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Abstract

How many degrees of freedom are there in a dataset consisting of M samples
embedded in RD? This number, formally known as intrinsic dimensionality, can be
estimated using nearest neighbor statistics. However, nearest neighbor statistics do
not scale to large datasets as their complexity scales quadratically in M , O(M2).
Additionally, methods based on nearest neighbor statistics perform poorly on
datasets embedded in high dimensions where D � 1. In this paper, we propose
a novel method to estimate the intrinsic dimensionality using Normalizing Flows
that scale to large datasets and high dimensions. The method is based on some
simple back-of-the-envelope calculations predicting how the singular values of the
flow’s Jacobian change when inflating the dataset with different noise magnitudes.
Singular values associated with directions normal to the manifold evolve differently
than singular values associated with directions tangent to the manifold. We test
our method on various datasets, including 64x64 RGB images, where we achieve
state-of-the-art results.

1 Introduction

Learning low-dimensional representations of high-dimensional data is becoming increasingly im-
portant in the era of big data. Therefore, representation learning is a very active area of research
[33] with a wide range of applications ranging from neuroscience [27], molecular biology [28],
bioinformatics [12] or image analysis [21]. But how many low-dimensional variables are exactly
needed to accurately describe the original data? Unfortunetly, this number is typically not known and
needs to be estimated - a task formally known as intrinsic dimensionality (ID) estimation.

Moreover, estimating the ID turned out to be an usefull tool for understanding the functioning of
Neural Networks and generative models [23, 11, 1, 31]. In a recent study, [29] verified that the ID
plays a large role in deep learning on natural images and hence motivated the necessity to better
estimate the ID in this setting. In the context of generative models, the ID corresponds to the number
of latent variables generating the data. Some of these generative models do even rely on knowing
the exact number of latent variables generating the data which limits their applicability to real-world
problems where this number is unknown [3, 16].

ID estimation is mathematically challenging. Most approaches rely on the assumption that, locally,
the samples are uniformly distributed, and therefore the ID can be estimated using nearest neighbor
statistics [4]. However, such nearest neighbor methods do not scale to large datasets consisting
of M � 1 samples as the complexity scales with O(DM2) where D is the dimensionality of the
embedding space and accounts for calculating the (Euclidean) distance 1 . Thus, this scaling issue
is amplified whenever the embedding space D is of the order of the sample size M , D = O(M).

1Therefore, some line of research tries to reduce the complexity of finding the nearest neighbor, see e.g. [25].
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Additionally, nearest neighbor methods suffer from the curse of dimensionality in the sense that
they perform badly in high dimensions D � 1 [5, 4, 32]. In this paper, we propose to overcome
these scalability issues by estimating the ID using standard NFs which do scale to large datasets and
dimensions.

Our high-level idea is very simple and based on some back-of-the-envelope calculations which
predict how the flow’s eigenvalues change depending on the amount of noise injected into the data
prior to training. For directions of small variability (i.e. off-manifold directions), the corresponding
eigenvalues should decrease at a rate predicted by our theory. However, for directions of great
variability (i.e. manifold directions), the corresponding eigenvalues will behave differently which
allows us to estimate d. We show the soundness of our approach on various datasets, including RGB
images of resolution 64× 64.

2 Problem statement, background and notations

Here we briefly discuss the problem of estimating the ID, introduce the concept of an NF and
additional notations which will be used throughout the paper.

Estimating ID: An d−dimensional manifoldM is a set of points that are locally diffeomorphic to
subsets of Rd, see e.g. [22] for a formal definition of manifolds. Given M samples x1, . . . , xM from
such a d−dimensional manifold embedded in RD, d < D, the task is to estimate d. More generally,
if the dataset is living on unions of manifolds with different IDs, the task is to estimate d locally
for a given point x∗ 2 . For real-world datasets, however, samples are corrupted by noise making
the dataset full-dimensional, i.e. d = D. In this case, estimating the ID corresponds to estimating
how many main degrees of freedom there are in the observed dataset. We refer to those degrees of
freedom to directions of large variability in the following.

Standard Normalizing Flows: In the simplest case, an NF fθ is a change of variable trans-
forming a sample from the unknown distribution p(x) to a sample from a standard Normal
N (0, ID). If M is full-dimensional, i.e. d = D, then the resulting density is given by
pθ(x) = |det Jf−1

θ
(u)|−1N (u; 0, ID) where u = f−1

θ (x), and the parameters θ are updated to
minimize

DKL(p(x)||pθ(x)) = −Ex∼p(x)[log pθ(x)] + const. (1)
For the general case where d < D, the general change of variable formula needs to be considered,
see e.g. [17, 8, 10, 3]. From now on we omit the NF’s dependence on the parameter θ and write f
instead of fθ.

Notations: We denote the data density with support onM as p(x). Given a sample x ∼ p(x), if we
add some Gaussian noise ε to it, the resulting random variable x̃ = x+ ε has the following density

qσ2(x̃) =

∫
M
N (x̃;x, σ2ID)p(x)dx (2)

where ID is the D ×D unit matrix.
The Jacobian of a flow f : RD → RD has D eigenvalues and singular values, which we both denote
by λ(1), . . . , λ(D).

3 Related work

Estimating the ID is a well-studied problem with a vast literature, see [5, 4] for exhaustive overviews.

Nearest Neighbor methods: Historically, two main branches have developed: global and local
methods [4]. Global methods estimate the dimensionality of the dataset globally with methods based
on PCA is the most famous representative of this class, while local methods do estimate it locally.
Consistent local estimators are based on nearest neighbor statistics. Intuitively, the volume of a
d−dimensional ball scales as rd with its radius r, and, therefore, the number of nearest neighbors
within the r−ball of a point should scale similarly. This intuition was formalized by [13] and
generalized in [14]. Recently, [9] derived the distribution of the distance to the second nearest
neighbor - a power law with the ID as the exponent. We choose this method, coined twoNN, as a

2Note, that a local estimator can be used as a global ID estimator by simply averaging over different samples.
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representative for nearest neighbor methods and compare its performance with our method in Section
5 .

Methods based on NN: Neural Networks (NN) scale to large datasets. Surprisingly, to the best of
our knowledge, next to our method, there exists only one method which attempts to directly estimate
the ID using an NN based method [32], coined LIDL (see below for a detailed description). However,
there exist different indirect methods which use performance metrics to estimate the ID. The general
idea is to train different models with different latent dimensionalities and compare their performance
on a chosen metric, see e.g. [2, 34, 3]. Arguably, the model yielding the best result on this metric
corresponds to the right latent dimensionality. However, the estimate will be relative to the chosen
performance metric and therefore might not reflect the true ID. As an example of this relativity, we
refer to Figure 14 in [3] which use their NF-based method to estimate the ID of the CelebA dataset
[24]. They get different results when using the FID-score [15] or reconstruction error as performance
metric. In [30], it was argued that the Jacobian of the encoder f : RD → Rd of an Autoencoder can
give information of directions of contraction. Intuitively, manifold directions correspond to directions
of low contraction while off-manifold directions correspond to directions of high contraction. The
gist of this idea is very similar to our intuition which we will present Section 4 as directions of
contraction can be directly related to the singular values of the encoder’s Jacobian. However, the
number of contractive directions will only give a lower bound on the ID.

LIDL: [32] propose to use NFs to estimate the ID. LIDL stands for locally intrinsic dimensionality
likelihood and is based on the assumption that the inflated log-likelihood log qσ2(x) scales linearly in
σ2 with the normal space dimension as slope. More precisely, they argue that the inflated distribution
qσ2(x) can be written as the product of p(x) and the noise distribution restricted on the normal space,
i.e. qσ2(x) = p(x)N (x;x, ID−d) where N (x;x, ID−d) is a (D − d)−dimensional Gaussian in the
normal space of x. This intuition is mathematically confirmed in [17] under certain conditions on the
manifold and generating latent distribution. Thus, [32] estimate the rate at which the log-likelihoods
change depending on the noise magnitude σ2, and therefore train different models with different
noise magnitudes σ̄2

1 < · · · < σ̄2
N to estimate that change.

LIDL heavily relies on the assumption that qσ2(x) = p(x)N (x;x, ID−d), which is generally only
true for sufficiently smooth manifolds and latent distributions, see [17] for details. Even if these
conditions are fulfilled, the outcome of LIDL depends on the noise magnitudes σ̄2

1 < · · · < σ̄2
N used

to estimate the log-likelihood rate. However, the optimal range again depends on both the manifold
and generating latent distribution which is hard to estimate a priori [17]. We will revisit these issues
in the experiments, Section 5.

4 Method

How can we estimate the intrinsic dimensionality of data sampled from a manifold using an NF?

Simplest scenario: Assume the simple case where the target distribution p(x) is a normal distribution,
i.e. p(x) = N (µ,Σ) with µ ∈ RD and

Σ = diag(σ2
1 , . . . , σ

2
D), σ2

i > 0. (3)

Thus, we assume that the data manifold is given by the entire embedding space,M = RD. Note,
however, that if σ2

i → 0, i = 1, . . . , D − d, this corresponds to samples from a d−dimensional
manifold embedded in RD. Then, the true NF f transforming x ∼ N (µ,Σ) into u = f−1(x)
distributed according to N (0, ID) is given by f−1

i (x) = (xi − µi)/σi, i = 1, . . . , D, with Jacobian

Jf−1(x) = diag
(

1

σ1
, . . . ,

1

σD

)
. (4)

Therefore, an eigenvector of Jf−1(x) corresponding to a large eigenvalue λ(i) (i.e. small σi ) is
in direction of small variability in the data. It is easy to see that the same holds for more general
covariance matrices Σ. The true NF f transforming x ∼ N (µ,Σ) into u = f−1(x) distributed
according to N (0, ID) is given by

f−1(x) = Σ−
1
2 (x− µ) (5)

with Jacobian
Jf−1(x) = Σ−

1
2 = STD−

1
2S (6)

3



where Σ = STDS, D = diag(σ2
1 , . . . , σ

2
D) and S is orthonormal and consists of the eigenvectors of

Σ. Thus, the eigenvalues of Jf−1(x) are given by 1
σ1
, . . . , 1

σD
as for the simplest scenario.

From simple to the generic scenario: In general, the NF f−1 non-linearly transforms a sample
x ∼ p(x) such that u = f−1(x) is distributed according to N (0, ID). Hence, Equation (5) does not
hold anymore. However, Equation (5) is a good first-order approximation as locally the flow acts
linearly,

f−1(x) ≈ f−1(x∗) + Jf−1(x∗)(x− x∗). (7)
What follows is that a flow f−1 not only transforms globally samples from p(x) to samples from a
Gaussian, but also locally. This was already observed in [7] (Lemma 1) for f , i.e. for the direction
from latent to data space. The same holds true for f−1 which immediately follows from the delta
method [26] .

Lemma 1 Let x∗ be a sample from p(x), and let f−1 be the flow such that z∗ ∼ N (0, ID). where
z∗ = f−1(x∗). Let ε ∼ N (0, ID) and s > 0 be a scalar. Consider samples generated by
z̃ = f−1(x∗ + sε). Then, for s→ 0 we have that 1

s (z̃ − z∗) −→ N (0, Jf−1(x∗)TJf−1(x∗)) where
the convergence is in distribution.

Lemma 1 states that a small ball around x∗ will be mapped into a ellipsoid where the principal
axes of the ellipsoid are given by the eigenvectors of the Gram matrix Jf−1(x∗)TJf−1(x∗). Those
eigenvectors are the singular directions of Jf−1(x∗) and correspond to direction of small and large
varaibility if the corresponding singular value is small or large, respectively. For Jf−1(x∗) symmetric,
the singular and eigenvalues coincide 3.

Thus, the flow of arguments from the simplest scenario takes on and we observe:

Observation 1: Large singular values of the NF’s Jacobian evaluated at x correspond to directions of
small variability in the data. Directions of large variability, however, correspond to small singular
values.

How can we make use of this observation to estimate the ID of a data manifold? When training an NF
on clean manifold data (i.e. samples from a manifold without intrinsic noise), Observation 1 predicts
a clear change in magnitude between singular values corresponding to off-manifold and on-manifold
directions 4 . Indeed, we can observe such a change in magnitude in various toy examples, see
Section 4.1. However, to estimate d based on this observation only would require setting an arbitrary
threshold on the magnitude of those singular values. On the other hand, in a more realistic scenario,
real world data have some intrinsic noise.

Data with intrinsic noise: With the same setting as in the simplest scenario, we now additionally
assume that the intrinsic noise is coming from a standard Gaussian with magnitude σ0, i.e. p(x) ∼
N (µ,Σ + σ2

0I). Then, Equation (4) turns into

Jf−1(x) = diag

(
1√

σ2
0 + σ2

1

, . . . ,
1√

σ2
0 + σ2

D

)
. (8)

Now, what happens if we inflate the data-manifold with Gaussian noise of variance σ2? For directions
of small variability in the data, σ2

i is small. Thus, only if σ2 exceeds the intrinsic noise magnitude
σ2

0 , we expect to see a change in λ(i). For directions of large variability, however, we expect to see
a change in λ(j) only if σ2 is greater than σ2

0 + σ2
j as in this case σ2

j is not small. To account for
the more general case where the intrinsic noise is not isotropic, we denote the intrinsic noise in the
direction of the singular vector corresponding to singular value λ(i) as σ2

0(i) in the following.

Observation 2: If we were to inflate the noisy data-manifold with a Gaussian of variance σ2 in
direction of

(i) small variability, we expect the corresponding singular value λ(i) to change significantly
only if σ2 � σ2

0(i).
3Note, that the singular values are always positive and real, and therefore more convenient to analyze than

the eigenvalues.
4Theoretically, eigenvalues/ singular values corresponding to off-manifold directions need to become infinity

for d−dimensional manifolds. Indeed, training an NF on clean manifold data creates numerical instabilities as
observed in [17, 20, 6].
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(ii) large variability, we expect the corresponding singular value λ(i) to change significantly
only if σ2 � σ2

0(i) + σ2
i .

Indeed, we show in the supplementary that if the noise is only added in the manifold’s normal
space, then only those singular values will change while the singular values in direction of large
variability will stay constant. Given this observation, we propose to train a separate NF for different
noise magnitudes σ̄2

1 < · · · < σ̄2
N , calculate for all of those models the flow’s singular values on a

sample x from the manifold, and, according to Equation (8), find parameters αi and βi such that
λ̂(σ2) = βi√

αi2+σ2 fits the set of pairs {(σ̄2
n, λ

(i)
n (x))}n=1,...,N . Note that βi/αi corresponds to λ(i)

if no noise was used to inflate the manifold and that α2
i corresponds to the onset of strong decay.

Our method for estimating the ID: Given (αi, βi) for all i = 1, . . . , D, we expect to see a
clear pattern separating singular values corresponding to directions of small and large variability,
respectively. According to Observation 1, βi/αi must be much larger for large variability directions
and according to Observation 2, the onsets α2

i must be smaller compared to small variability directions.
More concretely, the latter suggests that counting the number of singular values with onset ≤ α,

F (α) = #
{
i ∈ {1, . . . , D} s.t. α(i) ≤ α

}
, (9)

F (α) should have a plateau when varying α from −∞ to∞ corresponding to the number of singular
values in direction of small variability. Ideally, this plateau can be seen clearly when plotting F (α)
and thus the number of off-manifold directions can be directly read out.

Alternatively, a sum of two sigmoidal functions can be fitted to approximate F ,

F̂ (α) =
a1

1 + e−b1(α−c1)
+

a2

1 + e−b2(α−c2)
, (10)

where c1 < c2 and hence a1 corresponds to the number of small variability directions and a2 to the
number of large variability directions, see Algorithm 4 for an algorithmic overview of the method.

Algorithm 4: Estimating the intrinsic dimensionality given a set of data points.
Require: Dataset D = {xi}Mi=1 with xi ∈ RD. Samples {x∗i }Ki=1 ⊂ D to use for estimating the ID.
Noise magnitudes σ̄2

1 < ... < σ̄2
N .

for n = 1 to N do
→ add noise to dataset: D̃ = {xi + εi}, where εi ∼ N (0, σ̄2

nID)
→ learn qσ̄2

n
using an NF fn

→ calculate and store singular values {λ(i)
n (x∗k)}i=1,...,D of Jf−1

n
(x∗k), k = 1, . . . ,K

end for
→ calculate mean singular values for all i and n, λ̂(i)

n := 1
K

∑K
k=1 λ

(i)
n (x∗k)

for i = 1 to D do
→ store (αi, βi) such that λ̂(σ2) = βi√

αi2+σ2 fits {(σ̄2
n, λ̂

(i)
n )}n=1,...,N

end for
→ calculate F (α) = #{i s.t. αi ≤ α} for α ∈ (−∞,∞)

→ fit F̂ (α) given by Equation (10) and store parameter a2

→ estimator is given by d̂ = a2

The averaging over the singular values does not have a geometrical interpretation as such. We are only
interested in the cut-off separating singular values corresponding to on- and off-manifold directions.
Hence, the averaging reduces the noise introduced by limited sample size or unexact learning of qσ2 .

4.1 Pedagogical example

We illustrate our method on a pedagogical example - a uniform distribution on the unit sphere
corrupted by some intrinsic Gaussian noise with magnitude σ2

0 = 10−6. In Figure 1 left, we show
how the three singular values change in log-log-scale depending on various noise magnitudes. For
the error bars, we use 200 clean training examples (i.e. not corrupted by noise). After the intrinsic
noise magnitude is surpassed (first dashed line from the left), the large singular value changes with
slope ≈ −0.5 whereas the two smallest singular value barely change. After the noise magnitude
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exceeds the radius of the sphere (second dashed line from the left), the singular values approach each
other. In the right figure, we show F (α) and its estimate F̂ (α). The title of the right figure shows the
output of Algorithm 4, the parameter a2 of F̂ (α).
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Figure 1: Left: λ vs. σ2 plot as described in the main text. The red curve corresponds to singular
values associated to direction of small variability (i.e. normal to the manifold). The blue and yellow
curves correspond to singular values associated to directions of large variability (i.e. tangent to the
manifold). Right: F (α) and F̂ (α) as defined in Equations (9) and (10).

4.2 Special case: Images

So far, our theory assumes unbounded data such that if the inflation noise σ2 tends to infinity,
σ2 →∞, the eigenvalues of the flow’s Jacobian tend to 0, λ→ 0. According to our theory, this decay
happens much later for singular values corresponding to manifold directions than for off-manifold
directions manifesting as a plateau for the decay onsets α. According to Equation (8), those onsets
reflect the amount of variability in the manifold directions.

However, some real world datasets are bounded. For example, RGB images consist of pixels which
take values in [0, 255]. Thus, for σ2 → ∞, inflated images will become too noisy and all the
information about the manifold is lost. Now, assume that σ2

max is the maximal amount of noise that
can be tolerated before all the images become so noisy that they become meaningless. Then, all
onsets greater or equal to σ2

max will correspond to manifold directions as the amount of variability in
manifold directions must be greater than σ2

max.

How can we set this σ2
max in the least arbitrary way? In the supplementary, Section A.4, we compute

this maximal amount of noise from the following rationale. If σ2 is too large, then essentially all the
pixels will saturate to either the lower or the upper bounds, so a reasonable maximal amount of noise
is such that 50% of the pixels are saturated. If the pixel values fall in the interval [0, xmax] (and if we
assume that pixel values are uniformly distributed on this interval), then σmax = 0.68xmax.

Remark 1

(i) Note, for K = 1, Algorithm 4 estimates the ID locally at a given point x∗1. In the supplemen-
tary, we show that we can learn the ID locally on the lolipop dataset proposed in [32]. This
manifold consists of a 1 dimensional line (the stick of a lolipop) and a 2 dimensional disk.

(ii) There is no need to calculate F (α) for all α ∈ R since F (α) ∈ {0, 1, . . . , D}. Given
αi for all i = 1, . . . , D, we set α ∈ [αmin, αmax] where αmin = argmini=1,...,D{αi} and
αmax = argmaxi=1,...,D{αi}.
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Distribution D ID ID-NF LIDL twoNN
mixture on sphere 3 2 2.01 1.91±0.06 1.98
correlated on sphere 3 2 2.04 1.66±0.07 1.99
mixture on torus 3 2 2.02 2.05±0.04 1.97
correlated on torus 3 2 2.02 2.07±0.05 2.02
correlated on hyperboloid 3 2 2.02 2.01±0.07 1.99
unimodal on hyperboloid 3 2 2.01 1.92±0.1 1.96
exponential on thin spiral 2 1 1 1.08±0.06 1
mixture on swiss roll 3 2 2.02 2.26±0.03 1.98
correlated on swiss roll 3 2 2.02 2.48±0.03 1.94
mixture on stiefel 4 1 1.07 1.19±0.01 0.99

Table 1: Performance of different ID estimation methods (ID-NF, LIDL, twoNN), on various datasets.
Numbers highlighted in orange depict strong deviation from ground truth.

5 Experiments

We benchmark our method with twoNN and LIDL, see Section 3. The latter is very similar to
our method as we both inflate the manifold with different values of σ2 and then use an NF to
learn qσ2 . However, [32] estimate the rate at which the log-likelihoods change depending on the
noise magnitude σ2, whereas we study how the flow’s Jacobian eigenvalues evolve. Hence, we
rely on the NF being able to transform a sample of p(x) to a standard Gaussian - a much easier
task than learning the inflated distribution qσ2 exactly. Also, we don’t rely on the assumption that
qσ2(x) = p(x)N (x;x, ID−d) and thus we don’t need to fine-tune the different noise magnitudes
σ̄2

1 , . . . , σ̄
2
N , see Section 3 for more details.

As an abbreviation for our method, we use ID-NF. We refer to the supplementary for corresponding
training details and additional figures. The code for using ID-NF or reproducing our experiments can
be found here https://github.com/chrvt/ID-NF.

5.1 Low-dimensional synthetic datasets

We test our method on various synthetic datasets with known ID: a sphere, torus, hyperboloid, thin
spiral, swiss roll, and Stiefel manifold, see Table 1. We use different distributions on those manifolds
to test the sensitivity on the sampling distribution p(x). We compare our method with the LIDL and
twoNN estimator introduced in Section 3. For those low-dimensional examples, all methods perform
well. The twoNN and our method estimate all ID exactly. The LIDL method, however, shows some
sensitivity towards the sampling distribution (see the highlighted estimate for the correlated on sphere
distribution), and slightly overestimates the swiss roll dimensionality (see the highlighted estimate
for the swiss roll). However, we did not try to find the optimal range for σ2 and use the same across
all distributions. By this, we want to demonstrate the disadvantage of having to estimate the correct
range for every distribution separately.

5.2 High-dimensional synthetic datasets

Next, we study how the methods scale to higher embedding dimensions. For that, we sample
uniformly from S(D/2) embedded in RD for different even values of D. For a fair a comparison,
we only use a training set of size 104 for all methods. In Figure 2 left, we display how the different
methods estimate the dimensionality. ID-NF is on par with LIDL and outperforms twoNN. The latter
suffers from the curse of dimensionality as mentioned in the introduction, Section 1.

In Figure 2 right, we repeat the experiment using only 103 samples. ID-NF still performs very well.
LIDL, however, has greater variability and significantly underestimates the ID for d = 200 (i.e.
D = 400). This indicates another benefit of our method: as opposed to LIDL, we do not need to
learn the density exactly, a task that requires more samples for higher dimensions.
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Figure 2: Left: Performance of different ID-estimation methods on uniform samples from S(D/2)
embedded in RD for D ranging from 20 to 400. Right: Corresponding plot using 103 instead of 104

samples for traning.

5.3 StyleGan image manifolds

In [3], a image manifold was created by using a recent variant of a generative adversarial network,
StyleGan2 [19], trained on a high-quality image dataset, the FFHQ dataset [18]. When generating
new images, only d of total 512 latent variables were varied while keeping the others fixed. Note,
that this does not necessarily generates a d−dimensional image manifold. Indeed, [29] showed that
whenever the generater is Lipschitz continuous, the ID is at most d. We downsample those images to
a resolution of 64× 64× 3, i.e. the embedding space has dimension D = 12288.

We apply our method on the StyleGan d = 2 and d = 64 image manifold consisting of 104 and
2 · 104 images, respectively. Unfortunetly, training N flows on these datasets is computationally
expensive, so is calculating the eigenspectrum of the flows Jacobian for K samples. However, we are
only interested whether the onset of the eigenvalue’s decay happens after σmax = 255 · 0.68 or not,
see Section 4.2. Therefore, it is sufficient to train only 3 NFs: one where the inflation noise σ has a
very small magnitude, one where σ = 255 · 0.68, and one where σ is very large.

In Figure 3, we show the heights and onsets for all singular value curves of a specific example
for d = 2 on the left, and d = 64 on the right. We highlight the points corresponding to the 2
smallest and 64 smallest singular values, respectively, in red. The dashed vertical line is located at
σmax = 255 · 0.68. For d = 2, the smallest two singular values are nicely separated, though we count
d̂ = 4 singular values which have onsets greater than σ2

max for this particular example. For d = 64,
we count d̂ = 57. When averaging over K = 50 samples, our estimate for d = 2 is d̂ = 4.06 and for
d = 64 we have d̂ = 62.24 .5

We also estimated the ID using LIDL, however, we did not get a consistent estimator. In fact,
depending on the range one uses for the inflation noise σ2, the estimate varies greatly.

5.4 Proof-of-concept applications

We show that the ID can be used to improve latent variable models and observe that out-of-distribution
(OOD) samples have a higher ID.

Latent variable models: Recently, two latent variable models for manifold valued data based on
NFs were developed, the manifold flow (M−flow) [3] and denoising normalizing flow (DNF) [16].
Both methods rely on knowing the exact number of latent variables (i.e. the ID) which limits their
applicability to real-world problems. For instance, the true ID (if exists) of the CelebA-HQ [18] is

5We do not average over the singular values since we are not interested in the cut-off separating eigenvalues
corresponding to on- and off-manifold directions. We estimate d for each sample individually, and then average.
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Figure 3: Scatter plots of onsets and heights, (α, β/α), for all singular values in log-log scale. In red,
the d smallest singular values are highlighted. The dashed line corresponds to the σmax = 0.68 · 255.

unknown and the latent dimensionality was set arbitrarily to 512. We used our method to estimate the
ID and obtained d̂ = 130. We then trained an DNF with the same architecture as in the original paper
using a latent dimensionality of 130 instead of 512. After 300 epochs, we assess the quality of the
generated images with the Frechet Inception distance (FID) - where lower distances are better [15].
We obtain an FID score of 36.92. The original DNF has an FID score of 34.14, and theM−flow
of 38.07 - after 500 epochs of training. Thus, we obtain very similar results in terms of generative
power (measured by the FID score) with only 130 latent dimensions instead of 512.

ID on OOD-samples: Having trained on a specific dataset, such as the StyleGan 2d image manifold,
how does the ID changes for an out-of-distribution (OOD) sample? In table 2, we report the average
ID estimated on K = 50 samples from different datasets when trained on the Stylegan2d image
manifold. As we can see, the ID of OOD samples is significantly higher than for in-distribution
samples. Intuitively, OOD samples live on the manifolds normal space, and thus, in case d < D/2,
have more directions of large variability. We conduct more OOD experiments in the supplementary.

Datasets / OOD StyleGan2d StyleGan64d CelebA
StyleGan2d 4.06± 1.75 151.72± 54.04 272.14± 261.71

Table 2: Average ID estimates for 50 samples using our method trained StyleGan2d.

6 Discussion

We have introduced a new method to estimate the ID exploiting the ability of NFs to transform
data into samples from a Gaussian random variable. Based on some simple back-of-the-envelope
calculations, we derived how the singular values of the flows Jacobian evolve when inflating the data
with Gaussian noise before training. Crucially for our estimator, singular values corresponding to the
directions of large variability (i.e. manifold directions) evolve significantly different compared to
singular values corresponding to the directions of small variability (i.e. off-manifold directions).

We demonstrated that we can estimate the ID for different manifolds with different sampling dis-
tribution. We compared our method to a state-of-the-art ID estimator based on nearest neighbor
statistics, twoNN, and to a related method which is also based on NFs, LIDL. We outperform twoNN
for high dimensions (Table 1), and LIDL for small data regimes (Figure 2) and images, Section 5.3.
As opposed to LIDL, we don’t have to fine-tune the noise magnitudes σ̄2

1 , . . . , σ̄
2
N . However, we need

σ̄1 to be small and σ̄N to be sufficiently large which may be computationally expensive.

We showed that our method scales to RGB images of resolution 64 × 64 populating a d = 2 and
d = 64 dimensional manifold, where we estimate d̂ = 4 and for d̂ = 62, respectively. However,

9



this estimate is sensitive to the number K of images used to estimate d (we used K = 50), the
number of NFs trained on (we argued that N = 3 is sufficient), and to the maximum amount of
noise to be tolerated before the images become too blurry (σmax = 0.68 · 255 see Secetion 4.2).
Neverthelesse, to the best of our knowledge, this is the first method which estimates the ID on such
high-resolution image manifolds consistently. Additionally, we demonstrated that estimating the ID
can help to improve recently developed latent variable models based on NFs where knowing this
exact number is crucial. Also, we observed that for out-of-distribution (OOD) data, the ID is higher
than for on-manifold examples motivating further research on the relation between OOD samples and
ID.

Finally, our theoretical derivations rely on the assumption that data is unbounded, although we adapted
our methiod for bounded data too. However, for this case more research is needed to understand the
exact behaviour of the flow’s Jacobian singular values when approaching the boundary. An interesting
direction to pursue is to adapt the target distribution and inflation noise to the data topology. For
images, this amounts to changing the NF’s target distribution to be uniform instead of Gaussian, and
using uniform instead of Gaussian noise.

Broader Impact: As a theoretical paper, we don’t foresee any direct negative social impacts of our
work.
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