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Abstract

Differentiable architecture search (DARTS) has been a popular one-shot paradigm
for NAS due to its high efficiency. It introduces trainable architecture parameters
to represent the importance of candidate operations and proposes first/second-
order approximation to estimate their gradients, making it possible to solve NAS
by gradient descent algorithm. However, our in-depth empirical results show
that the approximation often distorts the loss landscape, leading to the biased
objective to optimize and, in turn, inaccurate gradient estimation for architecture
parameters. This work turns to zero-order optimization and proposes a novel NAS
scheme, called ZARTS, to search without enforcing the above approximation.
Specifically, three representative zero-order optimization methods are introduced:
RS, MGS, and GLD, among which MGS performs best by balancing the accuracy
and speed. Moreover, we explore the connections between RS/MGS and the
gradient descent algorithm and show that our ZARTS can be seen as a robust
gradient-free counterpart to DARTS. Extensive experiments on multiple datasets
and search spaces show the remarkable performance of our method. In particular,
results on 12 benchmarks verify the outstanding robustness of ZARTS, where the
performance of DARTS collapses due to its known instability issue. Also, we
search on the search space of DARTS to compare with peer methods, and our
discovered architecture achieves 97.54% accuracy on CIFAR-10 and 75.7% top-1
accuracy on ImageNet. Finally, we combine our ZARTS with three orthogonal
variants of DARTS for faster search speed and better performance. Source code
will be made publicly available at: https://github.com/vicFigure/ZARTS.

1 Introduction

It remains open to search for efficient architectures automatically instead of by humans [27, 14, 15].
Neural architecture search (NAS) has attracted wide attention, which can be modeled as bi-level
optimization for network architectures and operation weights. One-shot NAS [1] is a popular search
framework that regards neural architectures as directed acyclic graphs (DAG) and constructs a
supernet with all possible connections and operations in the search space. DARTS [20] further
introduces trainable architecture parameters to represent the importance of candidate operations,
which are alternately trained by SGD optimizer along with network weights. It proposes a first-order
approximation to estimate the gradients of architecture parameters, which is biased and may lead to
the severe instability issue shown by [3]. Other works [38, 6] point out that architecture parameters
will converge to a sharp local minimum resulting in the instability issue, so they introduce extra
regularization items making architecture parameters converge to a flat local minimum.
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In this paper, we empirically show that the first-order approximation of optimal network weights
sharpens the loss landscape and results in the instability issue of DARTS. It also shifts the global min-
imum, misleading the training of architecture parameters. To this end, we discard such approximation
and turn to zero-order optimization algorithms, which can run without the requirement that the search
loss is differentiable w.r.t. architecture parameters. Specifically, we introduce a novel NAS scheme
named ZARTS, which outperforms DARTS by a large margin and can discover efficient architectures
stably on multiple public benchmarks. This paper sheds light on the frontier of NAS by:

1) Establishing zero-order based robust paradigm to solve bi-level optimization for NAS. Dif-
ferentiable architecture search has been a well-developed area [20, 34, 31] which solves the bi-level
optimization of NAS by gradient descent algorithms. However, this paradigm suffers from the
instability issue during search since biased approximation for optimal network weights distorts
the loss landscape, as shown in Fig. 1 (a) and (b). To this end, we propose a flexible zero-order
optimization NAS framework to solve the bi-level optimization problem, which is compatible with
multiple potential gradient-free algorithms in the literature.

2) Uncovering the connection between zero-order architecture search and DARTS. This work
introduces three representative zero-order optimization algorithms without enforcing the unverified
differentiability assumption for search loss w.r.t. architecture parameters. We reveal the connections
between the zero-order algorithms and gradient descent algorithm, showing that two implementations
of ZARTS can be seen as gradient-free counterparts to DARTS, being more stable and robust.

3) Strong empirical performance and robustness. Experiments on four datasets and five search
spaces show that, unlike DARTS, which suffers the severe instability issue [38, 3], ZARTS can
stably discover effective architectures on various benchmarks. In particular, the searched architecture
achieves 75.7% top-1 accuracy on ImageNet, outperforming DARTS and most of its variants. Also,
our ZARTS can be further improved by combining with orthogonal DARTS variants, achieving
97.81% on CIFAR-10 after searching in 0.5 GPU-day.

2 Related Work

One-shot Neural Architecture Search. [1] constructs a supernet and all candidate architectures can
be seen as its sub-graph. DARTS [20] introduces architecture parameters to represent the importance
of operations in the supernet and update them by gradient descent. Some works [34, 31, 10] reduce
the memory requirement in the search process. While [38, 6] point out the instability of DARTS, i.e.,
skip-connection gradually dominates the normal cells, leading to performance collapse during search.

Bi-level Optimization for NAS. NAS can be modeled as a bi-level optimization for architecture
parameters and network weights. DARTS [20] proposes the first/second-order approximations
to estimate gradients of architecture parameters so that they can be trained by gradient descent.
However, we show that such an approximation will distort the loss landscape and mislead the training
of architecture parameters. Amended-DARTS [3] derives an analytic formula of the gradients w.r.t.
architecture parameters that require the Hessian inverse of network weights, which is even unfeasible
to compute. This work discards the approximation in DARTS and attempts to solve the bi-level
optimization by gradient-free algorithms.

Zero-order Optimization. Unlike gradient-based optimization methods that require the objective
differentiable w.r.t. the parameters, zero-order optimization can train parameters when the gradient is
unavailable or difficult to obtain, which has been widely used in adversarial robustness for neural
networks [5, 16], meta learning [28], and transfer learning [29]. [22] aim at AutoML and utilize
zero-order optimization to discover optimal configurations for ML pipelines. In this work (to our
best knowledge), we make the first attempt to apply zero-order optimization to NAS and experiment
with multiple algorithms, from vanilla random search [11] to more advanced and effective direct
search [12], showing its great superiority against gradient-based methods.

3 Bi-level Optimization in DARTS

Following one-shot NAS [1], DARTS constructs a supernet stacked by normal and reduced cells.
Cells in the supernet are denoted by directed acyclic graphs (DAG) with N nodes {xi}Ni=1, which
represents latent feature maps. Each edge ei,j contains multiple operations {oi,j , o ∈ O}, whose
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(a) Landscape w.r.t. 𝛼 with 𝜔!"#∗ (b) Landscape w.r.t. 𝛼 with 𝜔∗ (c) Tracks of optimization path

DARTS
ZARTS-MGS
ZARTS-GLD
ZARTS-RS

Figure 1: Loss landscapes w.r.t. architecture parameters α where the red star indicates the global
minimum. (a) the landscape with ω∗

1st. (b) the landscape with ω∗, which is obtained by training ω
for 10 iterations. To fairly compare the landscapes in (a) and (b), we utilize the same model and
candidate α points. The first-order approximation sharpens the landscape. (c) displays the path of
DARTS and ZARTS. Starting at the same initial point, ZARTS converges to the global minimum.

importance is represented by architecture parameters αo
i,j . Therefore, NAS can be modeled as a

bi-level optimization problem by alternately updating the operation weights ω (parameters within
candidate operations on each edge) and the architecture parameters α:

min
α
Lval(ω

∗(α),α), s.t. ω∗(α) = argmin
ω
Ltrain(ω,α). (1)

3.1 Fundamental Limitations in DARTS

By enforcing an unverified (and in fact difficult to verify) assumption that the search loss
Lval(ω

∗(α),α) is differentiable w.r.t. α, DARTS [20] proposes a second-order approximation
for the optimal weights ω∗(α) by applying one-step gradient descent:

ω∗(α) ≈ ω∗
2nd(α) = ω − ξ∇ωLtrain(ω,α) = ω′, (2)

where ξ is the learning rate to update network weights. Thus the gradient of the loss w.r.t. α,
∇αLval(ω

∗(α),α), can be computed by the chain rule: ∇αLval(ω
∗(α),α) ≈ ∇αLval(ω

′,α)−
ξ∇2

α,ωLtrain(ω,α)∇ω′Lval(ω
′,α). Nevertheless, the second-order partial derivative is hard to

compute, so the authors adopt the difference method, which is proved in the appendix.

For efficiency, first-order approximation is introduced by assuming ω∗(α) being independent of α,
as shown in Eq. 3, which is much faster and widely used in many variants of DARTS [7, 31, 38].

ω∗(α) ≈ ω∗
1st(α) = w. (3)

The gradient is then simplified as: ∇αLval(ω
∗(α),α) ≈ ∇αLval(ω,α), which exacerbates the

estimation bias. Reexamining the definition of ω∗(α) in Eq. 1, one would note that it is intractable
to derive a mathematical expression for ω∗(α), making Lval(ω

∗(α),α) even non-differentiable
w.r.t. α. Yet DARTS has to compromise with such approximations as Eq. 2 and Eq. 3 so that
differentiability is established, and SGD can be applied. However, such sketchy estimation of optimal
operation weights can distort the loss landscape w.r.t. architecture parameters and thus mislead the
search procedure, shown in Fig. 1 and analyzed in the next section.

3.2 Distorted Landscape and Biased Optimization

Fig. 1 illustrates the loss landscape with perturbations on architecture parameters α, showing how
different approximations of ω∗ affect the search process. We train a supernet for 50 epochs and
randomly select two orthonormal vectors as the directions to perturb α. The same group of pertur-
bation directions is used to draw landscapes in Fig. 1(a) and (b) for a fair comparison. Fig. 1(a)
shows the loss landscape with the first-order approximation in DARTS, ω∗

1st(α) = ω, while Fig. 1(b)
shows the loss landscape with more accurate ω∗(α), which is obtained by fine-tuning the network
weights ω for 10 iterations for each α. Landscapes (contours) are plotted by evaluating L at grid
points ranging from -1 to 1 at an interval of 0.02 in both directions. Global minima are marked with
stars on the landscapes, from which we have two observations: 1) The approximation ω∗

1st(α) = ω
shifts the global minimum and sharpens the landscape 2, which is the representative characteristic of

2A “sharp” landscape has denser contours than a “flat” one.
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Algorithm 1 ZARTS: Zero-order Optimization Framework for Architecture Search
Hyper-parameters: Operation weights ω, architecture parameters α, sampling number N ,
iteration number M , update estimation function ϕ(·).
repeat

Sample candidates: {ui}Ni=1, and get α±
i = α±ui. Estimate optimal operation weights

ω∗(α±
i ) by descending∇ωLtrain(ω,α±

i ) for M iterations;
Get update direction: u∗ = ϕ

(
{ui,ω

∗(α±
i )}Ni=1

)
Update architecture parameters: α← α+ u∗;

until Converged
⋆ The sampling strategies and update estimation functions ϕ(·) for three different zero-order
optimization algorithms are detailed in Table 1.

instability issue as pointed out by [38]. 2) Accurate estimation for ω∗ leads to a flatter landscape,
indicating that the instability issue can be alleviated. Moreover, we display the landscape with
second-order approximation ω∗

2nd in the appendix, which is also sharp but slightly flatter than Fig. 1
(a). Consequently, we discard the first/second-order approximation in DARTS and instead use more
accurate ω∗ coordinated with zero-order optimization.

Fig. 1 (c) shows the optimization paths of DARTS and three methods of ZARTS, illustrating how the
approximation in DARTS affects the search process. Starting from the same random point, we update
architecture parameters α for ten iterations by DARTS and ZARTS, and draw the optimization path.
ZARTS can gradually converge to the global minimum, while DARTS fails.

4 Zero-order Optimization for NAS

This paper goes beyond the 1st/2nd-order approximation in DARTS and proposes to train architecture
parameters α by zero-order optimization, allowing for more accurate estimation for ω∗(α). Alg. 1
outlines the generic form of our ZARTS framework. We adopt three representative techniques: a
vanilla zero-order optimizer, random search (RS) [21], and two advanced algorithms: Maximum-
likelihood Guided Parameter Search (MGS) [32] and GradientLess Descent (GLD) [12], presented
in Sec. 4.1, 4.2, 4.3 as preliminaries. Further, we theoretically establish the connection between
ZARTS and DARTS, showing that ZARTS with RS and MGS optimizer can be seen as an expansion
of DARTS. In the following, we denote L(α) ≜ Lval(ω

∗(α),α) as the objective w.r.t. architecture
parameters α ∈ Rd (Eq. 1), and L(α+u) ≜ Lval(ω

∗(α+u),α+u), where u is the update for α.

4.1 Optimizer I: ZARTS-RS

We adopt Multi-point estimator, shown in Table 1, as a baseline of our ZARTS:

∇̂αL(α) :=
φ(d)

2µN

N∑
i=1

[L(α+ µui)− L(α− µui)]ui. (4)

where u ∼ q is sampled from a spherically symmetric distribution q, µ > 0 is a smoothing parameter,
and φ(d) is a dimension-dependent factor related to q. Specifically, φ(d) = 1 when q is a standard
normal distribution N (0, I), and φ(d) = d when q is a uniform distribution on a unit sphere Sd−1.

4.2 Optimizer II: ZARTS-MGS

Maximum-likelihood guided parameter search (MGS) is an advanced zero-order optimization al-
gorithm for machine translation [32]. We attempt to apply it to the NAS task. We first define a
distribution for the update of architecture parameters, u, as follows:

p(u|α) =
p̃(u|α)

Z(α)
=

1

Z(α)
exp

(
−L(α+ u)− L(α)

τ

)
, (5)

where p̃(u|α) = exp (−[L(α+ u)− L(α)]/τ) is an unnormalized exponential distribution, and
Z(α) =

∫
p̃(u|α)du is its normalization coefficient. τ is a temperature parameter controlling the

variance of the distribution.
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Table 1: Configuration of three methods used in the ZARTS scheme. The main difference lies in the
meaning of function ϕ(·): RS follows the traditional gradient estimation algorithms, MGS estimates
the update according to the improvement in the loss function, while GLD uses direct search. Note
that the ZARTS framework is general and can support more configurations besides those listed.

Algorithm Sampling strategy Update estimation function ϕ
(
{ui,ω

∗(αi)}Ni=1

)
ZARTS-RS ui ∼ q(u|α), any spherically

symmetric distribution. u∗ = −ξ · φ(d)
2µN

∑N
i=1 [L(α+ µui)− L(α− µui)]ui (Eq. 4)

ZARTS-MGS ui ∼ q(u|α), any proposal
distribution. u∗ =

∑N
i=1

[
c̃(ui|α)∑N
j=1 c̃(uj|α)

ui

]
(Eq. 8)

ZARTS-GLD ui ∼ Sd−1, a uniform distribu-
tion on a unit sphere. u∗ = argmini {L(α̂)|α̂ = α, α̂ = α+ ui} (Eq. 10)

Intuitively, u with higher probability contributes more to the objective. Hence, the optimal update
of architecture parameters can be estimated by u∗ = Eu∼p(u|α)[u]. However, since the probability
p(u|α) is an implicit function relying on L(α+ u), making it impractical to obtain the expectation,
we refer to [32] and apply importance sampling to sample from a proposal distribution q(u|α) with
known probability function:

u∗ = Eu∼p(u|α)[u] =

∫
p̃(u|α)

Z(α)
udu =

∫
q(u|α)

[
p̃(u|α)

Z(α)q(u|α)
u

]
du

= Eu∼q(u|α)

[
p̃(u|α)

Z(α)q(u|α)
u

]
≈ 1

N

N∑
i=1

[
p̃(ui|α)

Z(α)q(ui|α)
ui

]
≜ û∗, (6)

where {ui}Ni=1 are sampled from the proposal distribution q(u|α). Similarly, the normalization
coefficient Z(α) can be computed as follows:

Z(α) =

∫
p̃(u|α)du ≈ 1

N

N∑
i=1

[
p̃(ui|α)

q(ui|α)

]
. (7)

For convenience, we define a ratio representing the weight on each sample as c̃(u|α) = p̃(u|α)
q(u|α) . The

optimal update for architecture parameters in Eq. 6 can be computed by:

û∗ =

N∑
i=1

[
c̃(ui|α)∑N
j=1 c̃(uj |α)

ui

]
=

N∑
i=1

 exp(−[L(α+ui)−L(α)]/τ)
q(ui|α)∑N

j=1
exp(−[L(α+uj)−L(α)]/τ)

q(uj |α)

ui

 . (8)

Finally, the architecture parameters are updated by α← α+ û∗. Importance sampling diagnostics
are conducted to verify the effectiveness of ZARTS-MGS (in the appendix).

4.3 Optimizer III: ZARTS-GLD

Unlike the above two algorithms that estimate gradient or the update for α, [12] propose the so-called
GradientLess Descent (GLD) algorithm, which falls into the category of truly gradient-free (or direct
search) methods. The authors provide theoretical proof of the efficacy and efficiency of the GLD
algorithm and suggestions on the choice of search radius boundaries. Specifically, they prove that the
distance between the optimal minimum and the solution given by GLD is bounded and positively
correlated with the condition number of the objective, where the condition number Q is defined as:

Q = max
1≤i≤K

{
|L(α+∆i)− L(α)| · ∥α∥

∥∆i∥ · |L(α)|

}
. (9)

The loss landscape in Fig. 1(b) is pretty flat, implying a low condition number, thus the high efficiency
of ZARTS-GLD. Specifically, at each iteration, with a predefined search radius boundary [r,R], we
independently sample candidate updates {ui} for architecture parameters on spheres with various
radii {2−kR}log(R/r)

k=0 and perform function evaluation at these points. By comparing L(α) and
{L(α+ ui)}, α steps to the point with minimum value, or stay at the current point if none of them
makes an improvement. The architecture parameters are then updated by α← α+ u∗.

u∗ = argmin
i
{L(α̂)|α̂ = α, α̂ = α+ ui} (10)

5



4.4 Connection between DARTS and ZARTS

The similarity between gradient-estimation-based zero-order optimization and SGD builds an essen-
tial connection when the objective function is differentiable. For ZARTS-RS, we adopt a multi-point
estimator to approximate the gradient with a limited bound [23, 2]. Details are put in the supple-
mentary material. Therefore, ZARTS-RS degenerates to second-order DARTS if L(α) is indeed
differentiable w.r.t α and the iteration number M is set to 1.

Next, we theoretically show that MGS [32] degenerates to the gradient descent algorithm by using
first-order Taylor approximation. Then we analyze the relation between ZARTS-MGS and DARTS.
Proposition 1. WhenL(α) in Eq. 1 is differentiable w.r.t. α, MGS algorithm [32] degenerates to SGD
(used in vanilla DARTS) by the first-order Taylor approximation for L(α), i.e., u∗ ∝ −∇αL(α).

Proof. Denote g ≜ ∇αL(α) as the gradient of L. The Taylor series of L at α up to the first order
gives L(α+ u)− L(α) ≈ u⊤g. Applying it to p(u|α) in Eq. 5 yields:

p(u|α) =
e−u⊤g/τ

Z(g)
, Z(g) =

∫
∥u∥≤ε

e−u⊤g/τdu. (11)

Since ∥u∥ is constrained within ε to make sure the rationality of first-order Taylor approximation, the
optimal update u∗ then becomes:

u∗ =

∫
∥u∥≤ε

u · e−u⊤g/τdu

Z(g)
= − ∇gZ(g)

τZ(α,g)
= −1

τ
∇g lnZ(g). (12)

Note that u⊤g = −∥u∥∥g∥cosη, where η is the angle between u and g. According to the symmetry
of integral, Z(g) is determined once ∥g∥ is given. We formulate Z(g) as Z(∥g∥) with the chain rule:

u∗ = −1

τ
∇g lnZ(g) = −1

τ
∇g lnZ(∥g∥) = −

∇∥g∥Z(∥g∥)
τZ(∥g∥)

∇g∥g∥ = −
∇∥g∥Z(∥g∥)
τZ(∥g∥)∥g∥

g. (13)

Since Z(∥g∥),∇∥g∥Z(∥g∥), ∥g∥ are all scalars, we have

u∗ ∝ −g = −∇αL(α) = −∇αLval(ω
∗(α),α). (14)

That is, the optimal update u∗ in MGS algorithm shares a common direction with the negative
gradient −∇αL(α), as used by gradient descent.

Based on Proposition 1, ZARTS-MGS can be seen as an expansion of DARTS, and it degrades to
first-order and second-order DARTS when ω∗ is estimated by ω∗

1st and ω∗
2nd, respectively. In general,

ZARTS-RS/-MGS can degenerate to DARTS, given the differentiability assumption.

However, unlike DARTS, which has to estimate ω∗(α) by ω∗
1st or ω∗

2nd to satisfy the differentiablity
property of Lval and update α by gradient descent algorithm, ZARTS, without such assumptions,
can compute ω∗(α) by training network weights ω for arbitrary numbers of iterations, leading to
more robust and effective training for architecture parameters, as shown in the next section.

4.5 Variants and Speedup of ZARTS

ZARTS can be flexibly and seamlessly combined with variants of DARTS for boosting as it can
be seen as an expansion of DARTS as analyzed in section 4.4. Here, we derive three variants of
ZARTS by combining it with prior works: P-ZARTS based on P-DARTS [7], GZAS based on
GDAS [10], and MergeZARTS based on MergeNAS [31]. Implementation details are illustrated in
the appendix. These variants can speed up ZARTS twice and reduce the search cost to 0.5 GPU-day.
Moreover, GZAS and MergeZARTS also reduce the GPU memory cost during the search process.
The performance of these variants is reported in Table 5.

5 Experiments

We first verify the stability of ZARTS (with three zero-order optimization methods RS, MGS, GLD)
on the four popular search spaces of R-DARTS [38] on three datasets including CIFAR-10 [17],
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Table 3: Performance on CIFAR. The top reports the accuracy of the best model. The bottom gives
the mean of four independent searches as used by [38, 6, 37]. ⋄ Reported by [10]. ⋆ by [38].

CIFAR-10 Params Error Cost
(M) ↓ (%) ↓ (GPU-days) ↓

be
st

DARTS (1st) [20] 3.3 3.00 0.4
DARTS (2nd) [20] 3.4 2.76 1.0
P-DARTS [7] 3.4 2.50 0.3
ISTA-NAS [36] 3.3 2.54 0.05
PR-DARTS [40] 3.4 2.32 0.17
DARTS- [8] 3.5 2.50 0.4
ZARTS (ours) 3.5 2.46 1.0

av
er

ag
e

DARTS(1st) [37] - 3.38±0.23 0.4
SGAS (Cri.2) [18] 3.9 2.67±0.21 0.3
R-DARTS [38] - 2.95±0.21 1.6
SDARTS-ADV [6] 3.3 2.61±0.02 1.3
Amended-DARTS [3] 3.3 2.71±0.09 1.7
DARTS- [8] 3.5±0.1 2.59±0.08 0.4
ZARTS (ours) 3.7±0.3 2.54±0.07 1.0

CIFAR-100 Params Error Cost
(M) ↓ (%) ↓ (GPU-days) ↓

be
st

AmoebaNet [26] 3.1 18.93⋄ 3150
PNAS [19] 3.2 19.53⋄ 150
ENAS [25] 4.6 19.43⋄ 0.45
P-DARTS [7] 3.6 17.49 0.3
GDAS [10] 3.4 18.38⋄ 0.2
ROME [30] 4.4 17.33 0.3
PR-DARTS [40] 3.4 16.45 0.17
DARTS- [8] 3.4 17.16 0.4
ZARTS (ours) 4.0 15.46 1.0

av
er

ag
e DARTS [20] - 20.58±0.44⋆ 0.4

R-DARTS [38] - 18.01±0.26⋆ 1.6
ROME [30] 4.4 17.41±0.12 0.3
DARTS- [8] 3.3 17.51±0.25 0.4
ZARTS (ours) 4.1±0.13 16.29±0.53 1.0

CIFAR-100 [17], and SVHN [24]. We then follow Amended-DARTS [3] and empirically evaluate the
convergence ability of our method by searching for 200 epochs. Performance trends of the discovered
architectures are drawn in Fig. 2(a). Next, we compare with the peer methods on the search space of
DARTS [20] to show the efficacy of our method. Finally, we derive three variants of ZARTS with
faster search speed by combining ZARTS with the variants of DARTS, showing the flexibility and
potential of our ZARTS framework. All the experiments are conducted on NVIDIA 2080Ti. The
details of search spaces and experiment settings are given in the appendix.

5.1 Stability Evaluation

Table 2: Test error (%) with DARTS and its variants on S1-
S4 search spaces, on CIFAR-10/100 and SVHN. We adopt
the same settings as R-DARTS [39]. The best and second
best are underlined in boldface and in boldface, respectively.

DARTS R-DARTS DARTS ZARTS (ours)
DP L2 ES ADA RS MGS GLD

C
IF

A
R

-1
0 S1 3.84 3.11 2.78 3.01 3.10 2.83 2.65 2.50

S2 4.85 3.48 3.31 3.26 3.35 3.35 3.24 3.08
S3 3.34 2.93 2.51 2.74 2.59 2.59 2.56 2.56
S4 7.20 3.58 3.56 3.71 4.84 4.90 3.70 3.52

C
IF

A
R

-1
00 S1 29.46 25.93 24.25 28.37 24.03 23.64 23.16 23.33

S2 26.05 22.30 22.24 23.25 23.52 21.54 20.91 21.13
S3 28.90 22.36 23.99 23.73 23.37 22.62 22.33 21.90
S4 22.85 22.18 21.94 21.26 23.20 23.33 21.31 21.00

SV
H

N

S1 4.58 2.55 4.79 2.72 2.53 2.40 2.51 2.48
S2 3.53 2.52 2.51 2.60 2.54 2.52 2.45 2.48
S3 3.41 2.49 2.48 2.50 2.50 2.41 2.52 2.44
S4 3.05 2.61 2.50 2.51 2.46 2.59 2.48 2.53

The instability of DARTS has
drawn recent attention. Amended-
DARTS [3] shows that skip-
connection gradually dominates
the discovered architectures after
searching by DARTS for 200 epochs.
R-DARTS [38] proposes four search
spaces, S1-S4, which amplify the
instability of DARTS, as such dom-
inance occurs after only 50 epochs of
searching. These studies expose the
instability of gradient-based methods.
To verify the stability of our method,
we search on S1-S4 proposed by
R-DARTS and conduct convergence
analysis following Amended-DARTS.

Performance on S1-S4. We first
search on the four spaces on CIFAR-
10, CIFAR-100, and SVHN. The eval-
uation settings are the same as R-DARTS [38]. Specifically, four tests are conducted on each
benchmark, among which the best is reported in Table 2. We observe that ZARTS achieves outstand-
ing performance with great robustness on 12 benchmarks. All three zero-order algorithms outperform
DARTS notably. Even the vanilla zero-order algorithm ZARTS-RS achieves similar robust perfor-
mance as R-DARTS, which verifies our analysis in Fig. 1, i.e., the coarse estimation ω∗

1st in DARTS
distorts the landscape and causes instability. Though ZARTS-GLD performs best in Table 2, it falls
into the category of direct search methods, requiring more sampling for candidate updates u and thus
more search cost (2.2 GPU-days on the search space of DARTS) than ZARTS-MGS (1.0 GPU-days).
ZARTS-MGS is chosen by default if not otherwise specified, for its cost-effectiveness.

Convergence Analysis. The convergence ability of NAS methods describes whether a search method
can stably discover effective architectures along the search process, i.e., whether the discovered
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Figure 2: Trends of accuracy and model size in the search process of DARTS and ZARTS for 200
epochs on CIFAR-10. The top-1 accuracy is obtained by training models for 600 epochs.

architectures’ ultimate performance (top-1 accuracy) can converge to a high value. Amended-
DARTS [3] empirically shows that DARTS has a poor convergence ability: accuracy of the supernet
increases but the ultimate performance of the searched network drops. Following Amended-DARTS,
we run ZARTS and DARTS for 200 epochs and show the trend of performance and number of
parameters in Fig. 2. Specifically, we derive one network every 25 epochs during the search process
and train each network for 600 epochs to evaluate its ultimate performance. We observe that the
networks discovered by ZARTS perform stably well (around 97.40% accuracy), while the performance
of networks found by DARTS gradually drops. Moreover, the parameter number of networks searched
by DARTS decreases significantly after 50 epochs, indicating that parameterless operations dominate
the topology and the instability issue [39] occurs. On the contrary, ZARTS consistently discovers
effective networks with about 4.0M parameters, showing the remarkable stability of our method.
More details and visualization of architectures are shown in the appendix.

5.2 Performance on the Search Space of DARTS

Table 4: Performance on ImageNet in DARTS’s search space by
two architectures. † direct search on ImageNet.

Models FLOPs Params Top-1 Err. Cost
(M) ↓ (M) ↓ (%) ↓ (GPU-days) ↓

AmoebaNet-A [26] 555 5.1 25.5 3150
NASNet-A [41] 564 5.3 26.0 1800
PNAS [19] 588 5.1 25.8 225
DARTS (2nd) [20] 574 4.7 26.7 1.0
P-DARTS [7] 557 4.9 24.4 0.3
PC-DARTS [35] 586 5.3 25.1 0.1
FairDARTS-B [9] 541 4.8 24.9 0.4
SNAS [33] 522 4.3 27.3 1.5
GDAS [10] 581 5.3 26.0 0.2
SPOS† [13] 323 3.5 25.6 12
ProxylessNAS† [4] 465 7.1 24.9 8.3
Amended-DARTS [3] 586 5.2 24.7 1.7

ZARTS (5.6M params) 647 5.6 24.3 1.0
ZARTS (5.0M params) 573 5.0 24.5 1.0

Results on CIFAR. We conduct
four parallel runs by searching
with different random seeds and
separately training the searched
architectures for 600 epochs.
The best and average accuracy
of four parallel tests are re-
ported in Table 3. In particular,
ZARTS achieves 97.46% aver-
age accuracy and 97.54% best
accuracy on CIFAR-10, outper-
forming DARTS and its variants.
Also, compared with Amended-
DARTS that approximates opti-
mal operation weights ω∗(α) by
Hessian matrix, our method can
stably discover effective architec-
tures in fewer GPU days. More-
over, Table 3 shows our method
achieves 83.71% and 84.54% for mean and best accuracy (i.e., 1- error%), on CIFAR-100, outper-
forming the compared methods by more than 1%.

Results on ImageNet. For the transferability test, we follow the settings of DARTS to transfer the
network discovered on CIFAR-10 to ImageNet. Models are constructed by stacking 14 cells with
48 initial channels. We train 250 epochs with a batch size of 1024 by SGD with a momentum of
0.9 and a base learning rate of 0.5. We utilize the same data pre-processing strategies and auxiliary
classifiers as DARTS. Table 4 shows the performance of our searched networks. ZARTS (5.6M) has
5.6M parameters and achieves 75.7% top-1 accuracy on the validation set of ImageNet, and ZARTS
(5.0M) has 5.0M parameters and achieves 75.5% accuracy. Their structure details are given in the
appendix, which has fewer skip connection operations than DARTS.
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5.3 Variants and Speedup of ZARTS

Table 5: We derive the variants of ZARTS by combining
ZARTS with the variants of DARTS. Experiments are con-
ducted on CIFAR-10. DARTS, GDAS, and P-DARTS report
the best performance in their papers, and MergeNAS reports
the average performance.

Models Params Error Cost Memory
(M) ↓ (%) ↓ (GPU-days) ↓ (GB) ↓

DARTS (1st) [20] 3.3 3.00 0.4 9.4
DARTS (2nd) [20] 3.4 2.76 1.0 9.4
ZARTS-best (ours) 3.5 2.46 1.0 9.4
ZARTS-avg. (ours) 3.7±0.3 2.54±0.07 1.0 9.4

GDAS [10] 3.4 2.93 0.2 3.1
GZAS-best (ours) 3.7 2.58 0.3 3.1
GZAS-avg. (ours) 3.5±0.2 2.66±0.07 0.3 3.1

P-DARTS [7] 3.4 2.50 0.3 9.4
P-ZARTS-best (ours) 3.5 2.30 0.4 9.4
P-ZARTS-avg. (ours) 3.3±0.2 2.41±0.15 0.4 9.4

MergeNAS (1st) [31] 2.9 2.73±0.02 0.2 4.4
MergeNAS (2nd) [31] 2.9 2.68±0.01 0.6 4.4
MergeZARTS-best (ours) 4.0 2.19 0.5 4.4
MergeZARTS-avg. (ours) 3.8±0.2 2.36±0.18 0.5 4.4

The results of three variants of
ZARTS, including the best and mean
performance among four independent
searches, are illustrated in Table 5.
We search for 50 epochs by each
variant and train the discovered ar-
chitectures for 600 epochs. The
search and evaluation settings are in-
troduced in the appendix. Specifically,
GZAS outperforms GDAS by 0.3%
with a similar search cost, only 0.3
GPU-day. P-ZARTS outperforms P-
DARTS by 0.15% and even surpasses
ZARTS due to the handcrafted crite-
ria in P-DARTS: setting the number
of skip connection operations as 2.
MergeZARTS achieves state-of-the-
art performance with low search cost
(0.5 GPU-day). We analyze that the
weight merge technique among con-
volutions in MergeNAS reduces the
redundant network weights ω, which alleviates the training difficulty for supernet and thus makes
ω∗(α) more accurate after M iterations of gradient descent.

6 Conclusion and Future Work

DARTS has been a dominant paradigm in NAS, while its instability issue has received increasing
attention [3, 38, 6]. In this work, we have empirically shown that the instability issue results from
the first-order approximation for optimal network weights and the optimization gap in DARTS,
which is also raised in the recent study [3]. To step out of such a bottleneck, this work proposes a
robust search framework named ZARTS, allowing for higher-order approximation for ω∗(α) and
supporting multiple combinations of zero-order optimization algorithms. Specifically, we adopt three
representative methods for experiments and reveal the connection between ZARTS and DARTS.
Extensive experiments on various benchmarks show the effectiveness and robustness of ZARTS.
To our best knowledge, this is the first work that applies zero-order optimization to one-shot NAS,
providing a promising paradigm to solve the bi-level optimization problem for NAS.

Limitation & future work: This work is limited in directly adopting off-the-shelf zero-order solvers.
There are potential directions for future work: i) We adopt three existing zero-order solvers in Table 1,
which also suggests new solvers may also be readily reused to improve ZARTS. In contrast, this
feature is not allowed in DARTS as there is little option for the gradient-descent solver. ii) Our
experiments focus on classification tasks, while ZARTS can also search network architectures for
more complex tasks. We derive three ZARTS variants from DARTS variants to speed up the search
process. GZAS and MergeZARTS can also reduce the GPU memory requirements, making it possible
to search on more complex search spaces or tasks, e.g., object detection and segmentation. iii) ZARTS
supports searching for the targets whose gradients are intractable or hard to obtain, e.g., FLOPs and
latency, since ZARTS discards the differentiability assumption and leverages gradient-free algorithms.

Potential negative social impact: Our automatic approach can save many human efforts which may
cause job lost in industry. The technology may also be abused by people who may create evil AI.
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