
Appendix to:

Bayesian Optimization over Discrete and Mixed
Spaces via Probabilistic Reparameterization

A Potential Societal Impacts

Our work advances Bayesian optimization, a generic class of methods for optimization of expensive,
difficult-to-optimize black-box problems. With this paper in particular, we improve the performance
of Bayesian optimization on problems with mixed types of inputs. Given the ubiquity of such
problems in many practical applications, we believe that our method could lead to positive broader
impacts by solving these problems better and more efficiently while reducing the costs incurred for
solving them. Concrete and high-stake examples where our method could be potentially applied
(some of which have been already demonstrated by the benchmark problems considered in the paper)
include but are not limited to applications in communications, chemical synthesis, drug discovery,
engineering optimization, tuning of recommender systems, and automation of machine learning
systems. On the flip side, while the method proposed is ethically neutral, there is potential of misuse
given that the exact objective of optimization is ultimately decided by the end users; we believe that
practitioners and researchers should be aware of such possibility and aim to mitigate any potential
negative impacts to the furthest extent.

B Theoretical Results and Proofs

B.1 Results

Let P(i)
Z := P(Z(i)) denote the set of probability measures on Z

(i) for each i = 1, ..., dz , and let
PZ :=

Qdz

i=1 P
(i)
Z . For any ↵ : X ⇥ Z ! R, define ↵̃ : X ⇥ P ! R as

↵̃(x, p) =

Z

Z
↵(x, z)dp(z) =

X

z2Z
↵(x, z)p({z}). (9)

Let ⇥ be a compact metric space, and consider the set of functionals � = {' s.t. ' : ⇥ ! PZ}. Let

↵̂(x,✓) := ↵̃(x,'(✓)) =

Z

Z
↵(x, z)dp'(✓)(z) =

X

z2Z
↵(x, z)p'(✓)({z}) (10)

Since Z is finite, each element of ' 2 � can be expressed as a mapping from ⇥ to R|Z|. Namely,
each '(✓) corresponds to a vector with |Z| elements containing the probability mass for each
element of Z under p'(✓). Thus (PZ , k · k) is a metric space under any norm k · k on R|Z|.
Let ↵⇤ := max(x,z)2(X⇥Z) ↵(x, z) and let H⇤ := argmax(x,z)2(X⇥Z) ↵(x, z) denote the set of
maximizers of ↵.

Lemma 1. Suppose ↵ is continuous in x for every z 2 Z and that ' : ⇥ 7! (PZ , k ·k) is continuous

with '(⇥) = PZ . Let J
⇤ := argmax(x,✓)2X⇥⇥ ↵̂(x,✓). Then for any (x⇤,✓⇤) 2 J

⇤
, it holds that

(x⇤, z) 2 H
⇤

for all z 2 supp p'(✓⇤).

Proof. First, note that ↵̂ : X ⇥⇥ ! R is continuous (using that ' is continuous and ↵ is bounded).
Since both X and ⇥ are compact ↵̂ attains its maximum, i.e., J ⇤ exists. Let (x⇤,✓⇤) 2 J

⇤. Clearly,
there exists z⇤

2 argmaxz2Z ↵(x⇤, z) such that ↵(x⇤, z⇤) = ↵⇤. Suppose there exists z0
2

supp p'(✓⇤) such that (x⇤, z0) /2 H
⇤. Then ↵(x⇤, z0) < ↵⇤ and, since Z is finite, p'(✓⇤)({z

0
}) > 0.
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Consider the probability measure p0 given by

p0({z}) =

(
0 if z = z0

p'(✓⇤)({z
⇤
}) + p'(✓⇤)({z

0
}) if z = z⇤

p'(✓⇤)({z}) otherwise

Then

↵̃(x⇤, p0)� ↵̂(x⇤,✓⇤) =
X

z2Z
↵(x⇤, z)p0({z})� ↵̂(x⇤,✓⇤)

=
X

z2Z
↵(x⇤, z)p'(✓⇤)({z}) + p'(✓⇤)({z

0
})(↵(x⇤, z⇤)� ↵(x⇤, z0))

� ↵̂(x⇤,✓⇤)

= p'(✓⇤)({z
0
})(↵(x⇤, z⇤)� ↵(x⇤, z0))

> 0

Now p0 2 PZ , and so p0 = '(✓0) for some ✓0
2 ⇥. But then ↵̂(x⇤,✓0) > ↵̂(x⇤,✓⇤). This is a

contradiction.

Corollary 2. Suppose the optimizer of g is unique, i.e., that H
⇤ = {(x⇤, z⇤)} is a singleton. Then

the optimizer of ↵̂ is also unique and J
⇤ = {(x⇤,✓⇤)}, with p'(✓⇤)({z

⇤
}) = 1.

Corollary 3. Consider the following mappings:

• Binary: ' : [0, 1] ! P{0,1} with p'(✓)({1}) = ✓ and p'(✓)({0}) = 1� ✓.

• Ordinal: ' : [0, C � 1] ! P{0,1,...,C} with p'(✓)({i}) = (1� |i� ✓|)1{|i� ✓|  1} for

i = 1, . . . , C.

• Categorical: ' : [0, 1]C ! P{0,1,...,C} with p'(✓)({i}) =
✓iPC
i=1 ✓i

.

These mappings satisfy the conditions for Lemma 1. In the setting with multiple discrete parameters

where the above mappings are applied in component-wise fashion for each discrete parameter, the

component-wise mappings also satisfy the conditions for Lemma 1.

Clearly, the mappings given in Corollary 3 are continuous functions of ✓. In the setting with multiple
discrete parameters , the component-wise function is also continuous with respect to the distribution
parameters for each discrete parameter. Hence, the mappings satisfy the conditions for Lemma 1.
Lemma 2. If (x⇤, z⇤) 2 H

⇤ = argmax(x,z)2X⇥Z ↵(x, z), then

↵(x⇤, z⇤) = max
✓

EZ⇠p(Z|✓)[↵(x
⇤,Z)].

Proof. For any z⇤, let ✓⇤ be the parameters such that p(z⇤
|✓⇤) = 1 (i.e. a point mass on z⇤). From

Equation (2),
EZ⇠p(Z|✓⇤)[↵(x

⇤,Z)] =
X

z2Z
↵(x⇤, z)p(z|✓⇤) = ↵(x⇤, z⇤).

Claim: EZ⇠p(Z|✓⇤)[↵(x
⇤,Z)] = max✓ EZ⇠p(Z|✓)[↵(x

⇤,Z)].

Suppose there exists ✓0 such that EZ⇠p(Z|✓0)[↵(x
⇤,Z)] > EZ⇠p(Z|✓⇤)[↵(x

⇤,Z)]. Since (x⇤, z⇤) 2
H

⇤, ↵(x⇤, z⇤) = max(x,z)2X⇥Z ↵(x, z). Hence, there is no convex combination of values of ↵
that is greater than ↵(x⇤, z⇤). This is a contradiction.

Theorem 1 (Consistent Maximizers). Suppose that ↵ is continuous in x for every z 2 Z . Let H
⇤

be the maximizers of ↵(x, z): H⇤ = {(x, z) 2 argmax(x,z)2X⇥Z ↵(x, z)}. Let J
⇤
✓ X ⇥⇥ be

the maximizers of EZ⇠p(Z|✓)[↵(x,Z)]: J ⇤ = {(x,✓) 2 argmax(x,✓)2X⇥⇥ EZ⇠p(Z|✓)[↵(x,Z)]},

where ⇥ is the domain of ✓. Let Ĥ
⇤
✓ X ⇥ Z be defined as: Ĥ

⇤ = {(x, z̃) : (x,✓) 2 J
⇤, z̃ ⇠

p(Z|✓)}. Then, Ĥ
⇤ = H

⇤
.
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Proof. From Lemma 1, we have that for any (x⇤,✓⇤) 2 J
⇤, it holds that (x⇤, z) 2 H

⇤ for all
z 2 supp p'(✓⇤). Hence, Ĥ⇤

✓ H
⇤.

Now, let (x⇤, z⇤) 2 H
⇤. Let ✓⇤

2 ⇥ such that p(z⇤
|✓⇤) = 1. From the proof of

Lemma 2, we have that EZ⇠p(Z|✓⇤)[↵(x
⇤,Z)] = ↵(x⇤, z⇤). As in the proof of Lemma 2, there

is no convex combination of values of ↵ greater than ↵(x⇤, z⇤). So EZ⇠p(Z|✓⇤)[↵(x
⇤,Z)] =

max(x,✓)2X⇥⇥ EZ⇠p(Z|✓)[↵(x,Z)], and therefore, x⇤,✓⇤
2 J

⇤. Hence (x⇤, z⇤) 2 Ĥ
⇤. So

H
⇤
✓ Ĥ

⇤, and hence, Ĥ⇤ = H
⇤.

Lemma 3. Suppose that ↵ : (x, z) 7! R is differentiable with respect to x for all z 2 Z , and that

the mapping ' : ✓ 7! PZ is such that p'(✓)({z}) is differentiable with respect to ✓ for all z 2 Z .

Then the probabilistic objective EZ⇠p(Z|✓)[↵(x,Z)] is differentiable with respect to (x,✓).

Proof. For any z 2 Z , the function p(z,✓)↵(x, z) = p'(✓)({z})↵(x, z) is the product of two
differentiable functions, hence differentiable. Therefore the probabilistic objective is a (finite) linear
combination of differentiable functions, hence differentiable.

Theorem 2 (Convergence Guarantee). Let ↵ : X ⇥ Z ! R be differentiable in x for every z 2 Z .

Let (x̂t,m, ✓̂t,m) be the best solution after running stochastic gradient ascent for t time steps on the

probabilistic objective EZ⇠p(Z|✓)[↵(x,Z)] from m starting points with its unbiased MC estimators

proposed above. Let {at}1t=1 be a sequence of positive step sizes such that 0 <
P1

t=1 a
2
t = A < 1

and
P1

t=1 at = 1, where at is the step size used in stochastic gradient ascent at time step t.

Let ẑt,m ⇠ p(Z|✓̂t,m). Then as t ! 1, m ! 1, and ⌧ ! 0, (x̂t,m, ẑt,m) ! (x⇤, z⇤) 2

argmax(x,z)2X⇥Z ↵(x, z) in probability.

Proof. The binary and categorical mappings in Corollary 3 are differentiable in ✓ (the ordinal mapping
is differentiable almost everywhere4). Since the acquisition function ↵ : X ⇥ Z ! R is differentiable
in x for every z 2 Z , this means that the PO is differentiable. Using the prescribed sequence of
step sizes, optimizing the PO using stochastic gradient ascent will converge almost surely to a local
maximum after a sufficient number of steps [47]. As we increase the number of randomly distributed
starting points, the probability of not finding the global maximum of the PO will converge to zero
[60]. From Theorem 1, the PO and the AF have the same set of maximizers. Hence, convergence in
probability to a global maximizer of the PO means convergence in probability to a global maximizer
of the AF.

C Experiment Details

For each BO optimization replicate, we use Ninit = min(20, 2 ⇤ deff) points from a scrambled Sobol
sequence, where deff is the “effective dimensionality” after one-hot encoding categorical parameters.
Unless otherwise noted, all experiments use 20 replications and confidence intervals represent 2
standard errors of the mean. The same initial points are used for all methods for that replicate and
different initial points are used for each replicate. For each method we report the log10 regret. Since
the optimal value is unknown for many problems, we set the optimal value to be f⇤ +0.1 where f⇤ is
the best observed value across all methods and all replications. For constrained optimization f⇤ is the
best feasible observed value and for multi-objective optimization f⇤ is the maximum hypervolume
across all methods and replications. In total, the experiments in the main text (excluding HYBO and
CASMOPOLITAN) ran for an equivalent of 2,009.82 hours on a single Tesla V100-SXM2-16GB GPU.
The baseline experiments (HYBO and CASMOPOLITAN) ran for an equivalent of 745.10 hours on a
single Intel Xeon Gold 6252N CPU.

4Technically, the arguments presented here do not prove convergence under the ordinal mapping, but we
have found this to work well and reliably in practice. Alternatively, ordinal parameters could also just be treated
as categorical ones in which case the convergence results hold. In practice, however, this introduces additional
optimization variables that make the problem unnecessarily hard by removing the ordered structure from the
problem.
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C.1 Additional Problem Details

In this section, we describe the details of each synthetic problem considered in the experiments (the
details of the remaining real-world problems are already described in Section 6.2).

Ackley. We use an adapted version of the 13-dimensional Ackley function modified from Bliek
et al. [6]. The function is given by:

f(x) = �a exp
⇣
� b

vuut1

d

dX

i=1

x2
i )
⌘
� exp

⇣1
d

dX

i=1

cos(cxi)
⌘
+ a+ exp(1), (11)

where in this case a = 20, n = 0.2, c = 2⇡ and d = 13 and x 2 [�1, 1]13. We discretize the first 10
dimensions to be binary with the choice {�1, 1}, and the final 3 dimensions are unmodified with the
original bounds.

Mixed Int F1. Mixed Int F1 is a partially discretized version of the 16-dimensional Sphere opti-
mization problem [28], given by:

f(x) =
dX

i=1

(xi � xopt,i)
2 + fopt, (12)

where fopt is sampled from a Cauchy distribution with median = 0 and roughly 50% of the values
between �100 and 100. The sampled fopt is then clamped to be between [�1000, 1000] and rounded
to the nearest integer. xopt is sampled uniformly in [�4, 4]d, and in this case d = 16. We discretize
the first 8 dimensions as follows: the first 2 dimensions are binary with 2 choices {�5, 5}; the next 2
dimensions are ordinal with 3 choices {�5, 0, 5}; the next 2 dimensions are ordinal with 5 choices
{�5,�2.5, 0, 2.5, 5}; the final 2 dimensions are ordinal with 7 choices {�5,� 10

3 ,� 5
3 , 0,

5
3 ,

10
3 , 5}.

The remaining 8 dimensions are continuous with bounds [�5, 5]8.

Rosenbrock. We use an adapted version of the Rosenbrock function, given by:

f(x) =
⇣ d�1X

i=1

�
100(xi+1 � x2

i )
2 + (xi � 1)2

�⌘
, (13)

where in this case d = 10. The first 6 dimensions are discretized to be ordinal variables, with 4
possible values each xi 2 {�5, 0, 5, 10}8i 2 [1, 6]. The final 4 dimensions are continuous with
bounds [�5, 10]4.

Chemical Reaction (Direct Arylation Chemical Synthesis). For this problem, we fit a GP surro-
gate (with the same kernel used by the BO methods) to the dataset from Shields et al. [51] (avail-
able at https://github.com/b-shields/edbo/tree/master/experiments/data/direct_
arylation under the MIT license) in order to facilitate continuous optimization of temperature and
concentration. The surrogate is included with our source code.

Oil Sorbent. We set the reference point for this problem to be [�125.3865,�57.8292, 43.2665],
which we choose using a commonly used heuristic to scale the nadir point (component-wise worst
objective values across the Pareto frontier) [61].

C.2 Method details

PR, CONT. RELAX., EXACT ROUND, PR + TR, and EXACT ROUND + STE. We implemented
all of these methods using BoTorch [1], which is available under the MIT license at https://
github.com/pytorch/botorch. PR and PR + TR use stochastic minibatches of 128 samples
and the probabilistic objectives are optimized via Adam using a learning rate of 1

40 . The AFs of
CONT. RELAX., EXACT ROUND, EXACT ROUND + STE are deterministic and are optimized via
L-BFGS-B—EXACT ROUND approximates gradients via finite differences [26]. All methods use 20
random restarts and are run for a maximum of 200 iterations. We follow the default initialization
heuristic in BoTorch [1], which initializes the optimizer by evaluating the acquisition function at a
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large number of starting points (here, 1024, chosen from a scrambled Sobol sequence), and selecting
(20) points using Boltzmann sampling [19] of the 1024 initial points, according to their acquisition
function utilities.

Combining PR with trust regions: When combining PR with the trust regions used in TURBO
we only use a trust region over the continuous parameters and discrete ordinals with at least 3
values. While methods like CASMOPOLITAN uses a Hamming distance for the trust regions over the
categorical parameters, we choose not to do so as there is no natural way of efficiently optimizing PR
using gradient-based methods. Finally, we do not use a trust region over the Boolean parameters as the
trust region will quickly shrink to only include one possible value. We use the same hyperparameters
as TURBO [22] for unconstrained problems and SCBO [21] in the presence of outcome constraints,
including default trust region update settings.

Casmopolitan: We use the implementation of CASMOPOLITAN—which is available at https:
//github.com/xingchenwan/Casmopolitan under the MIT licence—but modify it where ap-
propriate to additionally handle the ordinal variables. Specifically, the ordinal variables are treated
as continuous when computing the kernel. However, during interleaved search, ordinal variables
are searched via local search similar to the categorical variables. We use a set of CASMOPOLITAN
hyperparameters (i.e. success/failure sensitivity, initial trust region sizes and expansion factor) recom-
mended by the authors. We use the same implementation of interleaved search for the acquisition
optimization comparisons.

HyBO: We use the official implementation of HYBO at https://github.com/aryandeshwal/
HyBO, which is licensed by the University of Amsterdam. We use the default hyperparameters
recommended by the authors in all the experiments, and we use the full HYBO method with
marginalization treatment of the hyperparameters as it has been shown to perform stronger empirically
[14].

C.3 Gaussian process regression

When there are no categorical variables we use kordinal which is a product of an isotropic Matern-
5/2 kernel for the binary parameters and a Matern-5/2 kernel with ARD for the remaining ordinal
parameters. In the presence of categorical parameters, this kernel is combined with a categorical
kernel [48] kcat as kcat ⇥ kordinal + kcat + kordinal. We use a constant mean function. The GP
hyperparameters are fitted using L-BFGS-B by optimizing the log-marginal likelihood. The ranges
for the ordinal parameters are rescaled to [0, 1] and the outcomes are standardized before fitting the
GP.

C.4 Variance Reduction via Control Variates

As discussed in Section 4.2, we use moving average baseline for variance reduction. Specifically, the
baseline is an exponential moving average with a multiplier of 0.7, where each element is the mean
acquisition value across the N MC samples obtained while evaluating the probabilistic objective.

C.5 Deterministic Optimization via Sample Average Approximation

Although multi-start stochastic ascent is provably convergent, an alternative optimization approach is
to use common random numbers (i.e. a fixed set of base samples) to reduce variance when comparing
a stochastic function at different inputs by using the same random numbers. The method of common
random numbers leads to biased deterministic estimators that are lower-variance than their stochastic
counterparts where random numbers are re-sampled at each step. Such techniques have been used
in the context of BO in settings such as efficiently optimizing MC acquisition functions [1] and for
optimizing risk measures of acquisition functions under random inputs [10].

Sampling a fixed set of points z̃1, ..., z̃N ⇠ p(Z|✓) would be a poor choice because p(Z|✓) can
vary widely during AF optimization as ✓ changes. Therefore, instead sample from p(Z|✓) using
reparameterizations provided in Table 4. Specifically, we reparameterize Z as a deterministic function
h(·, ·) that operates component-wise on ✓ and the random variable U = (u(1), ..., u(dz)), u(i)

⇠

Uniform(0, 1): Z = h(✓,U). That is, each random variable Z(j), where j = 1, ..., dz has a
corresponding independent base random variable U (j) such that Z(j) = h(✓(j), U (j)). Using a fixed
a set of base samples {ũi}

N
i=1, the samples of Z can be be computed as zi = h(✓, ũi). We note that
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even with fixed base samples, the samples {zi}Ni=1 depends on ✓, and hence, by using common base

uniform samples, we obtain a deterministic estimator where the values of the samples z̃1, ..., z̃N can
still vary with ✓. Under this reparameterization, our probabilistic objective can be written as

EZ⇠p(Z|✓)[↵(x,Z)] = EU⇠p(U)[↵(x, h(✓,U))], (14)

where under the reparameterizations in Table 4, U is a uniform random variable across the dz-
dimensional unit cube—P (U) = Uniform(0, 1)dz . Under this reparameterization we can define our
sample average approximation estimator of the probabilistic objective as

EZ⇠p(Z|✓)[↵(x,Z)] ⇡
1

N

NX

i=1

↵(x, h(✓, ũi)). (15)

Our sample average approximation estimator of the gradient of the probabilistic objective with respect
to ✓ is given by

r✓EZ⇠p(Z|✓)[↵(x,Z)] ⇡
1

N

NX

i=1

↵(x, h(✓, ũi))r✓ log p(h(✓, ũi)|✓). (16)

Sample average approximation estimators are deterministic and biased conditional on the selection
of base samples. However, the reparameterizations in Table 4 create discontinuities in the PO, and
the number of discontinuities increases with the number of MC samples. Nevertheless, we find that
optimizing the PO using L-BFGS-B delivers strong performance on the benchmark problems and we
compare against stochastic optimization in Figures 21 and 20. As in the stochastic case, we reduce
the variance further by leveraging quasi-MC sampling [42] instead of i.i.d. sampling.

Table 4: Discrete random variables and their reparameterizations in terms of a Uniform random
variable U ⇠ Uniform(0, 1) and ✓ via a deterministic function h(·, ·).

TYPE RANDOM VARIABLE REPARAMETERIZATION (Z = h(✓, U))

BINARY Z ⇠ BERNOULLI(✓) h(✓, U) = (U < ✓)
ORDINAL Z = b✓c+B , h(✓, U) = b✓c+ (U < ✓ � b✓c)

B ⇠ BERNOULLI(✓ � b✓c)
CATEGORICAL Z ⇠ CATEGORICAL(✓) h(✓, U) = min(argmaxC�1

i=0 (U <
Pi

c ✓
(c)))

D Constrained and Multi-Objective Bayesian Optimization

In many practical problems, the black-box objective must be maximized subject to V > 0 black-box
outcome constraints f (v)

c (x, z) � 0 for v = 1, ..., V . See Gardner et al. [24] for a more in depth
review of black-box optimization with black-box constraints and BO techniques for this class of
problems.

In the multi-objective setting, the goal is to maximize (without loss of generality) a set of M objectives
f (1), ..., f (M). Typically there is no single best solution, and hence the goal is to learn the Pareto
frontier (i.e. the set of optimal trade-offs between objectives). In the multi-objective setting, the
hypervolume indicator is a common metric for evaluating the quality of a Pareto frontier. See [20] for
a review of multi-objective optimization.

E Comparison with Enumeration

When computationally feasible, the gold standard for acquisition optimization over discrete and
mixed search spaces is to enumerate the discrete options and optimize any continuous parameters
for each discrete configuration (or simply evaluated each discrete configuration for fully discrete
spaces). In Figures 4 and 5 we compare PR (optimized with Adam using stochastic mini-batches of
128 MC samples) and analytic PR (optimized with L-BFGS-B) against enumeration and show that
PR achieves log regret performance that is comparable to the gold standard of enumeration and does
so in less wall time.
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Figure 4: A comparison with an enumeration (gold standard) with respect to log regret.

Figure 5: A comparison with enumeration with respect to wall time.

F Analysis of MC sampling in Probabilistic Reparameterization

The main text considers 1024 MC for PR. We consider 128, 256, and 512 samples, in addition
to the default of 1024. For problems with discrete spaces that are enumerable, we also consider
analytic PR. We do not find statistically significant differences between the final regret of any of
these configurations (Figure 6). Run time is linear with respect to MC samples, and so substantial
compute savings are possible when fewer MC samples are used (Figure 7). We observe comparable
performance between PR with 1,024 MC samples and as few as 128 MC samples. With 64 or fewer
MC samples, we observe performance degradation with respect to log regret in Figure 8, although
wall time is considerably faster for fewer 64 or less MC samples as shown in Figure 9.
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Figure 6: A sensitivity analysis of the optimization performance of PR with respect to the number of
MC samples. We find that PR is robust to the number of MC samples, and that the performance of
MC PR matches that of analytic PR.

Figure 7: A sensitivity analysis of the wall time of PR with respect to the number of MC samples.
We observe that wall time scales linearly with the number of MC samples, which is expected since
we compute PR in N

32 chunks to avoid overflowing GPU memory.
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Figure 8: A sensitivity analysis of the optimization performance of PR with respect to a small number
of MC samples (with samples between 8 and 64). Performance degrades slightly when few samples
are used.

Figure 9: A sensitivity analysis of the wall time of PR with respect to the number of MC samples
(with samples between 8 and 64). We observe that wall time scales linearly with the number of MC
samples, which is expected since we compute PR in N

32 chunks to avoid overflowing GPU memory.
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F.0.1 Evaluation of Approximation Error in MC Sampling

We examine the MC approximation error relative to analytic PR on the chemical reaction and ackley
problems. The results in Figure 10 show the mean absolute percentage error (MAPE)

100

|Xdiscrete|
·

X

x2Xdiscrete,✓2⇥discrete

EZ⇠p(Z|✓)↵(x,Z)� 1
N

PN
i=1 ↵(x, z̃i)

maxx2Xdiscrete,✓2⇥discrete EZ⇠p(Z|✓)↵(x,Z)

evaluated over a random set of |Xdiscrete| = |⇥discrete|10, 000 points from X ⇥ ⇥ (the sampled sets
are denoted Xdiscrete,⇥discrete). We observe a rapid reduction in MAPE as we increase the number of
samples. With 1024 samples, MAPE is 0.055% (+/- 0.0002 %) over 20 replications (different MC
samples in PR) on the chemical reaction problem and MAPE is 0.018% (+/- 0.0003 %) on the ackley
problem.

With 128 samples, MAPE is 0.282% (+/- 0.0029 %) over 20 replications (different MC samples in
PR) on the chemical reaction problem and MAPE is 0.052% (+/- 0.0021 %) on the ackley problem.

Figure 10: An evaluation of the mean absolute percentage error for the MC estimator of PR (relative
to analytic PR).

G Effect of ⌧ in Transformation

Throughout the main text, we use ⌧ = 0.1, which we selected based on the observation that it provides
a reasonable balance between retaining non-zero gradients of g(�) with respect to � and allowing ✓
to become close to 0 or 1 as shown in Figure 11.

Figure 11: A comparison of the reparameterization of ✓ under various choices of ⌧ . We observe that
⌧ = 0.1 provides a reasonable balance between retaining non-zero gradients of g(�) with respect to
� and allowing ✓ to become close to 0 or 1.

As ⌧ ! 0, the ✓ can take more extreme values, but the gradient of the transformation with respect to
� also moves closer to zero. For larger values of ⌧ , the gradient of the transformation with respect
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to � is larger, but ✓ has a more limited domain with less extreme values. We find that ⌧ = 0.1 is a
robust setting across all experiments.

H Alternative methods

H.1 Straight-through gradient estimators

An alternative approach to using approximating the gradients under exact rounding using finite
differences is to approximate the gradients using straight-through gradient estimation (STE) [3]. The
idea of STE is to approximate the gradient of a function with the identity function. In our setting, the
gradient of the discretization function with respect to its input is estimated using an identity function.
Using this estimator enables gradient-based AF optimization, even though the true gradient of the
discretization function is zero everywhere that it is defined. Although STEs have been shown to
work well empirically, these estimators are not well-grounded theoretically. Their robustness and
potential pitfalls in the context of AF optimization have not been well studied. Below, we evaluate the
aforementioned EXACT ROUND + STE approach and show that it offers competitive optimization
performance (Figure 12) with fast wall times (Figure 13), but does not quite match the optimization
performance of PR on several benchmark problems.

Figure 12: A comparison of exact rounding with straight-through gradient estimators versus other
acquisition optimization strategies. Log regret on each problem. We report log hypervolume regret
for Oil Sorbent and report the log regret of the best feasible objective for Welded beam.
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Figure 13: A comparison of wall times of exact rounding with straight-through gradient estimators
versus other acquisition optimization strategies.

H.2 TR methods with alternative optimizers

In this section, we consider alternative methods to PR for optimizing AFs using within trust regions.
The results in Figure 14 show that PR is a consistent best optimizer using TRs, but that STEs work
quite well with TRs in many scenarios.

Figure 14: A comparison of TR methods with different acquisition optimization strategies. Log
regret on each problem. We report log hypervolume regret for Oil Sorbent and report the log regret of
the best feasible objective for Welded beam.
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Figure 15: A comparison of wall times of TR methods with different acquisition optimization
strategies.

I Acquisition Function Optimization at a Given Wall Time Budget

In Figure 16, we provide additional starting points (64 points, rather than 20) to other non-PR
methods in order to provide them with additional wall-time budget. We find that using PR with 64
MC samples, PR provides rapid convergence compared to other baselines and therefore is a good
optimization routine for any wall time budget.

Figure 16: A comparison of methods for optimizing acquisition functions at a given wall time budget.

J Alternative categorical kernels

In this section, we demonstrate that PR can be used with arbitrary kernels over the categorical
parameters including those that require discrete inputs (which CONT. RELAX. is incompatible with).
Specifically for the categorical parameters, we compare using (a) a Categorical kernel (default) versus
with a Matérn-5/2 kernel with either (b) one-hot encoded categoricals, (c) a latent embedding kernel
[67], or known embeddings based on density functional theory (DFT) [51]. For the latent embedding
kernel, we follow Pelamatti et al. [44] and use a 1-d latent embedding for categorical parameters
where the cardinality is less than or equal to 3 and a 2-d embedding for categorical parameters
where the cardinality is greater than 3. For each latent embedding, we use an isotropic Matérn-5/2
kernel and use product kernel across the kernels for the categorical, binary, ordinal, and continuous
parameters. For the kernel over DFT embeddings, we use the DFT embeddings for the direct arylation
dataset from Shields et al. [51], which are available at https://github.com/b-shields/edbo.
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It is worth noting that in the Chemical Reaction problem, the black-box objective is a GP surrogate
model with a Categorical kernel that is fit to the direct arylation dataset. The purpose of this section
is demonstrate that PR is agnostic to the choice of kernel over discrete parameters. Because the
Chemical Reaction problem is based on a GP surrogate, we do not draw conclusions about which
choice of kernel is best suited for modeling the true, unknown underlying Chemical Reaction yield
function.

Figure 17: A comparison of different kernels over categorical parameters. Left: Welded beam has
one categorical parameter, metal type (4 levels). Right: Chemical reaction has three categorical
parameters, solvent, base, and ligand (with 4, 12, and 4 levels, respectively).

K Alternative Acquisition Functions

In this section, we compare PR with expected improvement (EI) against PR with upper confidence
bound (UCB). For UCB, we set the hyperparameter � in each iteration using the method in Kandasamy
et al. [33]. Although UCB comes enjoys bounded regret [52], we find empirically that EI works better
on most problems.
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Figure 18: A comparison of expected improvement (EI) and upper confidence bound (UCB) acquisi-
tion functions with PR.

L Additional Results on Optimizing Acquisition Functions

In this section, we provide additional results on various approaches for optimizing acquisition
functions using the same evaluation procedure as in the main text. We use 50 replications.

Figure 19: A comparison of methods for optimizing acquisition functions.

M Stochastic vs Deterministic Optimization

We compare optimizing PR with stochastic and deterministic optimization methods. For stochastic
optimizers, we compare stochastic gradient ascent (SGA) and Adam with various initial learning
rates. For SGA, the learning rate is decayed each time step t by multiplying the initial learning rate
by t�0.7 and for Adam a fixed learning rate is used. For stochastic optimizers, the MC estimators of
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PR and its gradient stochastic mini-batches of N = 128 MC samples are used. For deterministic
optimization, base samples are kept fixed. All routines are run for a maximum of 200 iterations. In
Figure 20, we observe that Adam is more robust to the choice of learning rate than SGA and generally
is the best performing method. Furthermore, Adam consistently performs better than deterministic
optimization. We compare Adam with a learning rate of 1

40 against L-BFGS-B in Figure 21.

Figure 20: A comparison of PR using stochastic and deterministic optimization methods. The initial
learning rate for stochastic gradient ascent is given in parentheses.

Figure 21: A comparison of optimizing the PO using deterministic estimation (via SAA) and
optimization versus stochastic estimation and optimization.

N Comparison with an Evolutionary Algorithm

In Figures 22 and 22, we compare against the evolutionary algorithm PortfolioDiscreteOnePlusOne,
which is the recommended algorithm for discrete and mixed search spaces in the Nevergrad package
[45]. We find that PR significantly outperforms this baseline by a large margin with respect to log
regret, but is slower than the evolutionary algorithm with respect to wall time.
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Figure 22: A comparison with an evolutionary algorithm with respect to log regret.

Figure 23: A comparison with an evolutionary algorithm with respect to wall time.
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