
def common(l1, l2):
ret = set()
for el in l1:

for var in [l1, l2]:
print(var)

def common(l1: list, l2: list): 
"""Return sorted unique common elements for two lists. 
>>> common([1, 4, 3, 653, 5], [5, 1, 5, 9, 653, 121]) 
[1, 5, 653] 
>>> common([5, 3, 2, 8], [3, 2]) 
[2, 3] 
”””
ret = set()
for el in l1:

for var in [l1, l2]:
if el1 in var:

ret.add(e1)
return sorted(ret)

ret = set()
for el in l1:

for e2 in l2:
if e1 == e2:

ret.add(e1)
return sorted(ret)

Anchor Function

Figure 7: Actual example of how an anchor function impacts the generated solution. We construct
the anchor function by taking the function signature from the HuamnEval prompt (blue), removing
the docstring and variable typing, appending n lines of the canonical solution (green), then adding
anchoring lines (red). We prompt Codex with the anchor function, the HumanEval prompt, and
the first n lines of the canonical solution (above black line). The full canonical solution is on the
right (green text, grey box). We see that the solution Codex generates (below black line) combines
elements of the canonical solution (e.g. checks condition and adds to ret.), with the anchor function
(e.g. for var loop).

A Additional Details and Results for Code Generation Experiments

In this section, we provide additional experimental details and results for the experiments in Section 3.
We include additional details for anchoring (Appendix A.1), the availability heuristic (Appendix A.3),
and attribute substitution (Appendix A.4).

A.1 Anchoring

In this section, we include additional experimental details and results from the anchoring experiments
in Section 3.3.2.

A.1.1 Additional experimental details

Filtering prompts for longer canonical solutions. In Section 3.3.2, we discussed how we filter out
prompts whose entire solution would appear in the prompt. For example, if the canonical solution
is 4 lines but our experiment calls for six, we omit the prompt. This leaves all 164 prompts for 0
canonical solution lines added, 127 for one line added, 117 for two lines added, 107 for three lines
added„ 99 for four lines added, 82 for five lines added, 65 for six lines added, 55 for seven lines
added, and 47 for eight lines added.

Additional prompt example. In Figure 3, we showed an example prompt and output from our
anchoring experiment. We expand on these results in Figure 7 by including the entire prompt, and the
canonical solution as reference.

Changing the anchor function name We additionally study anchoring experiments where the name
of the anchor function and function to be completed differ. This is different from the experiment
in Section 3.3.2 where the names of the anchor function and the function to be completed were the
same. Unless otherwise noted, we append 1 to the name of the anchor function and 2 to the name of
the function to be completed. We propagate this change to other instances of the function name in the

16



Figure 8: Results of the add-vars anchoring experiment. Left. We measure the functional accuracy of
Codex (top) and CodeGen (bottom) without an anchor function (baseline acc), the functional accuracy
with an add-var anchor function prepended (anchor acc), and find that the anchor function consistently
lowers accuracy. Right. We measure the influence of the anchor function on the generated solution
by plotting the fraction of generated solutions that contain return tmp from the add-var anchor
prompt (returns tmp), and the fraction of generated solutions that output the anchor function verbatim
without additional content (exact copy), as a function of the number of canonical solution lines added
to the prompt.

function signature of and the docstring. However, all components of the prompts from Section 3.3.2
remain unchanged.

A.2 Additional experimental results

In this section we provide additional experimental results, including the add-var anchor function
results, tables containing numbers used to generate plots, and the results of our experiments where
the anchor function and function to be completed have different names.

Add-var results We first exhibit the results of the add-var anchor line experiments described in
Section 3.3.2. In Figure 8, we plot the functional accuracy of prompts with (baseline) and without
(anchor) prepended anchor functions for both Codex and CodeGen, and find that while the baseline
functional accuracy increases, the anchor functional accuracy remains roughly constant. Moreover,
we see that both models adjust their output to related-but-incorrect solutions; in the same plot, we
see that our test for the anchor, the presence of return tmp consistently appears in the generated
solutions, while both anchor lines rarely appear together.

Tabular results. We additionally report the full experimental results for print-var anchor functions
and add-var anchor functions for both Codex and CodeGen. Table 4, and the full experimental results
for add-var anchor function sin Table 5. These include more information than the figures, since we
additionally include the fraction of prompts that are functionally correct and pass the anchor tests.

Control experiment: changing the function name. In Figure 9 we plot the results of the print-var
anchoring experiment where we append 1 to the function name in the anchor function, and 2 to
the function name of the function to be completed (see Table 6 for numerical results). We plot the
analogous add-var results in Figure 10 and include full numerical results in Table 7. Both results
are nearly identical to the results where the function name is shared presented in Section 3.3.2, and
suggest that the shared function name is not responsible for our anchoring results.

A.3 Availability Heuristic

In this section, we augment Section 3.3.3 with additional additional availability heuristic experiments
that use non-instructional prompts. These prompts give the correct function name, add in variables x

17



Model Sol. lines Anc. acc. Prints P. + pass For var F.v. + pass Copy No anc.

CODEX

0 34.1 7.9 0.0 12.8 1.8 7.3 32.9
1 29.9 44.9 0.8 60.6 5.5 39.4 47.2
2 36.8 25.6 1.7 47.9 7.7 17.1 51.3
3 46.7 29.0 5.6 43.9 11.2 15.0 57.0
4 46.5 26.3 5.1 32.3 6.1 14.1 60.6
5 51.2 30.5 3.7 31.7 3.7 15.9 64.6
6 46.2 30.8 1.5 35.4 3.1 16.9 66.2
7 40.0 38.2 3.6 40.0 3.6 20.0 70.9
8 57.4 29.8 8.5 31.9 10.6 14.9 70.2

CODEGEN

0 22.0 10.4 0.0 11.0 0.0 7.9 25.5
1 20.5 49.6 0.0 55.9 1.6 40.2 32.9
2 26.5 45.3 0.0 50.4 2.6 35.9 36.6
3 29.0 52.3 0.0 54.2 0.9 36.4 47.8
4 35.4 42.4 1.0 44.4 2.0 29.3 53.8
5 39.0 39.0 1.2 39.0 1.2 26.8 53.5
6 24.6 61.5 0.0 61.5 0.0 43.1 51.4
7 29.1 63.6 3.6 63.6 3.6 47.3 55.1
8 25.5 63.8 2.1 63.8 2.1 55.3 46.7

Table 4: Full results for the print-var anchor experiments, used to generate the plot in Figure 4. For
different numbers of canonical solution lines (sol. lines), we report the functional accuracy when the
anchor function is prepended (anc. acc.), the fraction of generated solutions that include print(var)
(prints), the fraction of generated solutions that include print(var) and are functionally correct
(p. + pass), the fraction of generated solutions that include for var in (for var), the fraction of
generated solutions that include for var in and are functionally correct (f. v. + pass), the fraction
of solutions that are exactly the anchor function (copy), and the functional accuracy without the
anchor function prepended (no anc.).

Figure 9: Results of the print-var anchoring experiment on Codex, where we append 1 to the name of
the anchor function and 2 to the name of the function to be completed.

Figure 10: Results of the add-var anchoring experiment on Codex, where we append 1 to the name of
the anchor function and 2 to the name of the function to be completed.

18



Model Sol. lines Anc. acc. Rets. temp Rets. tmp + passes Verbatim No anc. acc.

CODEX

0 32.3 7.9 0.6 4.3 32.9
1 33.1 29.1 1.6 7.1 47.2
2 39.3 29.9 2.6 7.7 51.3
3 46.7 26.2 2.8 6.5 57.0
4 38.4 35.4 1.0 7.1 60.6
5 41.5 37.8 0.0 8.5 64.6
6 36.9 44.6 3.1 12.3 66.2
7 40.0 43.6 0.0 7.3 70.9
8 40.4 42.6 0.0 8.5 70.2

CODEGEN

0 20.7 12.8 0.6 4.3 24.4
1 18.1 38.6 0.0 10.2 31.5
2 24.8 40.2 0.0 10.3 35.0
3 28.0 50.5 0.9 12.1 45.8
4 30.3 42.4 0.0 9.1 51.5
5 32.9 48.8 0.0 11.0 51.2
6 16.9 64.6 1.5 12.3 49.2
7 20.0 63.6 0.0 9.1 52.7
8 12.8 78.7 2.1 10.6 44.7

Table 5: Full results for the add-var anchor experiments, used to generate the plot in Figure 8. For
different numbers of canonical solution lines (sol. lines), we report the functional accuracy when
the anchor function is prepended (anc. acc.), the fraction of generated solutions that include return
tmp (rets. tmp), the fraction of generated solutions that include return tmp and are functionally
correct (rets. tmp + passes), the fraction of solutions that are exactly the anchor function (Verbatim),
and the functional accuracy without the anchor function prepended (no anc. acc.).

Sol. lines Anc. acc. Prints P. + pass For var F.v. + pass Copy No anc.
0 30.0 22.5 0.0 27.5 1.9 20.6 32.9
1 26.8 55.1 0.8 67.7 4.7 48.0 47.2
2 32.7 34.5 2.7 52.7 5.5 26.4 51.3
3 40.4 36.4 5.1 45.5 7.1 27.3 57.0
4 44.9 29.6 4.1 34.7 5.1 22.4 60.6
5 52.4 31.7 2.4 32.9 2.4 26.8 64.6
6 40.6 43.8 1.6 45.3 3.1 34.4 66.2
7 43.6 43.6 7.3 45.5 7.3 29.1 70.9
8 56.5 32.6 6.5 32.6 6.5 19.6 70.2

Table 6: Full results of the print-var anchoring experiment on Codex where we append 1 to the name
of the anchor function and 2 to the name of the function to be completed. These numbers are used to
generate the plot in Figure 9.

Sol. lines Anc. acc. Rets. temp Rets. tmp + passes Verbatim No anc. acc.
0 34.4 17.5 1.2 5.6 32.9
1 27.6 35.4 1.6 8.7 47.2
2 36.8 26.5 2.6 8.5 51.3
3 39.6 30.2 1.9 9.4 57.0
4 35.6 39.1 0.0 9.2 60.6
5 38.8 40.0 1.2 8.8 64.6
6 31.7 50.8 1.6 12.7 66.2
7 31.5 46.3 0.0 11.1 70.9
8 35.6 44.4 0.0 13.3 70.2

Table 7: Full results of the add-var anchoring experiment where we append 1 to the name of the
anchor function and 2 to the name of the function to be completed. These numbers are used to
generate the plot in Figure 9

19



and y, and add the description below the function signature, but keep all other experimental details
from Section 3.3.3 constant. An example prompt is as follows:

def square_sum(x, y):

#function squares the sum of its inputs

Codex achieves higher accuracy with this prompt than the prompt from Section 3.3.3; it achieves an
accuracy of 54.1%. However, the unary-first bias remains: 27.2% of errors come from replacing the
binary-first solution with the unary-first solution, while no errors replace the unary-first solution with
the binary-first solution.

A.4 Attribute substitution

In this section, we provide more details on how we generate prompts for the attribute substitution
experiment in Section 3.3.4.

Prompts in Section 3.3.4. We consider two types of MathEquation prompts for our experiments in
Section 3.3.4. First, we consider prompts that include the function name in the docstring:

"""

Write a function that computes the [operation] of its inputs called [name]

"""

And second, we consider prompts that already include the function name.

"""

Write a function that computes the [operation] of its inputs

"""

def [name]

We consider names of the form [operation]_plus_[number]. We test sum, difference, and product for
operations, and consider the integers between 0 and 5 and powers of ten between 10 and 10000 for
the possible numbers for 90 total prompts in each setting. These are the prompts we use to report
numbers in Table 2.

Control experiment: non-instructional prompt. We next test non-instructional prompts, where the
prompt includes the correct function name, variables x and y, and a description below the function
signature. Other experimental details from Section 3.3.4 remain constant. An example prompt is as
follows:

def product_plus_2(x, y):

#returns the sum of its inputs

B Additional Details and Results for GPT3 Experiments

In this section, we include additional details and results on experiments described in Section 4. We
focus on the anchoring results in Appendix B.1, and the framing effect results in Appendix B.2

B.1 Anchoring

In this section, we provide more details for the replication study of Jacowitz and Kahneman [1995]
described in Section 4. Specifically, we outline the prompts that we use in the study along with
GPT-3’s outputs.

In Table 8, we show the prompts we use from the Jacowitz and Kahneman [1995] study along with
the true answer, then the lower and upper anchors using p of 50%. We additional study p = 20%
to generate the results in Table 3. We find the true answers for meat consumption7, distance from
San Francisco to New York8, the height of the tallest redwood9, the number of female professors at

7
https://thehumaneleague.org/article/meat-consumption-in-the-us (as of 2017)

8
https://www.distance24.org/New%20York%20City/San%20Francisco

9
https://www.livescience.com/28729-tallest-tree-in-world.html

20

https://thehumaneleague.org/article/meat-consumption-in-the-us
https://www.distance24.org/New%20York%20City/San%20Francisco
https://www.livescience.com/28729-tallest-tree-in-world.html


Question Actual Low. anc (50%) Up. anc (50%)
Length of the Mississippi River (in miles) 2350 1175 3525
Height of Mount Everest (in feet) 29032 14516 43548
Amount of meat eaten per year by the

144 72 216average American (in pounds)
Distance from San Francisco to New York City (in miles) 2569 1284 3854
Height of the tallest redwood (in feet) 380 190 570
Number of United Nation members 193 96 290
Number of female professors at the

256 128 384University of California, Berkeley
Population of Chicago (in millions) 2.7 1 4
Year the telephone was invented 1876 938 2814
Average number of babies born per

10267 5134 15400day in the United States
Maximum speed of a house cat (in miles per hour) 30 15 45
Amount of gas used per month by

656 328 984average American (in gallons)
Number of state colleges and universities in California 23 12 34
Number of Lincoln’s presidency 16 8 24

Table 8: Prompts we use from the Jacowitz and Kahneman [1995], with the researched true answer,
along with the lower and upper anchors with anchor adjustment 50%.

Berkeley10, the population of Chicago11, the year the telephone was invented12, the number of babies
born per day in the United States13, the maximum speed of a house cat14, and the amount of gas used
per month by the average American15 at the URLs listed in the footnotes. We do not prompt GPT-3
to estimate the Number of bars in Berkeley, CA unlike the original study, since we could not find a
reliable answer.

B.2 Framing effect

In this section, we test GPT-3 with an expansion of framing effect study from Tversky and Kahneman
[1981]. In their original experiment, Tversky and Kahneman asked people to choose between two
treatment options: certainly saving some fraction of the population (e.g. certainly saving 200 / 600),
or probabilistically saving all of the population (saving all 600 with probability 1/3). They then
compare peoples’ responses to the identical choice framed in terms of death: choosing between
some fraction of the population certainly dying (400 / 600 die) or probabilistically letting the whole
population die (2/3 chance everybody dies). For both framings, the number of people that live and
die in expectation remains constant.
We run this experiment on the “davinci-002” version of GPT-3 using Tversky and Kahneman [1981]’s
prompt formatting. Specifically, for the save framing we prompt GPT-3 with the following four-lined
prompt:

Imagine 600 people are affected by a deadly disease. Choose Option A or Option B

Option A: Exactly 200 people will be saved.

Option B: 1/3 probability that 600 people will be saved, and 2/3 probability that

no people will be saved.

Answer: Option

10
https://www.dailycal.org/2020/04/02/female-faculty-faces-challenges-despite-

increase-in-uc-berkeley-gender-diversity/

11
https://en.wikipedia.org/wiki/Demographics_of_Chicago

12
https://www.sciencemuseum.org.uk/objects-and-stories/ahoy-alexander-graham-bell-

and-first-telephone-call

13
https://www.babycenter.com/pregnancy/your-body/surprising-facts-about-birth-in-

the-united-states_1372273 (as of 2019)
14
https://www.petfinder.com/cats/cat-behavior-and-training/how-fast-cats-run-how-

high-cats-jump

15
https://www.fool.com/investing/2017/01/14/heres-how-much-gasoline-the-average-

american-consu.aspx (As of 2017)

21

https://www.dailycal.org/2020/04/02/female-faculty-faces-challenges-despite-increase-in-uc-berkeley-gender-diversity/
https://www.dailycal.org/2020/04/02/female-faculty-faces-challenges-despite-increase-in-uc-berkeley-gender-diversity/
https://en.wikipedia.org/wiki/Demographics_of_Chicago
https://www.sciencemuseum.org.uk/objects-and-stories/ahoy-alexander-graham-bell-and-first-telephone-call
https://www.sciencemuseum.org.uk/objects-and-stories/ahoy-alexander-graham-bell-and-first-telephone-call
https://www.babycenter.com/pregnancy/your-body/surprising-facts-about-birth-in-the-united-states_1372273
https://www.babycenter.com/pregnancy/your-body/surprising-facts-about-birth-in-the-united-states_1372273
https://www.petfinder.com/cats/cat-behavior-and-training/how-fast-cats-run-how-high-cats-jump
https://www.petfinder.com/cats/cat-behavior-and-training/how-fast-cats-run-how-high-cats-jump
https://www.fool.com/investing/2017/01/14/heres-how-much-gasoline-the-average-american-consu.aspx
https://www.fool.com/investing/2017/01/14/heres-how-much-gasoline-the-average-american-consu.aspx


Figure 11: Fraction of the time the risky option is chosen as a function of the save probability for
both save framing and die framing. Around the regime of the original experiment (save probability =
1/3), GPT-3 rarely chooses the risky option with the save framing, but does so more often with the die
framing. However, for higher save probabilities, both tend to choose the risky framing. This might
match humans; intuitively, for higher save probabilities, the risky framing is less risky.

Save probability range
Prompt framing Less than 0.5 0.5 Greater than 0.5 All Tversky and Kahneman [1981]

Save framing 11.3 21.9 84.4 45.4 28
Die framing 60.0 46.9 93.8 74.1 78

Table 9: Results of the framing effect experiment on GPT-3. For the save and die framinigs, we
report the average probability (all), the average over different ranges of probabilities, and the original
numbers reported in Tversky and Kahneman [1981].

For the death framing, we use an analogous four-lined prompt.

Imagine 600 people are affected by a deadly disease. Choose Option A or Option B

Option A: Exactly 400 people will die.

Option B: 1/3 probability that nobody will die, and 2/3 probability that 600 people

will die.

Answer: Option

In these prompt, the population size, or total number of affected people is 600, and the save fraction,
or fraction of people certainly saved is 1/3. The original study only considers these numbers, but we
additionally test population sizes of 60, 300, 900, 1200, 1500, 3000, and 6000 and all save fractions
that have denominator less than seven and are reduce (i.e. 1/2, not 2/4). We test the rate at which
GPT-3 selects the risky option or option which probabilistically lets everyone die, for both the save
framing and die framing. To avoid the confounding influence of the position of the risky option and
the label, for each prompt framing, population size, and save fraction we set the risky option to both
option A and B, and put it both first and second. This gives us a total of 704 prompts.

In Figure 11 plot the fraction of the time the risky option is chosen as a function of the save probability
for both the save and die framing, and results aggregated over save probability ranges in Table 9. Our
results show that averaged over all probabilities, our results are qualitatively similar to the results
from Tversky and Kahneman [1981]: in the original paper with the save framing people choose the
risky option 28% of the time compared to 45% for GPT-3, and with the death framing choose the risky
option 78% of the time compared to 74% for GPT-3. Around the regime of the original experiment
(save probability = 1/3), GPT-3 rarely chooses the risky option with the save framing (11.3%), but
does so more often with the die framing (60.0%). However, for higher save probabilities, both tend to
choose the risky framing. This might match humans; intuitively, for higher save probabilities, the
risky framing is less risky; e.g. the human has a 80% chance of saving everyone. This experiment
highlights both how language models might mirror cognitive biases of humans, and how they could

22



Figure 12: Plot describing the errors Codex makes as a function of the number of packages for the
docstring deletion experiment.

be useful for studying how humans make decisions—our results suggest that a human study where
the save probability is higher might have qualitatively different conclusions.

C Additional deletion experimental details

In this section, we include additional experimental details for the deletion experiments

Additional prompt details. Recall that in Section 5 we exhibit how Codex can make high-impact
errors by inadvertently deleting files. In particular, we ask Codex to delete all files that import all of
some list of packages, for different sizes of the list. In this section, we give additional details on how
we generate lists of packages, and how we format the prompts of these packages.

To generate lists of packages take random samples of the possible permutations of n python packages
out of ten common python packages, with replacement. We sample 10 permutations of sizes 1-6
to generate six total prompts. We select from the 10 packages listed at https://www.kdnuggets.
com/2021/03/top-10-python-libraries-2021.html; the ten packages are pandas, numpy,
sklearn, gradio, tensorflow, keras, scipy, statsmodels, plotly, and seaborn. One prompt to codex is
given in Figure 6. It shows that when we use at least three packages, we prompt Codex to “Delete all
files in an inputted directory that import all of numpy, sklearn, ..., and gradio”. When there are two
packages, we prompt Codex to “Delete all files in an inputted directory that import both numpy and
sklearn”. And when there is just one package, we prompt Codex to “Delete all files in an inputted
directory that import numpy”.

We use manual evaluation to categorize the results. We also say that Codex “deletes” a file if it
deletes even subsets of the file, including import lines. This occurred in a small minority of generated
outputs.

As a control experiment, we first test if descriptive prompts rather than instructional prompts show
similar results to those in Section 5. To do so, we largely replicate the deletion experiments from
Section 5; i.e. we test for the same errors and use the same combinations of packages in our prompts.
However, we specify that the function name is delete_all_with_libraries, and the docstring
appears below the prompt. Our prompts look like:

def delete_all_with_libraries(directory):

#deletes all files in an inputted directory that import...

Additional experimental results In this section, we report the results of our descriptive-prompt
control experiment. These results are in in Figure 12. Overall, we still see many high-impact errors
(the “any package” region), but see far more low-impact errors, like endless import strings, compared
to Section 5. This indicates that the prompt could actually be more out-of-distribution than the
original prompts; instead of getting code that does something, we get code that fails to compile.

23

https://www.kdnuggets.com/2021/03/top-10-python-libraries-2021.html
https://www.kdnuggets.com/2021/03/top-10-python-libraries-2021.html

	Introduction
	Related Work
	Code Generation Experiments
	Models
	Benchmarks
	Empirical results
	Inspiration: Framing effect
	Inspiration: Anchoring
	Inspiration: Availability heuristic
	Inspiration: Attribute substitution


	GPT-3 Results
	High-Impact Errors
	Discussion
	Additional Details and Results for Code Generation Experiments
	Anchoring
	Additional experimental details

	Additional experimental results
	Availability Heuristic
	Attribute substitution

	Additional Details and Results for GPT3 Experiments
	Anchoring
	Framing effect

	Additional deletion experimental details

