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Abstract

Fine-tuning pretrained language models (LMs) without making any architectural
changes has become a norm for learning various language downstream tasks.
However, for non-language downstream tasks, a common practice is to employ
task-specific designs for input, output layers, and loss functions. For instance, it
is possible to fine-tune an LM into an MNIST classifier by replacing the word
embedding layer with an image patch embedding layer, the word token output
layer with a 10-way output layer, and the word prediction loss with a 10-way
classification loss, respectively. A natural question arises: Can LM fine-tuning
solve non-language downstream tasks without changing the model architecture or
loss function? To answer this, we propose Language-Interfaced Fine-Tuning
(LIFT) and study its efficacy and limitations by conducting an extensive empirical
study on a suite of non-language classification and regression tasks. LIFT does not
make any changes to the model architecture or loss function, and it solely relies on
the natural language interface, enabling “no-code machine learning with LMs.” We
find that LIFT performs comparably well across a wide range of low-dimensional
classification and regression tasks, matching the performances of the best baselines
in many cases, especially for the classification tasks. We also report experimental
results on the fundamental properties of LIFT, including inductive bias, robustness,
and sample complexity. We also analyze the effect of pretraining on LIFT and
a few properties/techniques specific to LIFT, e.g., context-aware learning via
appropriate prompting, calibrated predictions, data generation, and two-stage fine-
tuning. Our code is available at https://github.com/UW-Madison-Lee-Lab/
LanguageInterfacedFineTuning.

1 Introduction
Deep neural networks have been highly successful across a multitude of domains, from computer
vision [1, 2] and natural language processing [3, 4], to game playing [5, 6]. Most advances in deep
learning have come with a variety of domain-specific designs for network architectures, such as
convolutional filters [7, 8, 9] for vision tasks, or recurrent modules [10, 11] and attention mecha-
nisms [12, 13] in the context of natural language processing. A domain-and-modality agnostic model
that can be adapted to solve tasks across different modalities and domains has become a desidera-
tum [14], motivating great efforts in transfer learning [15] and multi-modal learning [16]. Recently,
transformer-based language models (LMs) [13, 17, 18, 19] exhibited impressive versatility across
different domains and modalities. They have shown great performances for various language-based
tasks [20] such as question answering [21, 22], or commonsense reasoning [23]. They have also been
applied to non-language modalities [18]. For instance, GPT-2 [17] pretrained on language data can
be efficiently fine-tuned to perform image classification and numerical computation [18].

When downstream tasks are language-based tasks, adapting pretrained LMs can be achieved without
modifying the models’ architecture. Typically, this adaptation is enabled via simple fine-tuning [24,
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Figure 1: A high-level illustration of the Language-Interfaced Fine-Tuning (LIFT) framework.
LIFT has a two-phase procedure: (1) converting the dataset into sentences and (2) fine-tuning the
pretrained language model (e.g., GPT) on the obtained sentences. This figure visualizes how LIFT
can be applied to the Iris classification task. We first convert the Iris dataset into plain English
sentences (left). Since feature names and the task description are available for this task, one could
incorporate them as part of the prompt (as option 1 in the figure). (In Sec. 4.1, we show that adding
such contextual information to prompts helps LIFT achieve higher predictive accuracy.) One may
also choose to use a simpler prompt with a generic naming convention (x1, x2, . . . , xd) for p features
(as option 2 in the figure). After the sentence conversion step, LIFT fine-tunes a pretrained LM with
the sentence set without making any changes to model architecture or loss. At inference time, we
convert the test samples to a sentence form using the same prompt, excluding the label part. LIFT
performs surprisingly well in various non-language regression/classification tasks, and we summarize
our main findings in Table 3. Note that to obtain a model for a given task, all we need here is to design
proper sentence templates for LIFT and no changes to architecture or loss functions are needed.

25, 26, 27] or in-context few-shot learning methods [28, 29]. However, not altering the architecture
may pose a limitation for transferring to non-language tasks. As their input and output formats
are not in some language form, adapting LMs to these domains may seem to require architectural
changes. Indeed, it has been a common practice to re-design the input/output layers and loss functions
to accommodate a different predictive task. For instance, to adapt GPT-2 [21] to other modalities,
the frozen pretrained transformer [18] adds new input/output layers to handle different types of
input/output. To make such changes, one must have a good understanding of the underlying principles
of LMs and an ability to make proper modifications at the code level.

A natural question that arises is whether such changes are necessary. In other words,
Does language model fine-tuning work for non-language tasks

without changing the architecture or loss function at all?

To answer this, we consider a simple fine-tuning procedure for LMs, referred to as Language-
Interfaced Fine-Tuning (LIFT). This procedure can be used to learn predictors for any classification
or regression task. LIFT runs in two phases: (1) converting labeled samples into sentences, and (2)
fine-tuning pretrained LMs on the sentence dataset without altering the architecture or loss function.

Fig. 1 illustrates how we fine-tune GPT with LIFT to solve the Iris classification task [30]. LIFT
first converts each labeled sample into a sentence with two options. The first option is to incorporate
feature names and the task description into the sentence template. In this example, we could convert
a training sample r into “An Iris plant with sepal length r.sepal_length, sepal width r.sepal_width,
petal length r.petal_length, and petal width r.petal_width is r.class.” Here, we use the dot notation,
i.e., r.? denotes the string conversion of the corresponding attribute of sample r. One may also adopt
a simpler (and more generic) sentence template, such as “If x1=r.x1, x2=r.x2, . . . , xp=r.xp, then
y=r.y,” if there are p features. We then fine-tune LMs without changing either architecture or loss
function. Then, we perform inference as follows. LIFT first converts test samples into sentences
using the same template while leaving the prediction part empty. It then feeds the converted sentences
as prompts to the fine-tuned model. The output tokens are parsed to provide the final predictions.

Our work empirically shows that LIFT can provide high-accuracy solutions for a variety of non-
language tasks. Fig. 2 shows examples of real functions learned by GPT-J models [31] fine-tuned
using LIFT given 1000 samples. Recall that LIFT does not require any changes in the architecture
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Figure 2: Approximating various functions with LIFT using GPT-J. We visualize the target
functions (first row) and the predictor functions learned by LIFT on GPT-J (second row). Blue dots
show the 1000 training samples. One can observe that LIFT well approximates the target functions.

or loss function, Thus, our findings show that such changes to architecture/loss function might not be
necessary, even when the target predictive task is not a language task. Thus, LIFT can be almost
perceived as a “no-code machine learning” framework as the data-to-sentence conversion is extremely
straightforward even without extensive programming skills and machine learning backgrounds.

Motivated by these intriguing properties, we investigate the efficacy and limitations of LIFT on
non-language tasks by conducting an extensive empirical study on a suite of classification and
regression tasks. First, we observe that LIFT performs well across a wide range of low-dimensional
classification and regression tasks. In most cases, it nearly matches (or slightly outperforms) the
best baselines’ performance. To further understand LIFT, we conduct experiments testing the
fundamental learning properties, e.g., its inductive bias, sample efficiency, ability to extrapolate,
worst- and average-case noise robustness, and how the pretraining of LMs affects LIFT. Third,
we study a few unique properties specific to LIFT, e.g., context-aware learning with task-specific
prompting, prediction calibration, and the additional use of LIFT for data generation. Lastly, to
improve upon the basic fine-tuning, we employ a few techniques: two-stage fine-tuning with synthetic
pretext tasks and data augmentation. Both techniques improve the performance of LIFT. We finally
provide discussions on limitations and future investigations of LIFT.

Scope of the study. Our work proposes the use of natural language interface for learning with
LMs via LIFT. We emphasize that our goal is not to achieve the state-of-the-art performance, but to
investigate thoroughly: (i) what LIFT can and cannot do, (ii) properties of models fine-tuned via
LIFT, and (iii) whether we can improve LIFT with advanced techniques.

2 Methodology and Experimental Setup

LIFT training. To fine-tune a pretrained LM with LIFT on a target supervised learning task, we
apply two steps: (1) convert each sample into a sentence with a fixed template, and (2) fine-tune
LMs with sentence datasets. We use the default cross-entropy loss for token prediction in LMs. Our
generic template (without feature names and task description) for sample r is

When we have x1=r.x1, x2=r.x2, . . . , xp=r.xp, what should be y?| {z }
question

###| {z }
q/a separator

y = r.y| {z }
answer

@@@| {z }
end of answer

,

if r has p attributes. Here, we use the separator convention recommended by OpenAI [32] – “###”
for question/answer separation, and “@@@” for end of generation. When attributes names and task
descriptions are available, one can use a more informative prompt (shown in Fig. 1) with all actual
prompts are provided in Sec. 4.1. We report learning curves of LIFT on several tasks in Appendix E.5.

LIFT inference. For inference, we use the same prompt template except for the answer and
end-of-answer parts. Once the fine-tuned LM completes the test prompt, we simply parse the output
tokens. For classification, we simply compare the generated text with the string representation of the
class names. For regression, we convert the generated string into a number. For instance, with the
output being “y=10.35@@@extratokens”, we split the output sentence by the stop separator “@@@”
into two parts. Taking the first part “y=10.35”, we parse the value “10.35” as our final prediction.

The generated output might be invalid. For classification tasks, the output string may not match any
actual class, which we declare as misclassification. Note that one may obtain better accuracy by
returning its closest class using string metrics. For regression tasks, we consider output invalid if the
string-to-number parsing fails. In these cases, we adjust the generation randomness by increasing the
decoding temperature [33, 34, 35] from 0 (deterministic mode) to 0.75 (random mode). We repeat
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the inference up to five times, then return the average value of the training set if all attempts fail. Note
that invalid output occurs very rarely (less than or around 1% in most tested cases).

For evaluation metrics, we use accuracy for classification tasks, and RMSE, RAE errors for regression
tasks, where RAE =

Pn
i=1 |ŷi � yi|/

Pn
i=1 | 1n

Pn
j=1 yj � yi| and RMSE =

pPn
i=1(ŷi � yi)2/n

on each dataset D = {(xi, yi)}ni=1 with n samples, features x 2 X ⇢ Rp, and outcome y.

Pretrained LMs. We apply LIFT on two pretrained LMs: GPT-J [31] and GPT-3 [19]. To fine-tune
GPT-J, we use LoRA [24], a parameter-efficient method that constrains weight matrix updates to be
low-rank. For experiments on GPT-J, we used p3.8xlarge and p3.2xlarge instances from AWS
and RTX3090 GPUs in the local server. Since GPT-3 is not fully publicly available, we use the API
provided by OpenAI to perform black-box GPT-3 fine-tuning. More details are in Appendix C.2.1.

Datasets. We design and select a wide range of datasets to better understand the behavior of LIFT.
For classification, we use three types of non-language data: low-dimensional synthetic datasets,
real tabular datasets in OpenML [36], and vision datasets (MNIST [37], Fashion-MNIST [38] and
their permuted variants [39]). For regression, we use both synthetic and real datasets. For synthetic
datasets, we defined samples (xi, yi) of input-output pair as y ⇠ f(x) + N (0,�2), where �2 � 0 is
the noise level. Unless otherwise stated, we sample the feature x uniformly from a hypercube [L,U ]p,
where L and U are minimum/maximum feature values, and p is the number of features. Following
the suggestion by [40], we consider various functions f for regression tasks: (i) linear function, (ii)
quadratic function, (iii) exponential function, (iv) cosine function, (v) `1-norm function, and (vi)
piece-wise linear function. Their 2D visualizations are provided in the first row of Fig. 2. We also use
four real datasets: Medical Insurance (Insurance) [41], Combined Cycle Power Plant (CCPP) [42],
Servo [43], and Student Performance (Student) [44]. More details are included in Appendix C.1.

Baselines. We consider standard learning algorithms [45, 46]. For classification, we use logistic
regression (LogReg), decision tree (DT), k-nearest neighbor (KNN), support vector machine with
Gaussian kernel (SVM), a four-layer ReLU neural network (MLP) with 200 neurons per hidden layer,
random forest (RF), and XGBoost (XG). We also use the majority class classifier (MCC) that outputs
the most dominant class. For regression, we use polynomial regression (PR), kernel ridge regression
(KR) with radial basis function kernel, k-nearest neighbors (KNN), a three-layer ReLU neural network
(MLP) with 50 hidden neurons per each layer, Gradient Boosting Trees (GBT), random forest (RF),
and Gaussian process (GP). For hyperparameter selection, we apply the grid search on a set of
parameters’ values and use cross-validation on the training set (see details in Appendix C.2).

3 Basic Findings of LIFT

Table 3 summarizes our main findings. We also study sample complexity (Sec. 3.2), comparison
with in-context learning (Sec. 3.3), models’ decision boundaries (Sec. 3.4), and the effect of LMs’
pretraining on LIFT (Sec. 3.6). Appendix E provides additional results, including the effect of input
and output layers (E.1), model size (E.2), and LIFT for Ridge regression (E.4).

3.1 How Well Does LIFT Perform on Standard ML Tasks?

Classification. Table 4 compares classification accuracies between algorithms on a wide range of
tasks. We observe that LIFT achieves comparable performance to most baselines. In most cases,
LIFT/GPT ranks highly in the top three best-performing methods. We find that LIFT can learn
non-linear relationships between features and the responses: LIFT/GPT-3 achieves 81.17% accuracy
on the circle dataset, while logistic regression failed to perform better than the MCC (50%). As the
difficulty of tasks varies, which can be estimated by the average performance of baselines, LIFT also
suffers from performance degradation. LIFT can perform comparably well even when the number
of features is as large as hundreds, though the limited number of tokens as inputs to LMs restricts
the number of features LIFT can input. However, when the number of classes is large (say 100s),
both LIFT/GPT models have lower accuracies than many baselines, though they manage to be better
than MCC. For instance, on the 100-class Margin dataset, the accuracy gap between LIFT/GPT-J and
the best algorithm (RBF-SVM) is nearly 30%. Note that LIFT can directly use raw data while most
baselines require feature scaling and normalization for good performance. More results are provided
in Appendix D.1.1, including comparisons with methods leveraging larger models.

Regression. Tables 19 and 20 present our function approximation comparison. For the low-
dimensional cases, LIFT is comparable to baselines. Still, it fails to beat the strongest baselines, such
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Table 3: Summary of the main findings.
Topic Findings

Overall
performance

On various classification tasks, LIFT achieves accuracies comparable to strong baselines
(Table 4). For regression, LIFT well approximates different types of low-dimensional
functions (Fig. 2) but does not perform well for high-dimensional cases (Table 19).

Robustness For regression, LIFT is robust to outliers in training data (Fig. 28). For classification,
LIFT is comparable to baselines under label corruption on training data (Fig. 29) but
more vulnerable to feature corruption on test data (Table. 33).

Context-aware
learning

We can improve LIFT on classification tasks by designing prompts to specify feature
names and the target task. The improvement is significant when the description of the
feature names and the target task can be interpreted with common knowledge (Table 9).

Two-stage
training

Warming up LIFT with pretext tasks using synthetic data improves the prediction
performance, especially in the low-data regime (Fig. 40).

Data
augmentation

For classification tasks, training with augmented data significantly improves the tolerance
of LIFT against perturbed test data (Table 12).

Table 4: Accuracies (") on classification datasets. We evaluate LIFT/GPTs on 2D synthetic data,
tabular data in OpenML [36], and image data, varying number of features (p) and data classes
(c). Overall, LIFT/GPTs perform comparably well across tasks, adapting to non-linear datasets
(circles, two circles) beyond the capacity of logistic regression. For OpenML datasets, they achieve
competitive performances with the best methods, e.g., XGBoost). The performance degrades when
more classes are given, e.g., c=100. They achieve competitive accuracies on both MNIST and Fashion
MNIST. Note that MNIST’s classes are not fully balanced; thus, MCC achieves 11.35% instead of
10%. Table 17 provides the full comparison with all baselines (KNN, MLP, Random Forest).

Dataset (ID) p / c MCC LogReg DT RBF-SVM XG LIFT/GPT-J LIFT/GPT-3

Synthetic Data

circles (3) 2 / 2 50.00 48.58±1.94 77.42±0.24 83.08±0.59 81.42±0.31 79.95±1.53 81.17±0.42
two circles (6) 2 / 2 50.00 49.83±4.18 75.50±0.20 80.00±0.54 79.25±0.35 75.92±1.65 81.42±0.82

blobs (2) 2 / 4 25.00 96.75±0.00 96.08±0.82 96.75±0.00 96.17±0.12 96.17±0.59 96.67±0.24
moons (4) 2 / 4 50.00 88.58±0.12 99.25±0.41 100.00±0.00 99.83±0.12 99.58±0.42 100.00±0.00

9Clusters (1) 2 / 9 11.25 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.75±0.00 100.00±0.00

Tabular Data (OpenML)
Customers (1511) 8 / 2 68.18 87.12±0.54 85.98±0.53 86.36±0.00 85.23±0.00 85.23±1.61 84.85±1.42

Pollution (882) 15 / 2 50.00 58.33±11.79 77.78±3.93 58.33±6.81 63.89±7.86 63.89±3.93 63.89±7.86
Spambase (44) 57 / 2 60.59 93.27±0.00 90.7±0.14 93.70±0.00 95.87±0.00 94.03±0.54 94.90±0.36

Hill-Valley (1479) 100 / 2 49.79 77.78±0.00 56.38±0.89 68.72±0.00 59.26±0.00 100.00±0.20 99.73±0.19
IRIS (61) 4 / 3 33.33 96.67±0.00 97.77±3.85 100.00±0.00 100.00±0.00 96.67±0.00 97.0±0.00
TAE (48) 5 / 3 35.48 45.16±4.56 65.59±5.49 53.76±6.63 66.67±8.05 61.29±6.97 65.59±6.63
CMC (23) 9 / 3 42.71 49.49±0.83 56.72±0.32 56.50±0.97 52.43±0.42 49.83±0.28 57.74±0.89
Wine (187) 13 / 3 38.89 100.00±0.00 93.52±2.62 100.00±0.00 97.22±0.00 93.52±1.31 92.59±1.31
Vehicle (54) 18 / 4 25.88 80.39±1.00 63.92±2.37 81.18±0.48 73.14±0.28 64.31±2.37 70.20±2.73
LED (40496) 7 / 10 11.00 68.67±0.94 66.33±2.87 68.00±0.82 66.00±0.82 65.33±0.47 69.33±2.05

OPT (28) 64 / 10 10.14 96.53±0.22 89.8±1.09 97.95±0.00 97.48±0.17 98.22±0.11 98.99±0.30
Mfeat (12) 216 / 10 10.00 97.67±0.12 87.67±1.05 98.83±0.24 96.75±0.00 94.17±1.75 93.08±0.24

Margin (1491) 64 / 100 0.94 81.35±0.15 43.86±1.21 81.98±0.30 70.21±0.29 50.23±1.33 59.37±0.92
Texture (1493) 64 / 100 0.94 81.67±0.97 46.88±1.93 83.44±0.89 70.73±1.41 50.32±2.18 67.50±1.42

Image Data

MNIST
784 / 10

11.35 91.95±0.69 87.42±0.64 97.70±0.97 97.69±0.04 97.01±1.15 98.15±0.67
Permuted MNIST 11.35 92.58±0.04 87.87±0.69 98.06±0.31 97.62±0.09 95.80± 0.07 96.25±0.35
Fashion MNIST 10.00 85.59±0.09 80.52±0.40 90.59±0.02 90.19±0.04 85.10 ± 0.19 90.18 ±0.12

Permuted F-MNIST 10.00 84.95±0.84 79.91±0.93 88.04±1.69 89.93±0.14 82.25±0.27 88.92±0.71

as GP, as GPT models measure the error by comparing tokens instead of measuring how close the
prediction values are to true values. We conjecture that we can improve our performance by level
encoding, i.e., representing numerical values as binary values. We also investigate the interpolation
and extrapolation of LIFT and defer the details to Sec. D.1.1. All methods fail to extrapolate and
interpolate well for all functions, and the interpolation performance of LIFT is only good in the linear
regression case. Interestingly, LIFT tends to output seen values (from training data) for extrapolation.

3.2 How Many Samples Does LIFT Need?
We investigate whether LIFT is sample efficient. Fig. 25 in Appendix shows the sample complexity
evaluation on classification and regression tasks. We find that GPT models can be quickly fine-tuned
to learn new tasks with LIFT. For classification, as the number of classes increases (left to right
columns in Fig. 25a), LIFT does need more samples for adaptation, probably because the data input
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Table 5: Comparison of accuracies (") between ICL and fine-tuning with LIFT on OpenML
datasets. “LIFT/Full-Data” and “LIFT/Subset” represent LIFT on the full dataset and and its subset
used correspondingly in the ICL setting (number of prompts). Here, the size of subset is chosen to
satisfy the LMs’ context length. Overall, LIFT/GPTs on full data achieve the best performances.
However, when using the same number of samples, LIFT and ICL are more comparable in most
cases. Note that both methods may be worse than MCC due to the limited training data in some cases.

Dataset (ID) #Prompts MCC
GPT-J GPT-3

In-Context LIFT/Subset LIFT/Full-data In-Context LIFT/Subset LIFT/Full-data

Breast (13) 35 70.69 56.90±19.51 58.62±2.44 64.94±11.97 62.07±1.41 70.69±0.00 71.26±1.62
TAE (48) 50 35.48 34.33±1.47 32.26±9.50 61.29±4.56 37.64±4.02 33.33±1.52 65.59±6.63

Vehicle (54) 14 25.88 25.49±0.55 26.04±1.69 64.31±2.37 28.82±2.10 23.73±2.27 70.20±2.73
Hamster (893) 43 53.33 48.89±3.14 60.00±10.88 55.55±16.63 57.78±6.29 53.33±0.00 53.33±0.00

Customers (1511) 29 68.18 56.06±17.14 59.85±2.84 85.23±1.61 60.61±1.42 63.26±6.96 84.85±1.42
LED (40496) 33 68.67 10.00±0.82 13.04±3.27 65.33±0.47 8.00±1.63 11.33±2.62 69.33±2.05

and output spaces are more complex to learn. For regression tasks, we find that 1000 samples are
sufficient for LIFT to have a small RMSE, similar to other baselines. There exist some functions
(e.g., cosine and piecewise) where LIFT has lower sample complexity than popular baselines.

3.3 Language-Interfaced Learning: LIFT versus In-Context Learning (ICL)
Beyond fine-tuning (with LIFT), our language-interfaced learning framework can be used for other
learning methods for LMs, including in-context learning (ICL) [47, 48, 19] that performs inference
on new tasks without fine-tuning by conditioning on a few training examples. Table 5 compares the
classification performances between (a) ICL, (b) LIFT trained on a subset with n samples, and (c)
LIFT trained on the full dataset. Note that the number of training samples (n) used for ICL depends
on the context length of given LMs. As we can see, LIFT using the full dataset always achieves the
best performances. However, LIFT/Subset and ICL are more comparable in most cases when they
use the same number of training samples, which are sufficiently small for ICL methods to fit in LMs.
Remark. One can replace fine-tuning with ICL in our language-interfaced procedure when the
target tasks require fewer training samples.

3.4 Can We Understand the Inductive Biases of Language Models via LIFT?

Figure 6: Decision boundary visualization. We
use three snapshots of a trained network to construct
datasets having labels as their predictions (the first
column). Top to bottom: snapshots with more training
epochs, corresponding to more complex boundaries.
LIFT/GPTs adapt well on different boundaries.

To better understand LIFT/GPTs’ inductive
biases, we investigate their classification deci-
sion boundaries varying the boundaries’ com-
plexity, as shown in Fig. 6. We first train a
binary-class neural network and use its snap-
shots at different training epochs to construct
datasets having decision boundaries at differ-
ent complexity levels (first column in Fig. 6).
We observe that LIFT/GPT models adapt
well to three boundaries and capture their
rough shapes. Furthermore, their boundary
shapes are axis-parallel, similar to the bound-
ary of tree-based classifiers. They also show
a lot of fractals similar to the observations on
some convolution neural networks [49]. See
Appendix D.1.3 for results of 3-class and 5-
class datasets and quantitative measurements.

3.5 How Robust is LIFT?

We investigate the robustness of LIFT against the outlier samples in training data and the feature
corruption on test data. Appendix D.1.4 provides additional experimental results, including the
robustness for the case of label corruption on training data and class-imbalanced data.

Robustness to outliers in training data. We consider regression tasks where we have outliers whose
outcome y is not consistent with the majority of samples in terms of fitting (x, y). Fig. 28a compares
RAE values of methods with and without outliers (2% outliers in the training set). LIFT/GPT models
are among the most robust ones: their performances are almost unaffected, while baselines suffer
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Table 8: Accuracies (") of LIFT with different LMs. We compare variants of LIFT with different
LMs: LIFT/GPTs using GPTs pretrained on natural language data (our models), LIFT/Rand-GPT-J
using a randomly initialized GPT-J, LIFT/CodeGen and LIFT/CodeParrot using LMs pretrained on
programming language data, and LIFT/Gibberish using GPT-J fine-tuned on gibberish data.

Dataset (ID) MCC LIFT/GPT-3 LIFT/GPT-J LIFT/Rand-GPT-J LIFT/Gibberish LIFT/CodeGen LIFT/CodeParrot
Blobs (2) 25.00 96.67± 0.24 96.17± 0.59 25.65± 1.58 96.42± 0.24 93.67± 0.72 93.39± 1.82

Two Circles (6) 50.00 81.42± 0.82 75.92± 1.65 49.88± 5.01 68.67± 1.50 53.02± 0.66 50.08± 2.47
Iris (61) 33.33 97.0± 0.00 96.67± 0.00 27.78± 20.79 94.44± 1.57 43.31± 6.67 60.00± 8.82

Customers (1511) 68.18 84.85± 1.42 85.23± 1.61 52.47± 7.15 67.43± 1.42 45.96± 8.96 43.11± 3.34
Wine (187) 38.89 92.59± 1.31 93.52± 1.31 22.22± 15.71 84.26± 3.46 77.78± 0.00 33.88± 3.87

LED (40496) 11.0 69.33± 2.05 65.33± 0.47 11.68± 4.44 72.67± 1.25 11.00± 4.00 23.46± 13.85

huge performance drops. Furthermore, we evaluate models under various percentages of outliers
(1%, 2%, 5%, 10%, 20%), as shown in Fig. 28b. Compared to the robust baselines (median-3NN and
median-5NN) [50], LIFT/GPT-3 is comparably robust, while LIFT/GPT-J is more vulnerable when
more outliers are present.

Table 7: Accuracies (") under the
perturbation on the input feature
of MNIST data. See the full results
in Table 33 in Appendix D.1.4.

Source PGD attack on LeNet-5
Target LeNet-5 MLP LIFT/GPT-3

" = 0 99.22 98.09 98.15
" = 0.01 97.27 97.77 44.88
" = 0.1 26.80 93.99 33.66
" = 0.3 0.00 36.62 20.31

Robustness to feature corruption on test data. Given a
clean test data (x, y) having feature x and label y, we explore
whether adding small perturbation � on the feature changes the
performance; we measure the accuracy of LIFT on perturbed
data (x+ �, y). We apply transfer attack [51] since we do not
have full access to the GPT-3 model, and finding adversarial
examples in the discrete input space is complex [52]. Table 7
reports robustness results on MNIST classification under PGD
attacks transferred from LeNet-5. The perturbation radius is
set to " 2 [0, 0.01, 0.1, 0.3] where MNIST pixel value is within
[0,1]. We compare three networks: LeNet-5, MLP (2 hidden
layers with 300 and 100 neurons), and LIFT/GPT-3. When
✏ 2 {0.01, 0.1}, LIFT/GPT-3 tolerates random noise (as in Table 33) but cannot tolerate transferred
adversarial attack, implying that the adversarial attack on LeNet-5 is transferred to LIFT/GPT-3.

3.6 Does LIFT Need Large-Scale Models Pretrained on Natural Language Data?
We investigate the requirement of pretrained LMs for which LIFT performs well. We compare
variants of LIFT under different types of LMs: GPTs pretrained on natural language data (our models),
a large LM without pretraining (Rand-GPT-J), and LMs pre-trained on non-human language data,
including CodeParrot [53] and CodeGen-2B-mono [54] trained mainly on programming language
data, and a GPT-J fine-tuned on Gibberish data [55]. See Appendix D.1.5 for the detailed setting.

Does LIFT only need a large pretrained model? To answer this question, we compare performances
of LIFT when GPTs are pretrained (LIFT/GPTs) and when GPT-J have weights being randomly
initialized (LIFT/Rand-GPT-J). More specifically, for LIFT/Rand-GPT-J, we randomly initialized a
GPT-J model and fine-tuned the whole model (instead of LoRA). As shown in Table 8, accuracies of
LIFT/Rand-GPT-J are much lower than those of our models (LIFT/GPTs), across all datasets. These
results indicate that LIFT benefits from pretraining, not just from the large-scale design of LMs.

Does LIFT need a model trained on natural language data? As shown in Table 8, LIFT/GPTs
perform much better than LIFT/CodeGen and LIFT/CodeParrot for all datasets. This implies that
LIFT may perform better with LMs pretrained on natural language data. When the pretrained
GPT-J is fine-tuned on gibberish data [55], the accuracies drop for a few tasks and are lower than
LIFT/GPTs overall. However, LIFT/Gibberish still achieves comparably good performance and its
small performance gaps to LIFT/GPT-J can be attributed to the relatively light impact of fine-tuning
on large pretrained LMs. Thus pretraining on natural language data is necessary for LIFT.

4 Evaluation of LIFT-Specific Learning Properties
In this section, we study the behavior of LIFT in a more fine-grained manner.

4.1 Does LIFT Benefit from Incorporating Feature Names?

Unlike standard machine learning algorithms, LIFT can be provided context information by incor-
porating the feature names and task descriptions in the prompts. Intuitively, this incorporation may
improve the sample complexity of LIFT as the prior knowledge already learned in the pretraining
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Table 9: The effect of using feature names on LIFT. We compare classification accuracy (") of
LIFT/GPT-3 when feature names provided in the target dataset are and are not incorporated into
the prompts. We provide four versions of LIFT when feature names are correctly incorporated
(Correct-Names columns) and when feature names are randomly shuffled (Shuffled-Names columns).
We evaluate models on three OpenML datasets, including CMC (23), TAE (48), Vehicle (54),
and German. We also compare our models with two baselines: the majority class classifier (MCC) and
XGBoost. As a result, all LIFT models achieve better performance than MCC. Among the evaluated
models, LIFTs with correct feature names achieve the best accuracies on both TAE, Vehicle, and
German datasets while achieving the comparable accuracies to the best model on the CMC dataset.
*Two designs of the prompt format result in the same template for the Vehicle dataset.

Dataset (ID) MCC LIFT
W/o Names I W/o Names II Shuffled-Names I Shuffled-Names II Correct-Names I Correct-Names II

CMC (23) 42.71 57.74±0.89 57.40±1.37 56.27±2.06 57.06±4.24 57.40±1.09 56.27±2.22
TAE (48) 35.48 65.59±6.63 66.67±5.48 60.22±6.72 64.52±8.53 69.89±9.31 69.89±6.72

Vehicle (54) 25.88 70.20±2.73 71.96±3.09 70.20±5.34 69.22±2.72 75.29±2.04*
German 70.00 71.33 ± 5.20 67.83 ± 2.72 73.00 ± 1.87 71.67 ± 0.94 72.33 ± 1.70 74.17± 1.25

phase may help LIFT predict better. We design seven prompt templates to assess how incorporating
feature names affects the performance of LIFT (see more details in Appendix D.2.1). We empirically
verify this intuition and show our results in Table 9 for several classification tasks using pretrained
GPT-3 models. We first observe that all LIFT models outperform MCC with significant accuracy
gaps, indicating that they are all properly trained. Second, we observe that correctly incorporating
feature names helps boost the performances of LIFT for datasets except for CMC. Third, if we use
similar prompts with shuffled feature names (Shuffled-Names I, II), then the performance of
LIFT drops by a significant margin. These results imply that the aforementioned performance
improvements are indeed due to proper prompting with correct feature/value association.

4.2 Is LIFT Well Calibrated?

We investigate whether LIFT is calibrated, i.e., the prediction reflects the confidence, by exploring
how LIFT performs under various noise levels, as shown in Fig. 36 in Appendix. We conduct
experiments on six synthetic regression datasets, each consisting of 1,000 noisy training samples
shown as blue markers in the first row. To be specific, we generate (1) the input x following the
guideline in Sec. C.1 for regression tasks and (2) the noisy outcome y where the standard deviation
of noise �(x) = (x + 10)/10 increases along the x-axis (from x = �10 to x = 10), and study
how different noise level affects the predictive behavior of LIFT. In the inference phase, we set the
decoding temperature T = 1 for LIFT to make random predictions. For visualization purposes,
we generate an additional 103 samples uniformly in [�10, 10] for each task and plot the standard
deviation of 20 LIFT/GPT-J predictions on each sample in the bottom row of Fig. 36. Note that
the bottom row of Fig. 36 shows that the standard deviation of LIFT/GPT-J’s prediction nearly
matches that of noisy training samples (observations) across different tasks. These results imply that
LIFT/GPT-J is calibrated. Similarly, Fig. 37 of Sec. D.2.2 shows that LIFT/GPT-3 is calibrated.

4.3 Can We Use LIFT for Data Generation?

(a) Given only the digit number.

(b) Given the digit number and a half of image pixels.
Figure 10: Generating MNIST images using
LIFT/GPT-J. We observe that LIFT/GPT-J can
generate images of comparably high quality. The
temperature is set to 1.

Generative models have been widely used in
computer vision [56, 57, 58]. Beyond classifi-
cation and regression tasks, we study whether
LIFT can be used for generative tasks, i.e., learn-
ing the underlying data distribution and gener-
ating realistic data samples. In particular, we
consider two image generation tasks on MNIST
dataset: (a) generating an image given a digit
number, and (b) completing an image given a
digit number and its pixels on the top half of the
image. Fig. 10a and Fig. 10b show our gener-
ated images for the two tasks respectively. We
observe that the generated images have the cor-
rect digit shape and reasonably high quality in
most cases, especially for the image completion
(Fig. 10b). See Appendix D.2.3 for more details.
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5 Improving LIFT with Existing Techniques
We improve LIFT with advanced techniques: two-stage fine-tuning and data augmentation.

5.1 Two-Stage Fine-Tuning for LIFT with Synthetic Pretext Tasks
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Figure 11: Two-stage fine-tuning. The two-stage
method (blue) applies LIFT first on synthetic pre-
text data before the real datasets, outperforming
fine-tuning (green) when training data is small.
The full experiment results are presented in Fig. 40.

In Sec. 3.2, we observe that LMs need a suffi-
cient number of samples to start adapting. We
suspect that LMs’ adaptation to non-language
tasks contains two phases: (1) learn the task de-
scription, i.e., input space, label space, and sen-
tence templates [47, 59], and (2) learn the target
task. Thus, we consider utilizing synthetic data
to describe the task for LMs in the first phase,
thus reducing the sample complexity. This re-
sults in a new two-stage training procedure for
LIFT.1 In particular, for any given dataset, we
first generate two pretext tasks with simple syn-
thetic Gaussian datasets (discussed in C.1) sharing the same number of features and the label space
(for classification tasks) or the range of responses’ values (for the regression tasks) to the actual
data. We apply LIFT on pretext tasks for a few (2 or 3) epochs, then continue LIFT with the target
(given) dataset. For GPT-3, it is unclear how to keep the order of samples not shuffled with the
current black-box API during the fine-tuning stage. Hence, we only provide the experimental results
of GPT-J. Fig. 11 shows that two-stage fine-tuning improves LIFT over the original fine-tuning when
the number of training samples is small on both classification and regression tasks.

5.2 Data Augmentation Table 12: Accuracies (") of LIFT with/without data aug-
mentation (DA), as well as baselines (LeNet-5, MLP) on
MNIST. Each row represents different ways of training, and
each column means different test data. Data augmentation
(DA) means that we are using a noisy version of MNIST
training data by adding Gaussian noise. Given an MNIST
image having range [0,1], the noise is added in the L1 ball
with radius ✏. One can confirm that the data augmentation
significantly improves the tolerance of LIFT/GPT-J against
perturbed test data in both Gaussian and signed constant
noise. For each column, we boldfaced the highest value
among baselines and the highest value among LIFT/GPT-J.

Clean Gaussian noise Signed const. noise
✏ = 0 ✏ = 0.01 ✏ = 0.1 ✏ = 0.01 ✏ = 0.1

LeNet-5 99.22 99.25 99.20 99.26 99.06
MLP 98.09 98.05 97.70 98.08 97.39

LIFT/GPT-J 96.88 95.27 56.14 55.83 27.73
LIFT/GPT-J, DA (Gaussian, ✏ = 0.05) 93.80 94.39 93.40 93.46 61.24
LIFT/GPT-J, DA (Gaussian, ✏ = 0.1) 93.78 94.31 94.98 94.12 75.25

Data augmentation [61] is a simple
tool for improving the generaliza-
tion performance for various classi-
fication problems. Here, we investi-
gate whether data augmentation ben-
efits LIFT. Table 12 shows the ef-
fect of adding random noise in the
training data on the performance of
LIFT/GPT-J for the MNIST classifi-
cation problem. Here, we test each
model on three settings: (1) clean data,
(2) Gaussian noise, and (3) signed
constant noise. We allow each noise
can perturb up to the magnitude of
✏ 2 [0, 1] at each dimension (i.e., each
pixel) when the black/white pixel of
MNIST is represented in the [0, 1]
range. We defer the generation procedure of random Gaussian noise to Sec. D.1.4 in Appendix.

One can observe that LIFT/GPT-J without any data augmentation (DA) is vulnerable to random
noise, unlike existing baselines (LeNet-5 and MLP). However, when we apply data augmentation,
i.e., train LIFT/GPT-J with noisy training data, the accuracy improves significantly for the perturbed
(either adding Gaussian noise or Signed constant noise) test data. This shows the effectiveness of
simple data augmentation in LIFT. Exploring the effect of other data augmentation schemes, e.g.,
mixup [62] and its variants [63, 64, 65], is remained an interesting future work.

6 Related Works

Fine-tuning for adapting LMs to non-language tasks. Fine-tuning [66] pretrained LMs is the
standard practice for learning downstream tasks, which may involve simple architecture modifi-

1The recent work [60] demonstrates the usefulness of the intermediate fine-tuning method for LMs. However,
they focus on self-supervised objectives for fine-tuning pretrained LMs for few-shot in-context learning.
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cations, such as adding linear layers [67, 68] or freezing layers [18, 69, 70]. The recent progress
focuses on parameter-efficient techniques for reducing trainable parameters, including adapter-based
fine-tuning [25, 26, 27] that trains additional small residual blocks between layers, freezing-based
fine-tuning [71, 18, 72] that freezes most of the pretrained parameters, and distillation-based fine-
tuning [73]. Our LIFT/GPT-J is fine-tuned with LoRA [24], a parameter-efficient method approxi-
mating the weight updates using low-rank matrices.

To directly adopt existing fine-tuning methods of LMs for non-language tasks, it is common practice
to modify the input/output layers and the loss functions, which may cause undesired behaviors like
catastrophic forgetting [66, 74]. Our work is highly motivated by Frozen Pretrained Transformer
(FPT) [18] that directly fine-tunes GPT-2 [21] pretrained on language tasks for other modalities
by freezing most pretrained parameters and adding only input and output layers for the modality
adaptation. Unlike FPT, our method requires no such changes in the architecture and objective
function. Several works also extend the existing LMs to handle different input data types, such as
images [75, 76], audio [77], tabular data [78], and knowledge base [79] by updating the pretraining
phase with these data and their corresponding tasks or using general-purpose architecture [80]. Our
work is based on GPT language models trained only on textual data.

Analyzing the adaptability of LMs. Similar to ours, recent works [81, 82, 83, 82] attempt to
understand and quantify the adaptability [20] and capacity of large LMs, such as Big-Bench [82]
with a new benchmark of more than 200 tasks on a diverse set of topics.

General-purpose models. A primary goal of our work is to push the limit of the existing generalist
language models (e.g., GPT-3 [19]) to other modalities and domains, supporting the idea of building
a domain-and-modality agnostic generalist model [19, 84, 3, 85, 86, 87, 88, 89]. Note that LIFT can
be applied to any generalist model with LM-like architectures, such as GATO [89]. Furthermore, our
work shares the general goal with automated machine learning (AutoML) [90, 91] in improving the
usability of machine learning, though LIFT uses only a single pretrained LMs for all tasks while
AutoML automates the standard machine learning pipeline from a set of existing algorithms.

7 Discussion and Conclusion
We propose the use of language-interfaced framework, via Language-Interfaced Fine-Tuning
(LIFT), for using LMs to solve non-language downstream tasks without changing the models’
architecture or loss function. LIFT first converts labeled samples into sentences and then fine-tunes
pretrained LMs on the sentence dataset using the standard fine-tuning method and loss function. Via
an extensive empirical study, we show that LIFT/GPT performs relatively well on low-dimensional
classification and regression non-language tasks. Furthermore, LIFT/GPTs are robust in several
practical settings, and can properly calibrate the predictions and generate realistic data samples.
LIFT can be improved using in-context feature names, two-stage fine-tuning, and data augmentation.
Moreover, our work is arguably one of the first to thoroughly study the efficacy of language-interfaced
learning framework with pretrained language models on standard regression and classification tasks,
paving the way for enabling “no-code machine learning with language models.”

Limitations and open questions. Despite promising performances on various tasks and settings,
we observe some limitations of LIFT to basic learning tasks. LIFT/GPT do not perform well
if the features have high dimensions (for regression) or when the number of classes is large (for
classification). In addition, the context length of LIFT is restricted to the context length of LMs
and LIFT/GPT is memory-inefficient. One can combine LIFT with memory-efficient LMs such as
LinTransformer [92] to address this issue. Besides, our works open some interesting questions for
future works. First, do LMs and LIFT/GPT have behaviors similar to ensemble methods or decision
tree since they have similar decision boundaries? Secondly, are LMs universal models that can adapt
well to any modalities and domains? Lastly, can LIFT/GPTs adapt better for regression tasks using
more sophisticated encoding schemes for numeric features?

Social impacts. Future research should also investigate potential fairness issues of applying LIFT.
Based on large language models, LIFT might have embedded bias targeting certain social groups.
Especially when feature names are included in the training prompts, the models may be more
sensitive to social biases and thus might make unfair and harmful predictions. We leave measuring
the embedded bias in LIFT as one of the interesting future directions.
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