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Abstract

Molecule representation learning (MRL) has been extensively studied and cur-
rent methods have shown promising power for various tasks, e.g., molecular
property prediction and target identification. However, a common hypothesis of
existing methods is that either the model development or experimental evalua-
tion is mostly based on i.i.d. data across training and testing. Such a hypothesis
can be violated in real-world applications where testing molecules could come
from new environments, bringing about serious performance degradation or unex-
pected prediction. We propose a new representation learning framework entitled
MoleOOD to enhance the robustness of MRL models against such distribution
shifts, motivated by an observation that the (bio)chemical properties of molecules
are usually invariantly associated with certain privileged molecular substructures
across different environments (e.g., scaffolds, sizes, etc.). Specifically, We intro-
duce an environment inference model to identify the latent factors that impact
data generation from different distributions in a fully data-driven manner. We
also propose a new learning objective to guide the molecule encoder to lever-
age environment-invariant substructures that more stably relate with the labels
across environments. Extensive experiments on ten real-world datasets demon-
strate that our model has a stronger generalization ability than existing methods
under various out-of-distribution (OOD) settings, despite the absence of manual
specifications of environments. Particularly, our method achieves up to 5.9% and
3.9% improvement over the strongest baselines on OGB and DrugOOD bench-
marks in terms of ROC-AUC, respectively. Our source code is publicly available at
https://github.com/yangnianzu0515/MoleOOD.

1 Introduction

Predicting molecular properties plays an important role in many related applications like drug
discovery [13] and material design [51]. These professional tasks conventionally take great efforts by
experts e.g. in chemistry and pharmacology. Recent years have witnessed inspiring breakthroughs on
building effective machine learning models for scientific discovery, and solid progress has been made
along the avenue of ML-based molecule representation learning (MRL). In general, MRL aims at
embedding a molecule into a vector in latent space as a foundation model, on top of which the learned
representations could be used for a variety of downstream tasks, such as target identification [69],
retrosynthetic analysis [65], search of antibiotics [54], virtual screening [40] for drug discovery, etc.

The challenge, however, is that existing MRL methods are mostly based on an underlying hypothesis
that training and testing molecules are independently sampled from an identical environment, yet
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Figure 1: Two examples. Left: the shared substructure hydroxy (−OH) invariantly contributes to the
water solubility of the two molecules which contain different scaffolds, i.e. sampled from different
environments by definition. Right: the water solubility of the two molecules with different sizes can
be attributed to the shared substructure carboxy (−COOH) invariantly, where different sizes are
regarded as indicators to define different environments.

real-world environments are often dynamic and uncertain, which requires the model to effectively
handle distribution shifts. In fact, the available experimental molecule data are rather limited
while the candidate molecules to be tested are often diverse, coming from unknown environments.
Taking the virtual screening [40] as an example (which is a common protocol in drug discovery and
usually for target identification), the prediction model is typically trained on some known target
proteins. However, some unpredictable events like COVID-19 may occur, bringing new targets from
unknown distributions. Similar scenarios where training and testing data are sampled from different
distributions are common in real world, posing an urgency for strengthening current MRL methods
regarding out-of-distribution (OOD) generalization [41, 7, 44].

Existing methods devised for out-of-distribution generalization mostly focus on Euclidean data such
as images, while few endeavors OOD generalization on non-Euclidean data [61, 39]. In particular,
molecules, as a kind of typical non-Euclidean data, i.e., graph-structured data, is different from
visual data in nature. The work [27] point out that existing OOD models [3, 55, 18, 70, 50] fail
to exhibit significant improvement on MRL tasks against distribution shifts and even the simple
Empirical Risk Minimization (ERM) [56] method outperforms these latest methods, which is also
empirically verified by [16]. We aim to develop an OOD method tailored for molecules to solve the
OOD generalization problem on MRL in this paper.

We incorporate an effective prior in the molecule domain into our model design: the (bio)chemical
properties of a molecule are usually associated with a few privileged molecular substructures, which
has been consistently shown by studies [31, 48, 72, 29] across bio-informatics, pharmacy, and
data mining. The common practice specifies environments as some prominent information of the
molecules e.g. scaffold pattern [32, 23] and molecule size [27]. Fig. 1 provides two illustrative
examples. Let’s first take a look at the left example, where two molecules Cyclopropanol (C3H6O)
and 1,4-Cyclohexanediol (C6H12O2) contain different scaffold patterns2: the former is 3C-ring
and the latter is 6C-ring. Thus, the data-generating environments and the induced distributions
which these two molecules are sampled from can be considered different [23]. Though sampled
from different distributions, they are both readily soluble in water due to the invariant substructure
hydroxy [24] shared across different environments. As for the example on the right of Fig. 1, the
sizes of two molecules Formic Acid (CH2O2) and Citric Acid (C8H8O7) differ a lot. Consequently,
they can also be considered as being sampled from different environments. Owing to the shared
invarint substructure carboxy (−COOH), they are both readily soluable in water, too. Hence, a
promising paradigm would be to learn the causal data-generating invariance from the substructures
across environments, regarding a certain property, for the OOD generalization purpose.

Another important observation for consideration is that existing specifications for environments are
often handcrafted or rule-based and not structured, which could provide insufficient information
for capturing the fundamental relations across domains from the casual data-generating perspective.

2As a 2-D structural molecular framework [5], the scaffold reduces the chemical structure of a molecule to
its core components, which can be obtained by removing side chains and only reserving the rings and parts
connecting rings [67]. The scaffold can be an indicator to define a specific environment [32, 23].
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Besides, some studies [27, 16] show that directly utilizing such environment labels as input when
adapting existing OOD generalization methods to MRL tasks can be problematic. Furthermore,
manual specifications of environments may be unavailable in reality. Hence, we aim to develop a
label-free model that does not rely on the above ad-hoc environment labels. As shown later, our model
can infer the environment labels in an unsupervised manner, namely for environment clustering.

To achieve robust molecule representation for OOD generalization and overcome potentially unreli-
able environment labels, we devise a new MRL framework without explicitly using the environment
label information. We first formulate OOD generalization for molecular property prediction by
introducing a latent variable for environments that affect the data generation. Then we analyze the
essential cause behind the failure of existing MRL models and propose a new learning scheme based
on the invariance principle [47, 44, 3, 61]. The training procedures contain two steps: 1) optimize
an environment inference model from training data; 2) optimize a molecule encoder and a predictor.
Our general framework can integrate existing GNN backbones and achieve improvements on four
OGB molecular property prediction tasks [23], as shown in our experimental results. As for a newly
released benchmark for drug-oriented OOD learning [27], even without access to environment labels,
our method can still outperform state-of-the-art models that rely on environment labels for training in
five out of six datasets. The contributions of this paper are:

• We formulate the out-of-distribution (OOD) generalization problem for molecule representation
learning (MRL), by particularly incorporating an important observation that the substructure of
molecule can convey invariant casual information across environments, regarding certain property
prediction tasks. To our best knowledge, this is the first work that formulates the OOD problem in
MRL background and proposes to leverage the invariance principle which opens a new perspective
for handling substructure-aware distribution shifts.

• Under the environment-invariance principle with specific substructure invariance priors, we propose
a new learning objective to learn robust representations. In particular, our model does not require
environment labels which in fact can be noisy and unreliable, but instead achieve environment
inference in an unsupervised manner. This design endows our model with practical applicability for
molecular OOD learning where the manual specifications of the environments are often unavailable.

• We conduct extensive experiments on ten public datasets. Results demonstrate that our model
yields consistent and significant improvements over various existing MRL methods as backbones
and also achieves competitive or even superior prediction compared to state-of-the-art models
tailored to OOD learning with environment labels used as extra inputs in both training and testing.
Particularly, our method achieves up to 5.9% higher ROC-AUC on public OGB molecular property
prediction benchmarks than the counterpart model trained with traditional objective. Besides,
for drug-oriented benchmarks DrugOOD, when environment labels are not used, our model still
outperforms several SOTA approaches tailored for general OOD learning (using environment
labels as extra training information) by up to 3.9% w.r.t. ROC-AUC.

2 Backgrounds and Related Works

Out-of-Distribution Generalization. Deep neural networks are prone to suffering significant per-
formance degradation under distribution shifts, motivating a surge of works on OOD generalization.
Recent studies [49, 3, 9, 61] assume that there is a potential environment variable e accounting for
the distribution shift between the training and testing data. In general cases the goal is to predict the
target label y given the associated input x. Then, the OOD problem could be formally formulated as:

min
f

max
e∈E

E(x,y)∼p(x,y|e=e)[l(f(x), y)|e], (1)

where E denotes the support of environments, f(·) is the prediction model and l(·, ·) represents a
loss function. Notice that E(x,y)∼p(x,y|e=e)[l(f(x), y)|e] is called the risk function under a given
environment e and denoted asRe(xe,ye) [33].

Invariant Learning. There is an emerging line of research [49, 3, 10, 12] regarding invariant
predictor learning, for solving the OOD generalization problem. These methods propose to find an
invariant predictor that could uncover invariant relationships between inputs and targets across all
environments [33]. The invariant predictor aims to learn an invariant representation satisfying such a
invariance principle: 1) sufficiency: shows sufficient predictive power for the target, 2) invariance:
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contributes to equal (optimal) performance for the downstream tasks across all environments. Recent
works adopt the invariance principle as a cornerstone for handling various distribution shifts on semi-
structured data like graphs [61, 6] and sequences [66]. To our knowledge, our work is a pioneering
attempt that leverages the invariance principle and incorporate useful domain knowledge for handling
molecular graph classification tasks under distribution shifts.

Molecule Representation Learning. Existing molecule representation learning methods can be
classified into two categories. The first is SMILES-based methods where SMILES refers to Sim-
plified Molecular Input Line Entry System [2]. They use language models to process the textual
representation (SMILES) of a molecule, for example, Transformer [57] or BERT [15]. SMILES is a
linear encoding for molecules and highly depends on the traverse order of molecule graphs. There-
fore its expressiveness is limited for problems like medication recommendation which we believe
calls for fine-grained molecular structure extraction. Beyond the above linear encoding protocol,
structure-based methods are also developed, which can be further classified into fingerprint-based and
graph neural networks (GNN)-based methods. The molecular fingerprint techniques date back to the
Morgan fingerprints [43]. However, those fingerprint-based methods are often handcrafted and not
trained in an end-to-end fashion [26]. Since molecules can be viewed as structured graphs, methods
tailored for graph data, such as graph neural networks [28, 19, 24] or graph transformers [17, 62] can
be used to learn molecule representation.

Existing general OOD methods [3, 55, 18, 70, 50] are not tailored to such non-Euclidean structured
data, i.e. molecules. In several recent works on molecule property classification tasks [71, 59], the
importance of molecular substructures has been emphasized and such inductive bias is incorporated
into the design of those models. However, they are still based on the i.i.d. assumption and do not
leverage those invariant substructure across different environments to achieve robust representations.
In this paper, we propose a general framework orthogonal to these MRL studies to bridge OOD and
MRL, which can adopt any existing MRL methods as the backbone to improve their robustness.

3 Methodology

3.1 Problem Formulation

We propose a OOD generalization framework tailored for molecule representation learning, entitled
MoleOOD. All the random variables and the corresponding realizations are denoted as bold and thin
letters, respectively. We first formulate the OOD generalization problem for MRL.

OOD Generalization Problem on Molecule Representation Learning. A molecular graph can be
represented as G = (V,E), where V is the graph’s node set corresponding to atoms constituting the
molecule and E denotes the graph’s edge sets corresponding to chemical bonds. The training and test-
ing molecule graph datasets are denoted as Gtrain = {(Gi, yi)}N

train

i=1 and Gtest = {(Gi, yi)}N
test

i=1 .
Notice that the test dataset is drawn outside the distribution of the training dataset. The goal of
molecule representation learning task is to predict the target label y given the associated input
molecule G. Based on Eq. 1, we can formulate the OOD problem on MRL tasks as:

min
f

max
e∈E

E(Gi,yi)∼p(G,y|e=e)[l(f(Gi), yi)|e]. (2)

The difficulty of this problem is that the training data only cover very limited environments in E while
the model is expected to perform well on all the environments.

We elaborate our approach in the context of molecule property classification tasks in this paper.
Existing MRL methods do not differentiate invariant and spurious substructures. Hence, the spurious
correlations between irrelevant substructures and the target label will be encoded to learned molecular
representations. When tested on unseen environments, the downstream classifier will be easily misled
by these spurious correlations [3]. With the knowledge that (bio)chemical properties of a molecule
are usually associated with a few privileged substructures [31, 48, 72, 29], we aim to suppress such
spurious correlations and leverage environment-invariant substructures that more stably relate with
the labels across environments to learn invariant molecular representations. Notice that the learned
invariant molecular representations should satisfy the invariance principle mentioned in Sec. 2. We
next introduce our method formally and then give the instantiation of our model.
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3.2 Model Formulation

The framework contains two parts, the fronted molecule encoder Φ for learning an “invariant
representation” of the input molecule graph and the back-end predictor ω for final prediction. Solving
the formulation in Eq. 2 directly is intractable in practice since we cannot know all the environments,
i.e, obtain a complete support set E . We resort to minimizing the expectation of risks from different
environments known in the training data,

min
ω,Φ

Ee[Re(Ge,ye)], s.t. y ⫫ e | Φ(G), (3)

where f = ω ◦Φ and ⫫ denotes probabilistic independence. All learnable parameters of the molecule
encoder Φ and the predictor ω are included in θ. Different from Eq. 2, we add an extra invariance
constraint y ⫫ e | Φ(G), which is used to suppress spurious correlations [10]. Since assessing
causality is challenging, we could rethink the problem on the basis of information theory. Recall
that we hope to let the molecule encoder leverage environment-invariant substructures and learn a
molecular representation Φ(G) given a molecule G. Our goal is to maximize the predictive power
of Φ(G) on y, which can be measured by mutual information between Φ(G) and y. Meanwhile,
probabilistic independence between y and e given Φ(G) can be achieved via minimizing their mutual
information. For convenience, we denote Φ(G) as z and Eq. 3 can be approximately solved by:

max
ω,Φ

I(z;y), s.t. min
ω,Φ

I(y; e|z). (4)

Treating the outputs of ω and Φ as distribution qθ(z|G) and qθ(y|z) respectively, Eq. 4 can be
specified as:

max
qθ(y|z),qθ(z|G)

I(z;y), s.t. min
qθ(y|z),qθ(z|G)

I(y; e|z). (5)

Now, we have arrived at a clearer but still intractable optimization objective. Before specifying the
practical instantiation of Eq. 5, let’s discuss on the environment variable e first.

In practice, due to the non-trivial efforts to label the molecular environments, manual specifications
of the environments may be unavailable in many cases. We may directly label molecules to different
environments in terms of their scaffolds when the environment label is unavailable. But this is
unreasonable in practice, because the final total environment number will be too large. Taking the
dataset HIV for molecule property prediction tasks released by Open Graph Benchmark [23] as an
example, OGB uses scaffold to split the molecules into different environments. Assuming that we
regard each scaffold as an environment directly, 41, 127 molecules in HIV are partitioned into 19, 076
environments (see details in Appendix D). This environment count is much larger than other OOD
datasets from other domains, e.g. Camelyon173 [4], CivilComments4 [8], etc. Even though some
datasets may provide manual specifications of environments, the environment counts are also too
large, which is unfriendly to existing OOD models [27, 16]. Therefore, we propose to design an
environment-inference model ψ to partition the molecule into different environments with a relatively
smaller environment count. We denote the environment count as a hyper-parameter k.

Given prior p(e|G), we need to maximize the log likelihood of pτ (y|G) and then obtain the posterior
pτ (e|G,y), which are parameterized by τ . Since there is no analytical solutions to the true posterior,
here we use variational inference (VI) to approximate it. Specifically, we introduce a variational
distribution qκ(e|G,y) parameterized by κ to approximate pτ (e|G,y).

Proposition 1. The Evidence Lower BOund (ELBO) of the observed molecule graph and correspond-
ing label tuple (G, y): L(τ, κ; (G, y)) = Eqκ [log pτ (y|G, e)]−DKL(qκ(e|G, y) ‖ pτ (e|G)).

Our goal is to minimize the Kullback-Leibler (KL) divergence between qκ(e|G,y) and pτ (e|G,y),
i.e. DKL (qκ(e|G,y) ‖ pτ (e|G,y)), which is equivalent to maximizing the ELBO in Proposition 1.
Then, the objective used to train this environment-inference model is transformed to:

Lelbo(τ, κ;G) =
1

|G|
∑

(G,y)∈G

[Eqκ [log pτ (y|G, e)]−DKL(qκ(e|G, y) ‖ p(e|G))] . (6)

3Camelyon17 is for tumor prediction, partitioning 455, 954 issue slides into 5 environments.
4CivilComments is for toxicity prediciton, partitioning 448, 000 online comments into 16 environments.
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Figure 2: Overview of our model. The whole training procedure is divided into two stages: 1)Op-
timize the environment-inference model. Given an input molecule (G,y), we first infer the latent
environment variable e. This stage is trained under the guidance of Lelbo. 2) Optimize the molecule
encoder and the final predictor guided by Linv .

Let’s look back to the objective given in Eq. 5 and give an equivalent tractable objective in practical
instantiation, which involves the environment-inference model defined above:

Linv(θ;G, τ) =
1

|G|
∑

(G,y)∈G

∣∣log qθ(y|G)− Ep(e|G)[log pτ (y|G, e)]
∣∣

︸ ︷︷ ︸
1

+βEe

 1

|Ge|
∑

(G,y)∈Ge
[− log qθ(y|G)]


︸ ︷︷ ︸

2

,
(7)

where Ge consists of the pairs of molecular graph G and corresponding label y under environment e.

Theorem 1. With qθ(y|z) treated as a variational distribution, minimizing term 1 in Eq. 7
contributes to minqθ(y|z),qθ(z|G) I(y; e|z), letting z show equal performance for the downstream
tasks across all environments, i.e. p(y|z, e) = p(y|z).

Theorem 2. Regarding qθ(y|z) as a variational distribution, minimizing term 2 in Eq. 7 equals
to maxqθ(y|z),qθ(z|G) I(z;y), letting z show sufficient predictive power for downstream tasks.

Serving as theoretical justifications, Th. 1 and Th. 2 reveal that optimizing the objective in Eq. 7 forces
the learned representation z to satisfy the invariance principle mentioned in Sec. 2, thus ensuring a
valid solution for OOD problem defined in Eq. 2. Due to the limited space, the detailed proofs can be
found in Appendix B.

3.3 Model Instantiations and Training

Environment-inference Module. For the approximate posterier model qκ(e|G,y), in principle we
should design a module, entitled Environment Classifier, that takes (G,y) as the input and outputs
the probabilistic distribution of e. We use a Graph Isomorphism Network (GIN) [63], to learn a
graph representation given G. Then, the concatenation of this graph representation and label vector
is fed to a feed-forward network to obtain a probabilistic distribution with regard to e. We could
set the prior pτ (e|G) to Uniform distribution or Gaussian distribution. As for pτ (y|G, e), we also
choose a GNN model (e.g. GIN) followed by a softmax activation function to model it. We call this
module Conditional GNN because it conditions on e. It takes (G, e) as the input and outputs the
probabilistic distribution of y.

The Molecule Encoder & The Final Predictor. Recall that we aim to learn an invariant substructure-
aware molecular representation. Given a molecule G, we can choose any molecule representation
learning method to learn a representation rG for the complete molecular graph. This part is en-
titled Complete Encoder. Meanwhile, we decompose the input molecule into a set of chemical
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substructures using a molecule segmentation method, e.g. breaking retrosynthetically interesting
chemical substructures (BRICS) [14], which is available as an API in RDKit [34]. For each sub-
structure, we consider using a simple GNN to learn a corresponding representation. We call this
GNN Substructure Encoder. Then, considering rG as a query with regard to substructures, we
operate attentive pooling on these substructure representations to obtain a new substructure-aware
molecular representation. We then use this substructure-aware representation for downstream task.
Guided by our proposed learning objective, we can encode some invariant relationships between
certain substructures and target properties into this representation. The Complete Encoder, the
Substructure encoder and the attentive pooling operation constitute our Molecule Encoder Φ. As for
the Predictor ω, we implement it with a multi-layer perceptron, followed by a softmax function. The
overview of our model is demonstrated in Fig. 2.

Training. We adopt a simple yet efficient two-stage training strategy to search for optimal parameters
and the training procedure of our method is summarized in Algorithm 1:

1) optimizing the environment-inference model: κ∗, τ∗ ← arg maxκ,τ Lelbo(τ, κ;Gtrain).

2) optimizing the molecule encoder and the predictor: θ∗ ← arg minθ Linv(θ;Gtrain, τ).

Algorithm 1: The training procedure.

Input: Dataset Gtrain = {(Gi, yi)}N
train

i=1 ; Number of training epochs for environment
inference module E1; Number of training epochs for the molecule encoder and the
predictor E2; Batch size B.

Output: Trained parameters θ.

1 Initialize parameters θ, τ and κ;
2 for i← 1 to E1 do
3 Sample data batches B = {G1,G2, . . . ,Gk} from Gtrain with batch size B;
4 for j ← 1 to k do
5 Compute batch loss Lelbo(τ, κ;Gj) according to Eq. 6;
6 Backpropagate −Lelbo and optimize parameters τ, κ;

7 Freeze the parameters κ, τ ;
8 for i← 1 to E2 do
9 Sample data batches B = {G1,G2, . . . ,Gk} from Gtrain with batch size B;

10 for j ← 1 to k do
11 Determine the environment of each sample (G, y) in Gk by arg maxe qκ(e|G, y);
12 Compute batch loss Linv(θ;Gk, τ) according to Eq. 7;
13 Backpropagate Linv and optimize parameters θ;

14 Output the parameters θ;

4 Experiments

Experiments are performed on 10 benchmark datasets and repeated 5 times with mean and standard
deviation reported, running on a machine with i9-10920X CPU, RTX 3090 GPU and 128G RAM.

4.1 Datasets and Setups

Datasets and protocols. The four datasets BACE, BBBP, SIDER and HIV, are from by Open
Graph Benchmark (OGB) [23]. We use the default train/val/test split with ratio 8:1:1. Each split
contains a set of scaffolds (almost) different to each other. Hence we believe that to a certain
degree, it provides an OOD test-bed as different scaffold often suggest different data-generation
environments. The other six datasets are generated by the dataset curator provided by DrugOOD [27].
DrugOOD provides more diverse splitting indicators than OGB, including assay, scaffold and size.
To comprehensively evaluate the performance of our method under different environment definitions,
we adopt these three different splitting schemes on categories IC50 and EC50 provided in DrugOOD.
Then we obtain six datasets, EC50-∗ and IC50-∗, where the suffix ∗ specifies the splitting scheme i.e.
IC50/EC50-assay/scaffold/size. Notice that only the six datasets from DrugOOD provide manual
specified environment labels. Refer to Appendix D for more details of datasets.
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Figure 3: (a) Varying the specified environment number k. (b) Varying the trading-off parameter β in
Eq. 7. (c) Risk curves of environments in the training process. All results are from ‘GraphSAGE +
ours.’ on BACE dataset.

Table 1: Performance comparison with baselines on 4 out-of-distribution molecular property predic-
tion datasets from Open Graph Benchmark (OGB) [23] in terms of ROC-AUC (%), namely, BACE,
BBBP, SIDER and HIV. The best and the runner-up results are highlighted in bolded and underlined
respectively. We emphasize the comparison against ‘∗ + virtual node’, a variant of the original
method augmented by an additional node connecting to all nodes in the raw graphs [19, 25, 38].

Methods BACE BBBP SIDER HIV
GCN [30] 80.01 ± 3.49 67.92 ± 1.07 58.90 ± 1.30 76.35 ± 2.01
GCN + virtual node 77.51 ± 3.07 68.19 ± 1.86 60.71 ± 1.34 75.76 ± 2.21
GCN + ours. 84.33 ± 1.07 70.62 ± 0.99 63.38 ± 0.67 77.73 ± 0.76
GIN [63] 77.83 ± 3.15 66.93 ± 2.31 59.05 ± 1.47 76.58 ± 1.02
GIN + virtual node 79.64 ± 2.02 66.77 ± 0.95 59.12 ± 0.95 77.11 ± 0.96
GIN + ours. 81.09 ± 2.03 69.84 ± 1.84 61.63 ± 1.08 78.31 ± 0.24
GraphSAGE [21] 77.41 ± 1.19 70.58 ± 0.58 58.00 ± 0.95 76.98 ± 1.13
GraphSAGE + virtual node 78.34 ± 2.08 69.29 ± 0.99 59.48 ± 1.37 77.28 ± 1.53
GraphSAGE + ours. 82.95 ± 0.85 71.02 ± 0.75 61.09 ± 0.28 79.39 ± 0.51

Metric. As the concerned property prediction tasks all relate to classification, we report the ROC-
AUC score which is also in line with previous MRL works [68, 64, 58].

Baselines. Ideally, any MRL method can be adapted into our method as backbone to improve their
generalization ability against distribution shifts. We adapt three backbones: GCN [30], GIN [63]
and GraphSAGE [21] into our method. We compare the adapted version with the original method.
We also compare against another augmented version “+ virtual node” [19, 25, 38]. Furthermore,
we compare our method with six OOD generalization methods on MRL tasks: ERM [56], IRM [3],
DeepCoral [55], DANN [18], MixUp [70] and GroupDro [50]. Due to the fact that most of these
methods require the manual specification of environments in dataset, we report this comparison on
datasets from DrugOOD only. Each of the method is configured using the same parameters reported
in the original paper or selected by grid search. For the sake of fairness, the embedding size of all
methods are set to be equal in comparison. We specify the training details in the Appendix C.

4.2 Performance Comparison

Improvements to existing MRL methods. As demonstrated in Table 1, baselines obtain consistent
improvements after adapted to our methods across all the four datasets released by OGB in terms
of ROC-AUC. Our method also beats the augmented version, “+ virtual node” , of baselines on
all datasets, i.e. adding a virtual node. The results indicate that, orthogonal to prior studies on
MRL, our method is a general framework which can incorporate existing MRL methods and improve
their generalization ability for OOD data. We attribute the superior performance of our method in
molecular properties predictions under OOD setting to that, our proposed learning objective enforces
the model to learn environment-invariant representations against distribution shifts.

Superiority to other OOD generalization methods. Table 2 summarizes the results in comparsion
with six state-of-the-art methods tailored for OOD learning, where we obtain the following observa-
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Table 2: Evaluation with other OOD generalization methods on 6 out-of-distribution datasets from
DrugOOD [27] in terms of ROC-AUC (%). The best and the runner-up in each columns are
highlighted in bolded and underlined respectively. Note the baselines except ERM and MixUp all
require environment labels. All methods including ours use GIN [63] as backbones.

Dataset IC50 EC50
Environment Assay Scaffold Size Assay Scaffold Size
ERM [56] 70.93 ± 2.10 67.31 ± 1.72 67.40 ± 0.56 69.35 ± 7.38 63.92 ± 2.09 60.94 ± 1.95
IRM [3] 70.85 ± 2.41 66.06 ± 1.23 58.46 ± 2.11 69.94 ± 1.03 63.74 ± 2.15 58.30 ± 1.51
DeepCoral [55] 69.82 ± 4.23 66.36 ± 2.57 59.21 ± 2.09 69.42 ± 3.35 63.66 ± 1.87 56.13 ± 1.77
DANN [18] 70.00 ± 1.03 63.61 ± 2.32 65.77 ± 0.47 66.97 ± 7.19 64.33 ± 1.82 61.11 ± 0.64
MixUp [70] 70.22 ± 3.66 66.43 ± 1.08 67.77 ± 0.23 70.62 ± 2.12 64.53 ± 1.66 62.67 ± 1.41
GroupDro [50] 69.98 ± 1.74 64.09 ± 2.05 58.46 ± 2.69 70.52 ± 3.38 64.13 ± 1.81 59.06 ± 1.50

Ours. 71.38 ± 0.68 68.02 ± 0.55 66.51 ± 0.55 73.25 ± 1.24 66.69 ± 0.34 65.09 ± 0.90

Table 3: Ablation study on EC50-∗ by ROC-AUC (%). We show the results of MixUp that performs
best among baselines on all EC50-∗ datasets and the naive ERM, which minimizes the average empiri-
cal loss on training data, for comparison. Notice that ERM and MixUp don’t require manual specified
environments labels. We also present the results of DANN, which requires manual specifications of
environment and obtains competitive results with MixUp. All methods use GIN [63] as backbone.

Method Assay Scaffold Size
ERM (GIN + ERM loss) 69.35 ± 7.38 63.92 ± 2.09 60.94 ± 1.95
MixUp 70.62 ± 2.12 64.53 ± 1.66 62.67 ± 1.41
DANN 66.97 ± 7.19 64.33 ± 1.82 61.11 ± 0.64

Our architecture + ERM loss 71.44 ± 2.02 65.99 ± 0.42 64.23± 0.71
GIN + new learning objective 72.07 ± 1.14 66.33 ± 1.38 64.43± 1.10

DANN using our inferred environment label 68.83 ± 2.44 64.95 ± 1.07 62.56 ± 1.54
Our model using given environment label 71.94 ± 2.77 66.29 ± 0.85 63.38 ± 1.20

Our full model 73.25 ± 1.24 66.69 ± 0.34 65.09 ± 0.90

tions. Except on IC50-size, our method outperforms all baselines across all datasets due to its ability
to enforce the molecule encoder to leverage environment-invariant substructures that more stably
relate with the labels across environments. Our method ranks the third on IC50-size after MixUp and
ERM. Different from the other methods, MixUp constructs more training exmaples and uses more
data to train the model. That’s why MixUp obtains best performance among all methods on IC50-size
in our analysis. As for ERM, [27, 16] have pointed out that simple ERM shows better performance
compared to subsequent OOD methods when datasets have relatively large environment counts. Even
though we have set the environment number k to a smaller value than the ground-truth number given
by the dataset, we still need to prevent k from being too small (see discussion in Sec. 4.4), leading to
our poorer performance than ERM on IC50-size.

4.3 Ablation Study of Components

We analyze the contributions of different model components to the final performance in this section.
Table 3 reports detailed ablation experimental results on EC50-assay, EC50-scaffold and EC50-size.

Attention-based architecture. We study the impact of the attention-based architecture introduced
in Sec. 3.3 by assembling this architecture with ERM loss. We beat ERM and MixUp only with this
architecture on three datasets. The results show that learning a representation for each substructure
and then attentively aggregating these learned representations to obtain a final substructure-aware
representation performs better than learning a representation for a complete molecular graph directly.
This verifies our assumption that the substructure perspective is of importance to boosting performance
of existing MRL methods. With the aid of such a substructure-grained learning architecture, the
impact of our learning objective can be further strengthened.

New learning objective. To evaluate the impact of our proposed new learning objective, we equip
GIN with this new objective. We can see compared to using the substructure-grained learning archi-
tecture only, only using the proposed new learning objective can bring more significant improvement.
Thus, we can attribute the main superiority of our full model to this new objective. Combined with
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the architecture discussed above, the new objective is able to better guide the molecule encoder to
learn environment-invariant molecular representations against distribution shifts.

Environment inference. Now we turn to investigate the performance with respect to our proposed
environment-inference module. One motivation for this module is that in reality manual specifications
of environments may be unavailable due to the high price for labeling environments by experts. But
when environment labels are available, how will be performance be like if directly utilizing the given
environment partition? An ablation study is targeted on this. Taking the EC50-assay dataset as an
example, it has given the environment partition and it specifies 47 environments in total. We utilize
the given environment partition directly and keep the remaining parts in line with our full model.
The results show that utilizing the given environment label, our method still can beat ERM and
MixUp. But compared to our full model where we set the environment number k to 20, it obtains
inferior performance. Additionally, to further examine the effectiveness of our proposed environment
inference method, we relabel the environment for each molecule for DANN according to our inferred
environment partition. We can see that based on the new environment partition, DANN obtains better
performance than using the initial given environment labels across three datasets. The reason why
inferring environment instead can outperform directly using the given environment label is mainly
due to the existing given partitions are often handcraftedrule-based and not structured. In contrast,
letting the model learn a environment partition by itself may be more effective to some degree.

4.4 Hyper-parameter Sensitivity Study

We investigate the sensitivity of our method to these two hyper-parameters: the specified number
of environments k, the trading-off parameter β in Eq. 7. Fig. 3(a) shows the performance regarding
different environment number k. It shows that the performance of our methods degrades when k is
too small (e.g. k = 1, 5) or too large (e.g. k = 15). When k = 1 i.e. we regard all training data
as from only one environment, the performance is the poorest. This justifies that partitioning the
training samples into different environments is necessary. Fig. 3(b) shows the results of our method
by varying the trade-off parameter β. Our method obtains the worst performance when β = 0. This
is mainly because Eq. 7 is reduced to the first term when β = 0. According to Theorem 2, without the
second term of Eq. 7, the sufficiency condition of invariance principle cannot be satisfied, resulting in
the performance degradation.

4.5 Risk Dynamics

Additionally, to shed insights of the ability of our method to lower the risks of different environments,
we visualize the risk dynamic curve of some environments in Fig. 3(c). As is shown in Fig. 3(c), the
difficulties of decreasing the risk on different environments are different. Though the risks of some
environments vibrate violently at the beginning of training process (e.g. Env 1 and Env 2), with time
elapsing, risks on all environments can decrease stably.

5 Conclusion

We have proposed a general framework which can incorporate any existing MRL method as backbone
to improve their generalization ability against distribution shifts. Specifically, we devise a new
learning scheme with its equivalent practical instantiation. We also develop an environment inference
model to identify each molecule’s corresponding environment without need of manual specifications
of environments. Extensive experimental results on ten datasets demonstrate that our model yields
consistent and significant improvements over various existing MRL methods as backbones. Addi-
tionally, our model achieves competitive or even superior performance compared to state-of-the-art
models designed for OOD learning that require manual specified environment labels as extra inputs.
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