
ELASTIC: Numerical Reasoning with
Adaptive Symbolic Compiler

SUPPLEMENTARY MATERIAL

1 Appendix A: Training ELASTIC (RoBERTa-large) on Extended FinQA
Dataset

One advantage of our ELASTIC model is that it is adaptable to the number of operands of an operator.
We demonstrate this by evaluating ELASTIC on the MathQA dataset in the "Overall Results" section.
However, another dataset we used for the evaluation, the FinQA dataset, only contains questions
solved by operators with two operands. To test the advantage of our model on the FinQA dataset, we
manually extend it by adding 30 and 20 questions for train and test data (named extended FinQA
dataset), respectively (see Table 2 for one example of the extended questions). These questions are
proposed based on the original passages in the FinQA dataset. In addition, they are about superlative
questions, which require to be solved by using superlative operators (i.e., smallest and biggest). As
a result, unlike questions from the original FinQA dataset, the numbers of operands used to solve
these extended questions are not limited to two. Next, We trained ELASTIC (RoBERTa-large) on
the train data from the combination of the extended FinQA dataset and the original FinQA dataset.
Since the number of operands of an operator is not determined anymore, the Reasoning Manager
of ELASTIC has to manage the Operands Generator to generate the correct number of operands in
terms of the specific question. This increases the difficulty for the model to generate correct operands
and makes the dataset more challenging. The results are shown in Table 1. For the performance on
the combined test data (original FinQA + extended FinQA), ELASTIC (RoBERTa-large) achieves
slightly lower scores (64.5 of Exec Acc and 63.8 of Prog Acc), compared to the results of ELASTIC
(RoBERTa-large) achieved on original FinQA dataset (68.96 of Exec Acc and 65.21 of Prog Acc).1
We also report the metric scores of ELASTIC (RoBERTa-large) achieved on test data from the
extended FinQA dataset: 90.0 on both Exec Acc and Prog Acc. Note that the state-of-the-art model
FinQANet cannot solve the extended FinQA dataset because it can only generate operators with
two operands. These results show ELASTIC model solving questions that require the capability of
generating operators with diverse numbers of operands.

Table 1: The performances of ELASTIC (RoBERTa-large) on the test data from the combination of
the original FinQA dataset and extended FinQA dataset, and only on the test data from the extended
FinQA dataset. Note that the model is trained on the train data from the combination of the original
FinQA dataset and the extended FinQA dataset.

Dataset (Test) Exec Acc Prog Acc

original FinQA + extended FinQA 64.5 63.8
extended FinQA 90.0 90.0

Table 2 shows one example from the extended FinQA dataset. To solve this question, the model
needs to select numbers relevant to the obligations of payments between 2007 and 2019, compare
them, and select the biggest one. We observe that ELASTIC (RoBERTa-large) correctly selects

1See full results in "Overall Results" section.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Table 2: An example from the extended FinQA dataset. The "Prediction" refers to the generated
numerical reasoning program from ELASTIC (RoBERTa-large). †: The passage is from the FinQA
dataset, which is reorganized for better readability.

Question What is the biggest obligations of payments between 2007 and 2010?

Passage†

Contractual obligations and commercial commitments the following table (in thousands):
The operating lease obligations of payments due by fiscal year total is $4819;
The operating lease obligations of payments due by fiscal year 2007 is $1703;
The operating lease obligations of payments due by fiscal year 2008 is $1371;
The operating lease obligations of payments due by fiscal year 2009 is $1035;
The operating lease obligations of payments due by fiscal year 2010 is $710;
The total obligations of payments due by fiscal year 2007 is $1903;
The total obligations of payments due by fiscal year 2008 is $1571;
The total obligations of payments due by fiscal year 2009 is $1235;
The total obligations of payments due by fiscal year 2010 is $710.

Prediction biggest(1903, 1571, 1235, 710)

the relevant numbers and applies the biggest operator to them. Worth mentioning, there are 9 num-
bers (4819, 1703, 1371, 1035, 710, 1903, 1571, 1235, 710) relevant to the "payments" in the question.
ELASTIC only selects part of these numbers which are relevant to the "obligations of payments"
asked by the question. This demonstrates that ELASTIC understands the aim of the question and
solves it by generating the correct numerical reasoning program.

2 Appendix B: Comparison between Operation Length of the Golden
Numerical Reasoning Program in MathQA and FinQA Datasets

Figure 1 compares the distribution of operation length of the golden numerical reasoning program in
FinQA and MathQA datasets. We can see that the lengths of operation of most numerical reasoning
programs in FinQA are between 2 and 4. In contrast, MathQA contains more golden numerical
reasoning programs with operation lengths between 3 and 8. Obviously, MathQA contains longer
numerical reasoning programs than FinQA. As a result, the MathQA dataset is more complicated
than the FinQA dataset.

3 Appendix C: Case Study

Table 3 shows two cases of the predictions by ELASTIC (RoBERTa-large) on MathQA dataset.

- Case 1 The question, in this case, requires to be solved by three operators with different
numbers of operands, such as sqrt takes only one operand. We can see that ELASTIC
(RoBERTa-large) generated the correct numerical reasoning program, by using constant
none as the padding operand for the operators sqrt and floor. This case depicts one example
when ELASTIC generates operators with different numbers of operands.

- Case 2 This case shows the scenario where a long numerical reasoning program is used
to solve the question. Although the operation length of the golden numerical reasoning
program is 11 in this case, ELASTIC (RoBERTa-large) generates the correct program.
Because ELASTIC separates the generation procedures for operators and operands, which
prevents the potential interactive distraction between operators and operands. This makes
ELASTIC less liable to being influenced by the cascading error.

4 Appendix D: Possible Explanation for Graph2Tree Poor Performance on
FinQA Dataset

Section "Overall Results" shows that baseline Graph2Tree achieves only 0.37 accuracy on the FinQA
test dataset, which is significantly lower compared to the accuracy of Graph2Tree on FinQA eval
data (83.2 of program accuracy). We suspect this is due to the data leak problem existing in FinQA

2

Figure 1: The distribution of Operation Length in FinQA and MathQA datasets.

Table 3: Two cases showing predicted reasoning program from the ELASTIC (RoBERTa-large).
Except for the Prediction, the data are taken from the MathQA dataset.

Case 1

Passage if n is an integer and 101 n ^2 is less than or equal to 10000 , what is the greatest
possible value of n ?

Prediction divide(n2, n0), sqrt(#0, none), floor(#1, none)

Golden divide(n2, n0), sqrt(#0), floor(#1)

Case 2

Passage Real - Estate salesman z is selling a house at a 25 percent discount from its retail price
. Real - Estate salesman x vows to match this price and then offers an additional 5
percent discount. Real - Estate salesman y decides to average the prices of salesmen
z and x then offer an additional 30 percent discount. Salesman y’s final price is what
fraction of salesman x’s final price.

Prediction subtract(const_100,n1), subtract(const_100,n0), subtract(const_100,n2), divide(#0,
const_100), multiply(#3,#1), add(#4,#1), divide(#5, const_2), multiply(#6,#2), di-
vide(#7,const_100), divide(#8,#4), multiply(#9, const_10)

Golden subtract(const_100,n1), subtract(const_100,n0), subtract(const_100,n2), divide(#0,
const_100), multiply(#3,#1), add(#4,#1), divide(#5, const_2), multiply(#6,#2), di-
vide(#7,const_100), divide(#8,#4), multiply(#9, const_10)

3

train and eval data. Specifically, Unlike ELASTIC and other baselines that generate the indices of the
operands in the passage, Graph2Tree generates the operand values directly. As a result, Graph2Tree
defines the decoding vocabulary containing all operands in the train and eval data. This reveals
that Graph2Tree cannot produce undefined operands, which are widely existed in the test data. To
demonstrate our suspicion, we calculate the overlap of occurring operands in the FinQA dataset,
between train and eval data, and train data and test data. The original code of Graph2Tree creates the
decoding vocabulary by all operands that occur in both train and eval datasets, so that the overlap rate
is 100% between train and eval data. In contrast, the overlap rate between train and test data is only
56%. In other words, Graph2Tree cannot generate numerical reasoning programs which contain the
left 44% unseen operands, where the proportion of these numerical reasoning programs in the FinQA
test dataset is 33%. The number indicates that Graph2Tree could achieve at most 33% program
accuracy on the FinQA test data.

5 Appendix E: An Example to Illustrate Notations in Table 2

Figure 2: An example of math word problems, using nations defined in Table 2.

Figure 2 shows an example of a math problem and its numerical reasoning programs. The problem
text P and question text Q are combined, which contains three numbers: 5, 3, 2, denoted by NUM.

The reasoning program R contains two sub-programs, "5+3" (denoted as r1) and "#0− 2" (denoted
as r2). The first sub-program r1 contains one operator "+" (denoted as op1) and two operands
"5" (denoted as oe11) and "3" (denoted as oe12). The second sub-program r2 contains one operator
"−" (denoted as op2) and two operands "#0" (denoted as oe21) and "2" (denoted as oe22). "#0" is
pre-defined in the constant vocabulary, which is denoted as CONS.

The op1 and op2 are belong to all mathematical operators OP. The oe11, oe12, oe21, and oe22 belong to
all operands OE. We regard OP, OE as symbols s.

6 Appendix F: An Example to Show How Separated Modules Work

Figure 3 shows the generation process of equations: "5 + 3 − 2", which is represented as two
sub-programs: "+, 5, 3" and "−,#0, 2". At the beginning, the Operator Generator produces "+"
by sampling from the OP decoding vocabulary (refer to Equation (6)). Next, the generation for the
operator is suspended, and the Reasoning Manager guides Operands Generator to produce "3" and

4

Figure 3: An Example to Show How Separated Modules Work

"2" sampling from the NUM Decoding Vocabulary (refer to Equation (7)). After the first sub-program
is complete, the Memory Register replaces the first cache token "#0" embedding with the guidance
vector from Reasoning Manager. When generating the second sub-program, the Reasoning Manager
enables the Operator Generator to produce the operator "−" for the second sub-program. Since
the first operand in equation "8− 2" refers to the executable result from the first sub-program. As
a result, the Operands Generator produces "#0", which refers to the executable result of the first
sub-program. Finally, after operand "2" is generated, the generation for the second sub-program
completes. Likewise, the Memory Register updates the second cache token "(#1)" embedding with
the guidance vector.

5

	Appendix A: Training ELASTIC (RoBERTa-large) on Extended FinQA Dataset
	Appendix B: Comparison between Operation Length of the Golden Numerical Reasoning Program in MathQA and FinQA Datasets
	Appendix C: Case Study
	Appendix D: Possible Explanation for Graph2Tree Poor Performance on FinQA Dataset
	Appendix E: An Example to Illustrate Notations in Table 2
	Appendix F: An Example to Show How Separated Modules Work

