
Appendix: Learning Dense Object Descriptors from
Multiple Views for Low-shot Category Generalization

Stefan Stojanov, Anh Thai, Zixuan Huang, James M. Rehg
Georgia Institute of Technology

{sstojanov, athai6, zixuanh, rehg}@gatech.edu

A Appendix Overview

This appendix is structured as follows: We first present an ablation study for our model in Section B;
In Section C we provide additional qualitative results on the CO3D [20] dataset; In Section D we
provide additional details about the datasets used in our experiments and their licenses; In Section E
we provide details on the baselines we use, their implementations and hyperparameters; In Section F
we describe the compute resources used in our research.

B Ablation Study

We present empirical results for ablating different elements of our model. Using the ModelNet [26]
dataset, we train models without randomly removing the background of the input as a data augmenta-
tion step during training (denoted as DOPE w/o random background remove) and without predicting
the object mask during training and multiplying it with the local feature encoding (denoted as DOPE
w/o mask prediction). The results on the first ModelNet validation set are presented in Table 1. We
observe that removing either of these two elements significantly reduces the performance of our
model. The reduction in performance because of not randomly removing the backgrounds potentially
indicates that without this augmentation, our model uses background texture/geometry information to
learn features that do not generalize across instances.

Table 1: Ablation study over two elements of our proposed approach: without randomly masking
the foreground objects in input images during training, and without predicting the object mask and
multiplying it with the local feature encoding. We observe significant reductions in performance in
both cases. Evaluation is done on the ModelNet validation classes.

1-shot 5-way
DOPE 61.78
DOPE w/o random background remove 54.24
DOPE w/o mask prediction 50.06

C Additional Qualitative Results on CO3D

In Figure 1 we present additional qualitative results on the CO3D [20] dataset. We observe that our
proposed approach can find correspondences between similar object parts across different instances
of the same category.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Query Image Key Image Similarity Heatmap

Query Image Key Image Similarity Heatmap

Query Image Key Image Similarity Heatmap

Query Image Key Image Similarity Heatmap

Query Image Key Image Similarity Heatmap

Query Image Key Image Similarity Heatmap

Query
Image Key Image Similarity Heatmap Query Image Key Image Similarity Heatmap

Query
Image

Key 
Image

Similarity 
Heatmap

Query
Image

Key 
Image

Similarity 
Heatmap

Query
Image

Key 
Image

Similarity 
Heatmap

Figure 1: Additonal qualitative results on the CO3D dataset. We present a similarity heatmap for the
query point (yellow) in the query image over the entire query image. The blue point on the heatmap
overlaid image indicates the predicted correspondence of the query point. Note that these objects are
from validation or test categories, which are different from the training categories.

D Dataset Details

For all our synthetic datasets we render 20 views of each object randomly positioned on a plane with
a physically based rendering (PBR) surface material that is randomly chosen. Lighting comes from
a set of high dynamic range imaging (HDRI) lighting environments that are also randomly chosen.
Rendering is done using the ray-tracing renderer Cycles in Blender [19]. We use 25 PBR materials
and 46 HDRI maps with CC0 licenses sourced from PolyHaven [6]. We provide sample images from
all synthetic datasets in Figure 2.

Deriving Pixel-Level Correspondences For the synthetic datasets ModelNet [26], ShapeNet [7],
and ABC [14], we have ground truth camera instrinstics, extrinsics, depth maps and segmentation
masks, which allows us to extract pixel-level correspondences between two views of an object. For
the real CO3D dataset [20], each object video has camera instrinsics and extrinsics estimated using
COLMAP [22, 21] and masks estimated with PointRend [13], which allows us to extract estimated
pixel-level correspondences between two views of an object.

Data Augmentation For all self-supervised and low-shot learning algorithms, we perform color
jittering, gamma, and contrast augmentations. In addition, we also randomly remove the background
using the provided foreground mask. When the background is masked, we also randomly translate
and rotate the foreground in the image, and randomize the background as in [10] (for examples please
see Figure 3).

2



ABC Samples ModelNet Samples ShapeNet Samples

Figure 2: Visualization of our synthetic data rendered from ABC, ModelNet and ShapeNet. Note the
high environment and viewpoint variability across the images.

Source Image Augmentation 1 Augmentation 2 Augmentation 3 Augmentation 4 Augmentation 5

Figure 3: Illustration of our augmentation strategy by removing the background and applying random
geometric transformations to the foreground object.

D.1 ModelNet40-LS

The training and validation splits for ModelNet40-LS [26] are shown in Table 2, the first of which
which we adopt from [23]. We use 15 queries for low-shot validation and testing. The dataset
copyright information is available at https://modelnet.cs.princeton.edu/.

D.2 ABC

We randomly sample 115K objects for training and 10K for validation from the total set of download-
able objects. Originally the ABC [14] objects do not come with any surface materials. We generate
materials with random colors and random Voronoi patterns when rendering the objects. The licensing
information for this dataset is available at https://deep-geometry.github.io/abc-dataset/
#license.

D.3 ShapeNet-LS

The training and validation splits for ShapeNet55-LS [7] are shown in Table 3, the first of which we
adopt from [23]. We use 15 queries for low-shot validation and testing. The dataset terms of use are
available at https://shapenet.org/terms.

D.4 CO3D-LS

The training and validation splits for CO3D-LS [20] are shown in Table 4. We select the training
set by taking the 31 categories with the most data, and randomly sample two sets of 10 without
replacement or validation and testing from the remaining 20 classes. For each object video clip in the
dataset, we subsample every 3rd frame. We use 15 queries for low-shot validation and testing. The

3

https://modelnet.cs.princeton.edu/
https://deep-geometry.github.io/abc-dataset/#license
https://deep-geometry.github.io/abc-dataset/#license
https://shapenet.org/terms


terms and conditions of the CO3D dataset are available at https://ai.facebook.com/datasets/
co3d-downloads/.

E Baseline Algorithm Implementation

All algorithms are implemented in PyTorch [17] 1.8.2 LTS where possible following released
codebases from the original papers.

E.1 SimpleShot

We follow the original implementation of SimpleShot [1]. We train SimpleShot [25] with the
AdamW [15] optimizer, with a batch size of 256, a learning rate of 0.001, weight decay of 0.0001 as
we found it gives improved results over using SGD with momentum. We train SimpleShot for 500
epochs on ShapeNet and 1000 epochs on CO3D and ModelNet with a 0.1 learning rate decay at 0.7
and 0.9 of the total number of epochs.

E.2 RFS

We follow the original implementation of RFS from [2]. RFS [24] requires first training a backbone
with cross-entropy on the training classes. To do this we follow the same training procedure as
SimpleShot, as it also consists of training with cross-entropy on the base classes. Like in the original
codebase, we use Scikit-Learn [18] to train a logistic classifier for each low-shot episode.

E.3 FEAT

We follow the original implementation of FEAT [3, 27] in our implementation. We train a separate
model for each n-way m-shot episode configuration as in the original paper. We use the original
optimizer and hyperparameters, but halve the softmax temperature values for ShapeNet and ModelNet,
and quarter them for CO3D as we find that it results in improved low-shot generalization.

E.4 SupMoCo

We follow the pseudocode in the Appendix of the original paper to implement SupMoCo [16]. We
use a queue of size K = 4096 because of our smaller datasets and SGD with cosine learning rate
decay for 2000 epochs, with a batch size of 256, an initial learning rate of 0.05 and weight decay of
0.0001.

E.5 VISPE

We use the original VISPE [12] implementation [4] in our experiments. We use AdamW [15] with
a batch size of 32, learning rate of 0.0001, weight decay of 0.01 for 1000 epochs as we found it
improves the low-shot generalization performance over the original hyperparameters.

E.6 VISPE++

For our MoCo-based [11] VISPE++ baseline, we follow the original MoCo codebase [5]. Rather than
the standard application of augmentations to a single view of an object to obtain two positive images,
we give two views of the same object as two positive images, and two views of different objects as
negatives. We use a two-layer 1024-dim MLP as the projection head. When training on ABC we
use a queue of size K = 16348 and when training on other datasets we use a smaller queue of size
K = 4096. We train this model using the AdamW [15] optimizer for 3500 epochs with a learning
rate of 0.0001 and weight decay of 0.01.

For our SimSiam-based [8] VISPE++ baseline, we use the implementation from [9]. We use the same
random masking augmentations as DOPE, but the original color jittering parameters of SimSiam
because we found that results in improved low-shot generalization.

4

https://ai.facebook.com/datasets/co3d-downloads/
https://ai.facebook.com/datasets/co3d-downloads/


F Compute Details

To train our models we use an 8 GPU server with Titan Xp GPUs. Training our proposed approach
requires 4 GPUs using Distributed Data Parallel in PyTorch [17].

Training # samples Validation + Test # samples Split assignment
bookshelf 672 door 129 v0, t1, t2, t3, t4
chair 989 keyboard 165 v0, t1, t2, t3, t4
plant 340 flower_pot 169 v0, t1, v2, t3, t3
bed 615 curtain 158 v0, t1, v2, t3, t4
monitor 565 person 108 v0, v1, t2, v3, t4
piano 331 cone 187 v0, v1, t2, t3, v4
mantel 384 xbox 123 v0, v1, v2, t3, t4
car 297 cup 99 v0, t1, t2, v3, v4
table 492 bathtub 156 v0, v1, v2, v3, t4
bottle 435 wardrobe 107 v0, t1, t2, t3, v4
airplane 726 lamp 144 t0, v1, t2, v3, v4
sofa 780 stairs 144 t1, v1, v2, t3, v4
toilet 444 laptop 169 t0, t1, t2, v3, v4
vase 575 tent 183 t0, v1, t2, t3, t4
dresser 286 bench 193 t0, t1, v2, t3, v4
desk 286 range_hood 215 t0, t1, t2, v3, v4
night_stand 286 stool 110 t0, t1, t2, v3, v4
guitar 255 sink 148 t0, v1, t2, v3, t4
glass_box 271 radio 124 t0, v1, v2, v3, t4
tv_stand 367 bowl 84 t0, v1, v2, t3, t4
Total
20 classes 9396 20 classes 2915

Table 2: Split composition of ModelNet40-LS. Rightmost column indicates the assignment of the
class to each of the 5 validation/testing splits.

Training # samples Validation + Test # samples Split assignment
chair 500 stove 218 v0, v1, t2, t3, v4
table 495 microwave 152 v0, t1, t2, t3, v4
bathtub 499 microphone 67 v0, t1, v2, t3, t4
cabinet 499 cap 56 v0, v1, t2, v3, v4
lamp 500 dishwasher 93 v0, t1, t2, t3, v4
car 525 keyboard 65 v0, t1, t2, t3, t4
bus 500 tower 133 v0, v1, t2, t3, t4
cellular 500 helmet 162 v0, t1, t2, v3, t4
guitar 500 birdhouse 73 v0, t1, v2, t3, v4
bench 499 can 108 v0, t1, t2, t3, t4
bottle 498 piano 239 t0, v1, t2, v3, t4
laptop 460 train 389 t0, t1, v2, v3, t4
jar 499 file 298 t0, t1, t2, v3, t4
loudspeaker 496 pistol 307 t0, t1, t2, v3, t4
bookshelf 452 motorcycle 337 t0, t1, v2, v3, t4
faucet 500 printer 166 t0, t1, v2, t3, v4
vessel 864 mug 214 t0, v1, t2, t3, t4
clock 496 rocket 85 t0, v1, v2, t3, t4
airplane 500 skateboard 152 t0, v1, v2, v3, v4
pot 500 bed 233 t0, t1, t2, t3, v4
rifle 498 ashcan 343 t0, t1, t2, t3, v4
display 498 washer 169 t0, t1, t2, t3, t4
knife 423 bowl 186 t0, t1, v2, t3, t4
telephone 498 bag 83 t0, v1, v2, v3, t4
sofa 499 mailbox 94 t0, v1, t2, t3, t4

pillow 96 t0, t1, t2, t3, t4
earphone 73 t0, t1, v2, t3, t4
camera 113 t0, t1, t2, t3, t4
basket 113 t0, v1, t2, v3, v4
remote 66 t0, t1, t2, t3, t4

Total
25 classes 12698 30 classes 4883

Table 3: Split composition of ShapeNet55-LS. Rightmost column indicates the assignment of the
class to each of the 5 validation/testing splits.

5



Training # samples Validation + Test # samples Split assignment
wineglass 453 car 210 v0, t1, t2, t3, v4
keyboard 638 bottle 277 v0, v1, v2, t3, t4
mouse 431 baseballglove 84 v0, v1, t2, t3, v4
bowl 660 frisbee 121 v0, t1, t2, t3, t4
broccoli 379 tv 29 v0, v1, v2, v3, v4
chair 675 toyplane 225 v0, v1, v2, t3, t4
handbag 749 baseballbat 71 v0, t1, t2, v3, t4
toytrain 272 pizza 134 v0, v1, t2, v3, v4
carrot 740 hydrant 307 v0, t1, t2, v3, v4
bicycle 340 hotdog 69 v0, v1, v2, v3, t4
cellphone 416 parkingmeter 21 t0, t1, v2, t3, t4
ball 542 banana 198 t0, v1, v2, t3, v4
teddybear 734 motorcycle 267 t0, t1, t2, t3, v4
cake 348 bench 250 t0, v1, t2, t3, v4
backpack 832 donut 193 t0, t1, v2, v3, t4
hairdryer 503 microwave 50 t0, v1, t2, v3, t4
couch 223 stopsign 193 t0, t1, v2, t3, v4
toilet 355 skateboard 82 t0, t1, v2, v3, t4
remote 392 toybus 141 t0, v1, t2, v3, t4
toaster 299 kite 150 t0, t1, v2, v3, v4
vase 647
laptop 501
toytruck 466
umbrella 498
suitcase 482
plant 563
apple 391
cup 169
book 658
sandwich 244
orange 479
Total
31 classes 15079 20 classes 3072

Table 4: Split composition of CO3D. Rightmost column indicates the assignment of the class to each
of the 5 validation/testing splits.

6



Appendix References
[1] https://github.com/mileyan/simple_shot.

[2] https://github.com/WangYueFt/rfs/.

[3] https://github.com/Sha-Lab/FEAT.

[4] https://github.com/chihhuiho/VISPE.

[5] https://github.com/facebookresearch/moco.

[6] Poly haven, https://polyhaven.com/.

[7] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[8] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750–15758, 2021.

[9] MMSelfSup Contributors. MMSelfSup: Openmmlab self-supervised learning toolbox and benchmark.
https://github.com/open-mmlab/mmselfsup, 2021.

[10] Peter R Florence, Lucas Manuelli, and Russ Tedrake. Dense object nets: Learning dense visual object
descriptors by and for robotic manipulation. In Conference on Robot Learning, pages 373–385. PMLR,
2018.

[11] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9729–9738, 2020.

[12] Chih-Hui Ho, Bo Liu, Tz-Ying Wu, and Nuno Vasconcelos. Exploit clues from views: Self-supervised
and regularized learning for multiview object recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9090–9100, 2020.

[13] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick. Pointrend: Image segmentation as
rendering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
9799–9808, 2020.

[14] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev,
Marc Alexa, Denis Zorin, and Daniele Panozzo. Abc: A big cad model dataset for geometric deep learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9601–9611,
2019.

[15] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2018.

[16] Orchid Majumder, Avinash Ravichandran, Subhransu Maji, Alessandro Achille, Marzia Polito, and
Stefano Soatto. Supervised momentum contrastive learning for few-shot classification. arXiv preprint
arXiv:2101.11058, 2021.

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

[19] Blender Project. https://blender.org.

[20] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and David
Novotny. Common objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10901–10911, 2021.

[21] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

7

https://github.com/mileyan/simple_shot
https://github.com/WangYueFt/rfs/
https://github.com/Sha-Lab/FEAT
https://github.com/chihhuiho/VISPE
https://github.com/facebookresearch/moco
https://github.com/open-mmlab/mmselfsup
https://blender.org


[22] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise view
selection for unstructured multi-view stereo. In European Conference on Computer Vision (ECCV), 2016.

[23] Stefan Stojanov, Anh Thai, and James M. Rehg. Using shape to categorize: Low-shot learning with
an explicit shape bias. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1798–1808, June 2021.

[24] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking few-shot
image classification: a good embedding is all you need? In European Conference on Computer Vision
(ECCV) 2020, August 2020.

[25] Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Laurens van der Maaten. Simpleshot: Revisiting
nearest-neighbor classification for few-shot learning. arXiv preprint arXiv:1911.04623, 2019.

[26] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao.
3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1912–1920, 2015.

[27] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding adaptation
with set-to-set functions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

8


	Appendix Overview
	Ablation Study
	Additional Qualitative Results on CO3D
	Dataset Details
	ModelNet40-LS
	ABC
	ShapeNet-LS
	CO3D-LS

	Baseline Algorithm Implementation
	SimpleShot
	RFS
	FEAT
	SupMoCo
	VISPE
	VISPE++

	Compute Details

