 splits off from E , which is a contradiction. But C2 ∩ C1 6= ∅
implies that D has edges of each colour of C. Showing D is extremal is straightforward.

Remark 6.3. Chalopin et al. (2018) showed that VC-2 extremal classes have unlabelled 2-compression
schemes. Theorem 6.2 gives an alternate proof using our criterion for extremal classes to have such
schemes in Section 5.

7 Conclusion

Chalopin et al. (2018) constructed unlabelled compression schemes for maximum classes and extremal
intersection-closed classes, while Moran and Warmuth (2016) developed labelled compression
schemes for extremal classes. Here we have shown that intersection-closed classes can be embedded
into extremal intersection-closed classes with an increase in VC dimension from d to 11d and so have
11d-size unlabelled compression schemes. We simplify and extend the d-size unlabelled compression
schemes for maximum classes due to Chalopin et al. (2018), to apply to extremal classes of VC
dimension d which contain maximum classes of VC dimension d − 1. We also give a sufficient
condition for extremal classes to admit such compression schemes.
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