
A Proof for Proposition 1

Proof. Our goal is to minimize the Kullback-Leibler (KL) divergence between qκ(e|G,y) and
pτ (e|G,y). For the observed molecule graph and corresponding label tuple (G, y),

DKL (qκ(e|G, y) ‖ pτ (e|G, y))

=

∫
qκ

qκ(e|G, y) log
qκ(e|G, y)

pτ (e|G, y)
de =

∫
qκ

qκ(e|G, y) log
qκ(e|G, y)pτ (y|G)pτ (G)

pτ (e,G, y)
de

=

(∫
qκ

qκ(e|G, y) log qκ(e|G, y)de+

∫
qκ

pκ(e|G, y) log pτ (G)de

−
∫
qκ

log pτ (e,G, y)de

)
+

∫
qκ

qκ(e|G, y) log pτ (y|G)de

=

∫
qκ

qκ(e|G, y) log
qκ(e|G, y)

pτ (y|G, e)pτ (e|G)
de+ log pτ (y|G)

= Eqκ [log qκ(e|G, y)− log pτ (y|G, z)− log pτ (e|G)] + log pτ (y|G)

= −Eqκ [log pτ (y|G, e)] + Eqκ [log qκ(e|G, y)− log pτ (e|G)] + log pτ (y|G)

= − (Eqκ [log pτ (y|G, e)]−DKL(qκ(e|G, y) ‖ pτ (e|G)))︸ ︷︷ ︸
L(τ,κ;G,y)

+ log pτ (y|G)

= −L(τ, κ;G, y) + log pτ (y|G)

(8)

Rearrange Eq. 8 and we can get,
L(τ, κ;G, y) = −DKL (qκ(e|G, y) ‖ pτ (e|G, y)) + log pτ (y|G). (9)

The defined L(τ, κ;G, y) is called Evidence Lower BOund (ELBO) [22]. According to Eq. 9,
maximizing this ELBO is equivalent to minimizing the KL divergence and maximizing log pτ (y|G).
For the observed molecule graph and corresponding label tuple (G, y), we obtain the ELBO:

L(τ, κ;G, y) = Eqκ [log pτ (y|G, e)]−DKL(qκ(e|G, y) ‖ p(e|G)). (10)

We thus conclude the proof.

B Proofs for Theorems

In this paper, we extend the invariance assumption [49, 3] to molecule representation learning:
Assumption 1. Given a molecular graph G, there exists an encoder Φ yielding a graph-level
representation rG ∈ Rd. Define r as a random variable of rG and it satisfies: 1) (Invariance
condition): p(y|r, e) = p(y|r), and 2) (Sufficiency condition): y = h(r) + n, where h is a non-
linear function, n is a independent noise.

With the terminology of information theory, we present a useful lemma [61] that interprets the
invariance and sufficiency conditions in Assumption 1:
Lemma 1. In terms of information theory, the two conditions in Assumption 1 can be equivalently
expressed as 1) invariance: I(y; e|r) = 0 and 2) sufficiency: I(y; r) is maximized.

Proof. For the invariance, it can be obtained by the fact that
I(y; e|r) = Ep(e,r)[DKL(p(y|e, r)‖p(y|r))] (11)

For the sufficiency, we first prove that every triplet (G, r,y) satisfying that y = h(r) + n would also
satisfy r = arg maxr I(y; r). We prove it by contradiction. Assume that r 6= arg maxr I(y; r) and
there exists r′ with r′ = arg maxr I(y; r) with r 6= r′. Then there exists another random variable
r̃ and a mapping function fm such that r′ = fm(r, r̃). Then we will have I(y; r′) = I(y; r, r̃) =
I(h(r); r, r̃) = I(h(r); r) = I(y; r), which leads to contradiction.

Then we prove that every triplet (G, r,y) satisfying that r = arg maxr I(y; r) would also satisfy
y = h(r)+n by contradiction. Suppose that y 6= h(r)+n and there exists r′ 6= r with y = h(r′)+n.
Then the inequality I(h(r′); r) < I(h(r′); r′) holds. That means r′ = arg maxr I(y; r), leading to
contradiction.

16

B.1 Proof for Theorem 1

Proof. According to the dependency relationship z← G→ y, we have
I(y; e|z)

= DKL(p(y|z, e) ‖ p(y|z))

= DKL(p(y|z, e) ‖ Ep(e|G) [p(y|z, e)]

= DKL

(
q(y|z) ‖ Ep(e|G) [p(y|G, e)]

)
−DKL (q(y|z) ‖ p(y|z, e))

−DKL

(
Ep(e|G) [p(y|z, e)] ‖ Ep(e|G) [p(y|G, e)]

)
≤ DKL

(
q(y|z) ‖ Ep(e|G) [p(y|G, e)]

)
.

(12)

Next, we have

DKL

(
q(y|z) ‖ Ep(e|G) [p(y|G, e)]

)
=EG∼p(G)EyG∼p(y|G=G)EzG∼q(z|G=G)

[
log

q(y = yG|z = zG)

Ep(e|G) [p(y = yG|G = G, e = e)]

]
=

1

|G|
∑

(G,yG)∈G

EzG∼q(z|G=G)

[
log

q(y = yG|z = zG)

Ep(e|G) [p(y = yG|G = G, e = e)]

]
.

(13)

Based on Jensen Inequality and Triangle Inequality, we can obtain that
DKL

(
q(y|z) ‖ Ep(e|G) [p(y|G, e)]

)
is upper bounded by:

1

|G|
∑

(G,y)∈G

∣∣log qθ(y|G)− Ep(e|G)[log pτ (y|G, e)]
∣∣ . (14)

Thus we can prove that minimizing term 1 in Eq. 7 is equivalent to minqθ(y|z),qθ(z|G) I(y; e|z).

B.2 Proof for Theorem 2

Proof. Given the dependency relationship z← G→ y, we hold maxq(z|G) I(y; z) is equivalent to
minq(z|G) I(y;G|z). Also we have

I(y;G|z) =DKL(p(y|G, e)‖p(y|z, e))

=DKL(p(y|G, e)‖q(y|z))−DKL(p(y|z, e)‖q(y|z))

≤DKL(p(y|G, e)‖q(y|z)),

(15)

Based on this, we will have
I(y;G|z) ≤ min

q(y|z)
DKL(p(y|G, e)‖q(y|z)). (16)

Then we can also derive the following inequality via Jensen Inequality:

DKL(p(y|G, e)‖q(y|z)) = EeEG∼pe(G)

[
EyG∼pe(y|G=G)Ez∼q(z|G=G)

[
log

pe(y = yG|G = G)

q(y = yG|z = zG)

]]

≤ Ee

 1

|Ge|
∑

(G,yG)∈Ge
log

pe(y = yG|G = G)

EzG∼q(z|G=G)q(y = yG|z = zG)

= C + Ee

− 1

|Ge|
∑

(G,yG)∈Ge
log q(y = yG|G = G)

 ,
(17)

where C is a constant. Then the problem minq(y|z)DKL(p(y|G, e)‖q(y|z)) can be solve by

minEe

 1

|Ge|
∑

(G,yG)∈Ge
[− log qθ(y = yG|G = G)]

 , (18)

which means minimizing term 2 in Eq. 7 contributes to maxqθ(y|z),qθ(z|G) I(z;y).

17

C Implementation Details

C.1 Baselines

This section describes training configurations for all baselines, which are compared in this paper.

Three backbones. We adapt three backbones into our method, namely, GCN [30], Graph-
SAGE [21] and GIN [63]. We also emphasize the comparison with their augmented versions,
i.e. “+ virtual node” [19, 25, 38]. For GCN and GIN, we use the implementations provided by Open
Graph Benchmark [23]5. We implement GraphSAGE and its corresponding augmented version by
ourselves. For these baselines, grid search of learning rate over {1e−2, 5e−3, 1e−3, 5e−4, 1e−4}
and dropout rate over {0.1, 0.3, 0.5} is performed to select the best parameters. The embedding size
of all methods including ours are all set to 256 for the sake of fairness.

• GCN [30] is a scalable approach on graph-structured data that is based on an efficient variant of
convolutional neural networks.

• GIN [63] generalizes the Weisfeiler-Lehman (WL) graph isomorphism test [36] and hence achieves
maximum discriminative power among GNNS.

• GraphSAGE [21] learns a function that generates embeddings by sampling and aggregating
features from a node’s local neighborhood.

• GCN/GIN/GraphSAGE + virtual node [19, 25, 38] is a variant of the original method augmented
by an additional node connecting to all nodes in the raw graph.

Models tailored for OOD learning. We compare our method against six state-of-the-art methods:
ERM [56], IRM [3], DeepCoral [55], DANN [18], MixUp [70] and GroupDro [50]. We use the
implementations of these six method provided by DrugOOD6. We search for the optimal hyper-
parameters by ranging learning rate over {1e− 3, 5e− 4, 1e− 4, 5e− 5, 1e− 5} and dropout rate
over {0.1, 0.3, 0.5}. The embedding size of all models including ours are all set to 128 for fairness.

• ERM [56] minimizes the average empirical loss on training data.

• IRM [3] penalizes feature distributions for environments that have different optimum predictors.
We set the penalty weight and the penalty anneal iteration to 10 and 500, respectively.

• DeepCoral [55] penalizes differences in the means and covariances of the feature distributions for
each environment, which are exactly the distribution of last layer activations in a neural network.
The penalty weight is set to 0.001.

• DANN [18] encourages feature representations to be consistent across domains. We set to the
inverse factor to 0.2.

• MixUp [70] constructs additional virtual samples for training from two examples which are
randomly sampled from the training data. We set the probability and interpolate strength to 0.1.

• GroupDro [50] minimizes the worst-case training loss over a set of pre-defined environments.
The step size is set to 0.001.

C.2 Our Method

We implement our method in Pytorch. As for experiments on OGB datasets, we implement the
Environment Classifier, the Conditional GNN and the Substructure Encoder which are mentioned
in Sec. 3.3 all in Graph Isomorphism Network (GIN) [63]. We use grid search on validation set for
hyper-parameter tuning by ranging learning rate from {1e− 2, 5e− 3, 1e− 3, 5e− 4, 1e− 4, 5e−
5, 1e− 5}, dropout rate from {0.1, 0.2, 0.3, 0.4, 0.5}, the trading-off parameter β from {0.5, 1, 2, 4},
the environment count k from {5, 10, 15, 20, 40, 80}. As for the prior p(e|G), we set it to a Uniform
distribution or a discrete Gaussian distribution. We use CrossEntropyLoss for all models and the
Adam optimizer is used for gradient-based optimization.

5https://github.com/snap-stanford/ogb
6https://github.com/tencent-ailab/DrugOOD

18

https://github.com/snap-stanford/ogb
https://github.com/tencent-ailab/DrugOOD

D More Details of Datasets

In this paper, we use ten publicly available benchmark datasets in total. Four of them, namely,
BACE, BBBP, SIDER and HIV are released by Open Graph Benchmark (OGB) [23]. The rest six are
released by DrugOOD [27], i.e. IC50-assay, IC50-scaffold, IC50-size, EC50-assay, EC50-scaffold
and EC50-size. We provide detailed descriptions for them as below.

• BBBP is a dataset of Brain-Blood Barrier Penetration. Each molecule has a label indicating
whether it can penetrate through brain cell membrane to enter central nervous system.
• BACE is a dataset of binding affinity against human beta-secretas 1. Each molecule has a label

indicating whether it binds to human beta-secretase 1.
• SIDER is a dataset of marked drugs and adverse drug reactions (ADRs). Molecules are grouped

into 27 system organ classes.
• HIV is a dataset of HIV antiviral activity. Each molecule has an active or inactive label.
• IC50/EC50-scaffold/assay/size are datasets generated by the automated dataset curator provided

by DrugOOD from the large-scale bioassay deposition website ChEMBL [42]. The suffix specifies
the splitting scheme. These six datasets target on ligand-based affinity prediction (LBAP). Each
molecule has an active or inactive label.

Notice that the phenomenon that there exist a few invariant substructures w.r.t. certain property
indeed exists in the datasets we use in our paper. Taking HIV dataset as an example, salicylhydrazide
substructure displays potent HIV-1 integrase (IN) inhibitory activity, which has been identified by
previous studies [1, 45]. Additionally, for BBBP dataset, as pointed out by recent studies [52, 53],
some substructures are closely related to brain-blood barrier penetration.

All these ten datasets do not contain personally identifiable information or offensive content. Table 4
shows the detailed statistics of datasets. For all datasets, we adopt the default training-validation-test
split as shown in Table 4. We use all molecules in the training set to optimize the model parameters.
Then, we select hyper-parameters using the validation set, and we report the results on test molecule
set for the model that achieves the best results on the validation set.

Table 4: Summary of datasets used in this paper. #Train/#Valid/#Test denotes the number of
samples in the training/validation/test set, respectively. #Total is the sum of #Train, #Valid and #Test.
#Tasks is the output dimensionality required for prediction. Additionally, we also list which split
scheme is adopted and whether the manual specification of environments is available for each dataset.

Dataset #Train #Valid #Test #Total #Tasks Split
Scheme

Specify
Environments?

O
G

B

BACE 1, 210 151 152 1, 513 1 Scaffold %

BBBP 1, 631 204 204 2, 039 1 Scaffold %

SIDER 1, 141 143 143 1, 427 27 Scaffold %

HIV 32, 901 4, 113 4, 113 41, 127 1 Scaffold %

D
ru

gO
O

D

EC50-assay 4, 540 2, 572 2, 490 9, 602 1 Assay !

EC50-scaffold 2, 570 2, 532 2, 533 7, 635 1 Scaffold !

EC50-size 4, 684 2, 313 2, 398 9, 395 1 Size !

IC50-assay 34, 179 19, 028 19, 028 72, 235 1 Assay !

IC50-scaffold 21, 519 19, 041 19, 048 59, 608 1 Scaffold !

IC50-size 36, 597 17, 660 16, 415 70, 672 1 Size !

19

Table 5: We count
the number of scaf-
folds that contain 1,
2, 3, 4 and 5 sam-
ples, respectively.

Size Number

1 14, 295
2 2, 330
3 862
4 449
5 255

Next, let’s discuss on the details of HIV dataset, which is released by
Open Graph Benchmark (OGB) [23]. OGB adopts scaffold splitting
scheme to split the HIV into train/validation/test set. We count the num-
ber of scaffolds that only contain 1, 2, 3, 4 and 5 molecules, respectively,
and summarize the statistics in Table 5. Notice that HIV has 19, 076
scaffolds in total. We can see there are 18, 191 scaffolds containing less
or equal to 5 molecules, accounting for 95.45% of the total scaffold
count. HIV has a great deal of environments that contains few samples,
which poses great challenge to directly applying some existing OOD
generalization methods to datasets like HIV [27]. Thus, for datasets
released by OGB, partitioning the mocecules into different environments
according to their scaffolds may not be suitable in practice. Such a
observation motivates us to propose the environment-inference model.

E Understanding the Data-generating Process

E C

S G

Y

Figure 4: SCM

We provide a causal perspective to understand the data-generating
process. Recalling the two molecules Cyclopropanol (C3H6O) and
1,4-Cyclohexanediol (C6H12O2) used for illustration in Sec. 1, they
are sampled from different environments. Because both of them con-
tain the hydroxy (−OH), which we can call invariant or causal sub-
structure in this case, these two molecules are readily soluble in water.
We formalize such a date-generating process of molecule property
prediction with a general Structural Causal Model (SCM) [20, 46]
in Fig. 4. The abstract data variables are denoted by the nodes and
the directed arrows represent the causalities. This SCM illustrates

the causalities among variables: E as the environment, S as the spurious substructures, C as the
invariant/causal substructures w.r.t Y, G as the instance molecule graph, Y as the ground-truth label.

• S ← E → C: the environmental variable impacts the underlying data generating distribution.
Furthermore, substructures could be divided into causal and spurious ones across all environments.

• S→ G← C: an instance molecule graph is made up of the causal and spurious substructures.

• C→ Y: Y, the ground-truth label, is only determined by C. This causation is the focus of our work.

Taking Cyclopropanol (C3H6O) as an example, we can specify E as the 3C-ring scaffold, C as the
substructure hydroxy (−OH), S as the substructures aside from hydroxy, G as Cyclopropanol, Y as
good water solubility. The good water solubility Y is only attributed to the invariant substructure
hydroxy, i.e. C, rather than other spurious substructures S.

Existing MRL methods do not differentiate invariant and spurious substructures. Hence, the spurious
correlations between irrelevant substructures S and the target label Y will be encoded to learned
molecular representations. When tested on unseen environments, the downstream classifier will be
easily misled by these spurious correlations [3].

F Notations

We summarize the notations used in this paper in Table 6.

G Sensitivity to Molecule Segmentation Method

For all experiments in our original paper, we all adopt breaking retrosynthetically interesting chemical
substructures (BRICS) to segment molecule into substructures, which is widely used in other
works related to molecules, e.g., [60, 11]. To investigate the sensitivity of our method to different
decomposing strategies, we adopt another molecule segmentation method called retrosynthetic
combinatorial analysis procedure (RECAP) [37], which is also available as an API in RDKit package.
RECAP and BRICS decompose molecules based on two different rules. We conduct experiments on
EC50-assay/scaffold/size three datasets and the comparisions are summarized in Table 7. We can

20

Table 6: Notations.
Notation Description

e an environment instance
e a random variable of e
E the support of environments
l(·) the loss function
R(·) the risk function

G a molecular graph instance
G a random variable of G
y a ground-truth label instance
y a random variable of y
G a dataset set, i.e. {(G, y)}
ψ the environment-inference model
Φ the molecule encoder
ω the final predictor
z the denotation of Φ(G)
f ω ◦ Φ
κ the learnable parameters of the Environment Classifier
τ the learnable parameters of the Conditional GNN
θ the learnable parameters of Φ and ω

k hyper-parameter: the environment count
β hyper-parameter: the trading-off parameter in Eq. 7

Table 7: Comparisons on 3 out-of-distribution datasets in terms of ROC-AUC (%). The best and the
runner-up in each columns are highlighted in bolded and underlined respectively. Note the baselines
except ERM and MixUp all require environment labels. All methods including ours use GIN [63] as
backbones. Each experiment is repeated 5 times with mean and standard deviation reported.

Dataset EC50
Environment Assay Scaffold Size
ERM [56] 69.35 ± 7.38 63.92 ± 2.09 60.94 ± 1.95
IRM [3] 69.94 ± 1.03 63.74 ± 2.15 58.30 ± 1.51
DeepCoral [55] 69.42 ± 3.35 63.66 ± 1.87 56.13 ± 1.77
DANN [18] 66.97 ± 7.19 64.33 ± 1.82 61.11 ± 0.64
MixUp [70] 70.62 ± 2.12 64.53 ± 1.66 62.67 ± 1.41
GroupDro [50] 70.52 ± 3.38 64.13 ± 1.81 59.06 ± 1.50

Ours + RECAP 72.72 ± 3.94 66.34 ± 0.52 65.48 ± 1.10
Ours + BRICS 73.25 ± 1.24 66.69 ± 0.34 65.09 ± 0.90

see that RECAP and BRICS show competitive performance on our model and both outperform the
baselines by large margins.

H Future Direction

Sometimes, bio-chemical properties are affected by interactions between substructures. To encode
such interactions between substructures into the final learned molecular representation, we utilize the
permutation equivariant Set Attention Block (SAB) proposed in Set Transformer [35]. SAB takes
a representation set of any size as input and outputs a representation set of equal size. SAB is able
to encode pairwise and higher-order interactions between elements in input sets into outputs. We
add such a SAB after the Substructure Encoder. For each molecule, we feed the representions of
its substructures to SAB to obtain new substruture representations. In this way, the final molecule
representation could model interactions between substructures. We conduct experiments on EC50-
assay/scaffold/size to examine the performance of adding such a SAB. As demonstrated in Table 8,

21

Table 8: Comparisons on 3 out-of-distribution datasets in terms of ROC-AUC (%). The best and the
runner-up in each columns are highlighted in bolded and underlined respectively. Note the baselines
except ERM and MixUp all require environment labels. All methods including ours use GIN [63] as
backbones. Each experiment is repeated 5 times with mean and standard deviation reported.

Dataset EC50
Environment Assay Scaffold Size
ERM [56] 69.35 ± 7.38 63.92 ± 2.09 60.94 ± 1.95
IRM [3] 69.94 ± 1.03 63.74 ± 2.15 58.30 ± 1.51
DeepCoral [55] 69.42 ± 3.35 63.66 ± 1.87 56.13 ± 1.77
DANN [18] 66.97 ± 7.19 64.33 ± 1.82 61.11 ± 0.64
MixUp [70] 70.62 ± 2.12 64.53 ± 1.66 62.67 ± 1.41
GroupDro [50] 70.52 ± 3.38 64.13 ± 1.81 59.06 ± 1.50

Ours 73.25 ± 1.24 66.69 ± 0.34 65.09 ± 0.90
Ours + SAB 73.15 ± 2.69 67.26 ± 1.54 64.83 ± 1.07

we can see that adding such a SAB further improves our model on EC50-scaffold. This design is a
naive attempt but brings us some valuable insights.

I Limitations

Some studies [27, 16] have empirically shown that existing models designed for OOD learning may
fail to outperform the simple ERM [56] model when the environment count is large. Though we can
relabel the environment for each molecule according to the new environment partition inferred by our
devised environment-inference module, we still need to set the environment count k to a relatively
larger value than that of other OOD datasets from other domain, e.g. Camelyon17 [4], which only
contains five environments. Thus, using our inferred environment partition, existing models designed
for OOD learning might still be inferior to ERM in some cases.

J Potential Negative Impacts

As far as we are concerned, we have not identified any negative social impact of this work.

22

	Introduction
	Backgrounds and Related Works
	Methodology
	Problem Formulation
	Model Formulation
	Model Instantiations and Training

	Experiments
	Datasets and Setups
	Performance Comparison
	Ablation Study of Components
	Hyper-parameter Sensitivity Study
	Risk Dynamics

	Conclusion
	Proof for Proposition 1
	Proofs for Theorems
	Proof for Theorem 1
	Proof for Theorem 2

	Implementation Details
	Baselines
	Our Method

	More Details of Datasets
	Understanding the Data-generating Process
	Notations
	Sensitivity to Molecule Segmentation Method
	Future Direction
	Limitations
	Potential Negative Impacts

