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Abstract

We present a modified tuning of the algorithm of Zimmert and Seldin [2020]
for adversarial multiarmed bandits with delayed feedback, which in addi-
tion to the minimax optimal adversarial regret guarantee shown by Zim-
mert and Seldin simultaneously achieves a near-optimal regret guarantee in
the stochastic setting with fixed delays. Specifically, the adversarial re-
gret guarantee is O(

p
TK +

p
dT logK), where T is the time horizon, K

is the number of arms, and d is the fixed delay, whereas the stochastic
regret guarantee is O

⇣P
i 6=i⇤(

1
�i

log(T ) + d
�i logK ) + dK1/3 logK

⌘
, where

�i are the suboptimality gaps. We also present an extension of the algo-
rithm to the case of arbitrary delays, which is based on an oracle knowl-
edge of the maximal delay dmax and achieves O(

p
TK +

p
D logK +

dmaxK1/3 logK) regret in the adversarial regime, where D is the total delay,
and O

⇣P
i 6=i⇤(

1
�i

log(T ) + �max
�i logK ) + dmaxK1/3 logK

⌘
regret in the stochas-

tic regime, where �max is the maximal number of outstanding observations. Finally,
we present a lower bound that matches the refined adversarial regret upper bound
achieved by the skipping technique of Zimmert and Seldin [2020] in the adversarial
setting.

1 Introduction

Delayed feedback is a common challenge in many online learning problems, including multi-armed
bandits. The literature studying multi-armed bandit games with delayed feedback builds on prior
work on bandit problems with no delays. The researchers have traditionally separated the study
of bandit games in stochastic environments [Thompson, 1933, Robbins, 1952, Lai and Robbins,
1985, Auer et al., 2002] and in adversarial environments[Auer et al., 2002b]. However, in practice
the environments are rarely purely stochastic, whereas they may not be fully adversarial either.
Furthermore, the exact nature of an environment is not always known in practice. Therefore, in recent
years there has been an increasing interest in algorithms that perform well in both regimes with no
prior knowledge of the regime [Bubeck and Slivkins, 2012, Seldin and Slivkins, 2014, Auer and
Chiang, 2016, Seldin and Lugosi, 2017, Wei and Luo, 2018]. The quest for best-of-both-worlds
algorithms for no-delay setting culminated with the Tsallis-INF algorithm proposed by Zimmert
and Seldin [2019], which achieves the optimal regret bounds in both stochastic and adversarial
environments. The algorithm and analysis were further improved by Zimmert and Seldin [2021] and
Masoudian and Seldin [2021], who, in particular, derived improved regret bounds for intermediate
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regimes between stochastic and adversarial, while Ito [2021] removed an assumption on uniqueness
of the best arm, which was used in the early works.

Our goal is to extend best-of-both-worlds results to multi-armed bandits with delayed feedback.
So far the literature on multi-armed bandits with delayed feedback has followed the traditional
separation into stochastic and adversarial. In the stochastic regime Joulani et al. [2013] showed that
if the delays are random (generated i.i.d), then compared to the non-delayed stochastic multi-armed
bandit setting, the regret only increases additively by a factor that is proportional to the expected
delay. In the adversarial setting Cesa-Bianchi et al. [2019] have studied the case of uniform delays
d. They derived a lower bound ⌦(max(

p
KT,

p
dT logK)) and an almost matching upper bound

O(
p
KT logK +

p
dT logK). Thune et al. [2019] and Bistritz et al. [2019] extended the results to

arbitrary delays, achieving O(
p
KT logK +

p
D logK) regret bounds based on oracle knowledge

of the total delay D and time horizon T . Thune et al. [2019] also proposed a skipping technique based
on advance knowledge of the delays "at action time", which allowed to exclude excessively large
delays from D. Finally, Zimmert and Seldin [2020] introduced an FTRL algorithm with a hybrid
regularizer that achieved O(

p
KT +

p
D logK) regret bound, matching the lower bound in the case

of uniform delays and requiring no prior knowledge of D or T . The regularizer used by Zimmert and
Seldin was a mix of the negative Tsallis entropy regularizer used in the Tsallis-INF algorithm for
bandits and the negative entropy regularizer used in the Hedge algorithm for full information games,
mixed with separate learning rates:

Ft(x) = �2⌘�1
t

 
KX

i=1

p
xi

!
+ ��1

t

 
KX

i=1

xi(log xi � 1)

!
. (1)

Zimmert and Seldin [2020] also improved the skipping technique and achieved a refined regret bound
O(

p
KT +minS(|S|+

p
DS̄ logK)), where S is a set of skipped rounds and DS̄ is the total delay

in non-skipped rounds. The refined skipping technique requires no advance knowledge of the delays.
Their key step toward elimination of the need of advance knowledge of delays was to base the analysis
on the count of the number of outstanding observations rather than the delays. The great advantage
of skipping is that a few rounds with excessively large or potentially even infinite delays have a very
limited impact on the regret bound. One of our contributions in this paper is a lower bound for the
case of non-uniform delays, which matches the refined regret upper bound achieved by skipping.

Even though the hybrid regularizer used by Zimmert and Seldin [2020] was sharing the Tsallis entropy
part with their best-of-both-worlds Tsallis-INF algorithm from Zimmert and Seldin [2021], and even
though the adversarial analysis was partly similar to the analysis of the Tsallis-INF algorithm, Zimmert
and Seldin [2020] did not manage to derive a regret bound for their algorithm in the stochastic setting
with delayed feedback and left it as an open problem. The stochastic analysis of the Tsallis-INF
algorithm is based on the self-bounding technique [Zimmert and Seldin, 2021]. Application of this
technique in the no delay setting is relatively straightforward, but in presence of delays it requires
control of the drift of the playing distribution from the moment an action is played to the moment
the feedback arrives. Cesa-Bianchi et al. [2019] have bounded the drift of the playing distribution of
the EXP3 algorithm in the uniform delays setting with a fixed learning rate. But best-of-both-worlds
algorithms require decreasing learning rates [Mourtada and Gaïffas, 2019], which makes the drift
control much more challenging. The problem gets even more challenging in the case of arbitrary
delays, because it requires drift control over arbitrary long periods of time.

We apply an FTRL algorithm with the same hybrid regularizer as the one used by Zimmert and
Seldin [2020], but with a different tuning of the learning rates. The new tuning has a minor effect
on the adversarial regret bound, but allows us to make progress with the stochastic analysis. For
the stochastic analysis we use the self-bounding technique. One of our key contributions is a
general lemma that bounds the drift of the playing distribution derived from the time-varying hybrid
regularizer over arbitrary delays. Using this lemma we derive near-optimal best-of-both-worlds
regret guarantees for the case of fixed delays. But even with the lemma at hand, application of the
self-bounding technique in presence of arbitrary delays is still much more challenging than in the no
delays or fixed delay setting. Therefore, we resort to introducing an assumption of oracle knowledge
of the maximal delay, which limits the maximal period of time over which we need to keep control
over the drift. Our contributions are summarized below. To keep the presentation simple we assume
uniqueness of the best arm throughout the paper. Tools for eliminating the uniqueness of the best arm
assumption were proposed by Ito [2021].
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1. We show that in the arbitrary delays setting with an oracle knowledge of the maximal delay
dmax, our algorithm achieves O(

p
KT+

p
D logK+dmaxK1/3 logK) regret bound in the

adversarial regime simultaneously with O

⇣P
i 6=i⇤(

log T
�i

+ �max
�i logK ) + dmaxK1/3 logK

⌘

regret bound in the stochastic regime, where �max is the maximal number of outstanding
observations. We note that �max  dmax, but it may potentially be much smaller. For
example, if the first observation has a delay of T and all the remaining observations have
zero delay, then dmax = T , but �max = 1.

2. In the case of uniform delays the above bounds simplify to O(
p
KT +

p
dT logK +

dK1/3 logK) in the adversarial case and O

⇣P
i 6=i⇤(

log T
�i

+ d
�i logK ) + dK1/3 logK

⌘

in the stochastic case. For T � dK2/3 logK the last term in the adversarial re-
gret bound is dominated by the middle term, which leads to the minimax optimal
O(

p
KT +

p
dT logK) adversarial regret. The stochastic regret lower bound is triv-

ially ⌦(min{d
P

i 6=i⇤ �i

K ,
P

i 6=i⇤
log T
�i

}) = ⌦(d
P

i 6=i⇤ �i

K +
P

i 6=i⇤
log T
�i

) and, therefore, our
stochastic regret upper bound is near-optimal.

3. We present an ⌦
⇣p

KT +minS(|S|+
p
DS̄ logK)

⌘
regret lower bound for adversarial

multi-armed bandits with non-uniformly delayed feedback, which matches the refined regret
upper bound achieved by the skipping technique of Zimmert and Seldin [2020].

2 Problem setting

We study the multi-armed bandit with delays problem, in which at time t = 1, 2, . . . the learner
chooses an arm It among a set of K arms and instantaneously suffers a loss `t,It from a loss vector
`t 2 [0, 1]K generated by the environment, but `t,It is not observed by the learner immediately. After
a delay of dt, at the end of round t+ dt, the learner observes the pair (t, `t,It), namely, the loss and
the index of the game round the loss is coming from. The sequence of delays d1, d2, . . . is selected
arbitrarily by the environment. Without loss of generality we can assume that all the outstanding
observations are revealed at the end of the game, i.e., t + dt  T for all t, where T is the time
horizon, unknown to the learner. We consider two regimes, oblivious adversarial and stochastic. The
performance of the learner is evaluated using pseudo-regret, which is defined as

RegT = E
"

TX

t=1

`t,It

#
� min

i2[K]
E
"

TX

t=1

`t,i

#
= E

"
TX

t=1

�
`t,It � `t,i⇤T

�
#
,

where i⇤T 2 argmini2[K] E
hPT

t=t `t,i
i

is a best arm in hindsight in expectation over the loss
generation model and the randomness of the learner. In the oblivious adversarial setting the losses
are independent of the actions taken by the algorithm and considered to be deterministic, and the
pseudo-regret is equal to the expected regret.

Additional Notation: We use �n to denote the probability simplex over n + 1 points. The
characteristic function of a closed convex set A is denoted by IA(x) and satisfies IA(x) = 0 for
x 2 A and IA(x) = 1 otherwise. The convex conjugate of a function f : Rn

! R is defined by
f⇤(y) = supx2Rn{hx, yi� f(x)}. We also use bar to denote that the function domain is restricted to

�n, e.g., f̄(x) =
⇢
f(x), if x 2 �n

1, otherwise
. We denote the indicator function of an event E by 1(E) and

use 1t(i) as a shorthand for 1(It = i). The probability distribution over arms that is played by the
learner at round t is denoted by xt 2 �K�1.

3 Algorithm

The algorithm is based on Follow The Regularized Leader (FTRL) algorithm with the hybrid
regularizer used by Zimmert and Seldin [2020], stated in equation (1). At each time step t let
�t =

Pt�1
s=1 1(s + ds � t) be the number of outstanding observations and Dt =

Pt
s=1 �t be the
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cumulative number of outstanding observations, then the learning rates are defined as

⌘�1
t =

p
t+ ⌘0, ��1

t =

sPt
s=1 �s + �0
logK

, (2)

where ⌘0 = 10dmax + d2max/
�
K1/3 log(K)

�2
and �0 = 242d2maxK

2/3 log(K). The update rule
for the distribution over actions played by the learner is

xt = rF̄ ⇤
t (�L̂obs

t ) = arg min
x2�K�1

hL̂obs
t , xi+ Ft(x), (3)

where L̂obs
t =

Pt�1
s=1

ˆ̀
s1(s+ ds < t) is the cumulative importance-weighted observed loss and ˆ̀

s is
an importance-weighted estimate of the loss vector `s defined by

ˆ̀
t,i =

`t,i1(It = i)

xt,i
.

At the beginning of round t the algorithm calculates the cumulative number of outstanding observa-
tions Dt and uses it to define the learning rate �t. Next, it uses the FTRL update rule defined in (3) to
define a distribution over actions xt from which to draw action It. Finally, at the end of round t it
receives the delayed observations and updates the cumulative loss estimation vector accordingly, so
that L̂obs

t+1 = L̂obs
t +

Pt
s=1

ˆ̀
s1(s+ ds = t). The complete algorithm is provided in Algorithm 1.

Algorithm 1: FTRL with advance tuning for delayed bandit

1 Initialize D0 = 0 and L̂obs
1 = 0K (where 0K is a zero vector in RK

)

2 for t = 1, . . . , n do
3 Set �t =

Pt�1
s=1 1(s+ ds > t)

4 Update Dt = Dt�1 + �t

5 Set xt = argminx2�K�1hL̂obs
t , xi+Ft(x) // Ft is defined in (1) and ⌘t and �t in (2)

6 Sample It ⇠ xt

7 Observe (s, `s,Is) for all s that satisfy s+ ds = t

8 L̂obs
t+1 = L̂obs

t +
Pt

s=1
ˆ̀
s1(s+ ds = t)

4 Best-of-both-worlds regret bounds for Algorithm 1

In this section we provide best-of-both-worlds regret bounds for Algorithm 1. First, in Theorem 1
we provide regret bounds for an arbitrary delay setting, where we assume an oracle access to dmax.
Then, in Corollary 2 we specialize the result to a fixed delay setting.
Theorem 1. Assume that Algorithm 1 is given an oracle knowledge of dmax. Then its pseudo-regret

for any sequence of delays and losses satisfies

RegT = O(
p

TK +
p

D logK + dmaxK
1/3 logK).

Furthermore, in the stochastic regime the pseudo-regret additionally satisfies

RegT = O

0

@
X

i 6=i⇤

(
1

�i
log(T ) +

�max

�i logK
) + dmaxK

1/3 logK

1

A .

A sketch of the proof is provided in Section 5 and detailed constants are worked out in Appendix C.
For fixed delays Theorem 1 gives the following corollary.
Corollary 2. If the delays are fixed and equal to d, and T � dK2/3 logK, then the pseudo-regret of

Algorithm 1 always satisfies

RegT = O(
p

TK +
p

dT logK)

and in the stochastic setting it additionally satisfies

RegT = O

0

@
X

i 6=i⇤

(
1

�i
log(T ) +

d

�i logK
) + dK1/3 logK

1

A .

4



In the adversarial regime with fixed delays d, regret lower bound is ⌦
⇣p

KT +
p
dT logK

⌘
,

whereas in the stochastic regime with fixed delays the regret lower bound is trivially ⌦(d
P

i 6=i⇤ �i

K +P
i 6=i⇤

log T
�i

). Thus, in the adversarial regime the corollary yields the minimax optimal regret bound
and in the stochastic regime it is near-optimal. More explicitly, it is optimal within a multiplicative
factor of

P
i 6=i⇤

1
�i logK + K4/3 logKP

i 6=i⇤ �i
in front of d.

If we fix a total delay budget D, then uniform delays d = D/T is a special case, and in this sense
Theorem 1 is also optimal in the adversarial regime and near-optimal in the stochastic regime,
although for non-uniform delays improved regret bounds can potentially be achieved by skipping.
We also note that having the dependence on �max in the middle term of the stochastic regret bound
in Theorem 1 is better than having a dependence on dmax, since �max  dmax, and in some cases
it can be significantly smaller, as shown in the example in the Introduction and quantified by the
following lemma.
Lemma 3. Let dmax(S) = maxs2S ds, where S ✓ {1, . . . , T} is a subset of rounds. Let S̄ =
{1, . . . , T} \ S be the remaining rounds. Then

�max  min
S✓{1,...,T}

�
|S|+ dmax(S̄)

 
.

A proof of Lemma 3 is provided in Appendix A.

Finally, we note that the result in Theorem 1 is easily extendable to the corrupted regime, because the
proof relies on the same self-bounding technique as the one used by Zimmert and Seldin [2021]. If
we denote by Bstoch

T the regret upper bound in the stochastic regime in Theorem 1 and by C the total

corruption budget, then in the corrupted regime the regret would be O(Bstoch
T +

q
Bstoch

T C). The
proof is straightforward, following the lines of Zimmert and Seldin [2021], and, therefore, left out.

5 A proof sketch of Theorem 1

In this section we provide a sketch of a proof of Theorem 1. We provide a proof sketch for the
stochastic bound in Section 5.1. Afterwards, in Section 5.2, we show how the analysis of Zimmert
and Seldin [2020] gives the adversarial bound stated in Theorem 1.

5.1 Stochastic Bound

We start by providing a key lemma (Lemma 4) that controls the drift of the playing distribution
derived from the time-varying hybrid regularizer over arbitrary delays. We then introduce a drifted
version of the pseudo-regret defined in (4), for which we use the key lemma to show that the drifted
version of the pseudo-regret is close to the actual one. As a result, it is sufficient to bound the drifted
version. The analysis of the drifted pseudo-regret follows by the standard analysis of the FTRL
algorithm [Lattimore and Szepesvári, 2020] that decomposes the pseudo-regret (drifted pseudo-regret
in our case) into stability and penalty terms. Thereafter, we proceed by using Lemma 4 again, this
time to bound the stability term in order to apply the self-bounding technique [Zimmert and Seldin,
2019], which yields logarithmic regret in the stochastic setting. Our key lemma is the following.
Lemma 4 (The Key Lemma). For any i 2 [K] and s, t 2 [T ], where s  t and t� s  dmax, we

have

xt,i  2xs,i.

A detailed proof of the lemma is provided in Appendix B. Below we explain the high level idea
behind the proof.

Proof sketch. We know that xt = rF̄ ⇤
t (�L̂obs

t ) and xs = rF̄ ⇤
s (�L̂obs

s ), so we introduce x̃ =
rF̄ ⇤

s (�L̂obs
t ) as an auxiliary variable to bridge between xt and xs. The analysis consists of two key

steps and is based on induction on (t, s).
Deviation Induced by the Loss Shift: This step controls the drift when we fix the learning rates and
shift the cumulative loss. We prove the following inequality:

x̃i 
3

2
xs,i.
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Note that this step uses the induction assumption for (s, s� dr) for all r < s : r + dr = s.
Deviation Induced by the Change of Regularizer: In this step we bound the drift when the
cumulative loss vector is fixed and we change the regularizer. We show that

xt,i 
4

3
x̃i.

Combining these two steps gives us the desired bound. A proof of these steps is provided in
Appendix B.

We use Lemma 4 to relate the drifted pseudo-regret to the actual pseudo-regret. Let At =
{s : s  t and s+ ds = t} be the set of rounds for which feedback arrives at round t. We define the
observed loss vector at time t as ˆ̀obs

t =
P

s2At

ˆ̀
s and the drifted pseudo-regret as

Reg
drift
T = E

"
TX

t=1

⇣
hxt, ˆ̀

obs
t i � ˆ̀obs

t,i⇤T

⌘#
. (4)

We rewrite the drifted regret as

Reg
drift
T = E

"
TX

t=1

X

s2At

⇣
hxt, ˆ̀si � ˆ̀

s,i⇤T

⌘#

=
TX

t=1

X

s2At

KX

i=1

E[xt,i(ˆ̀s,i � ˆ̀
s,i⇤T

)]

=
TX

t=1

X

s2At

KX

i=1

E[xt,i]�i =
TX

t=1

KX

i=1

E[xt+dt,i]�i,

where when taking the expectation we use the facts that ˆ̀
s has no impact on the determination

of xt and that the loss estimators are unbiased. Using Lemma 4 we make a connection between
pseudo-regret and the drifted version:

Reg
drift
T =

TX

t=1

KX

i=1

E[xt+dt,i]�i �

T�dmaxX

t=1

KX

i=1

1

2
E[xt+dmax,i]�i

=
1

2

TX

t=dmax+1

KX

i=1

E[xt,i]�i

�
1

2

TX

t=1

KX

i=1

E[xt,i]�i �
dmax

2
=

1

2
RegT �

dmax

2
,

where the first inequality follows by Lemma 4, and the second inequality uses
Pdmax

t=1 E[xt,i]�i 

dmax. As a result, we have RegT  2Reg
drift
T + dmax and it suffices to upper bound Reg

drift
T . We

follow the standard analysis of FTRL, which decomposes the drifted pseudo-regret into stabiltiy and
penalty terms as

Reg
drift
T = E

2

66664

TX

t=1

hxt, ˆ̀
obs
t i+ F̄ ⇤

t (�L̂obs
t+1)� F̄ ⇤

t (�L̂obs
t )

| {z }
stability

3

77775
+E

2

66664

TX

t=1

F̄ ⇤
t (�L̂obs

t )� F̄ ⇤
t (�L̂obs

t+1)� `t,i⇤T
| {z }

penalty

3

77775
.

For the penalty term we have the following bound by Abernethy et al. [2015]

penalty 

TX

t=2

(Ft�1(xt)� Ft(xt)) + FT (ei⇤T )� F1(x1),
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where ei⇤T denotes a the unit vector in RK with the i⇤T -th element being one and zero elsewhere. By
replacing the closed form of the regularizer in this bound and using the facts that ⌘�1

t �⌘�1
t�1 = O(⌘t),

��1
t � ��1

t�1 = O(�t�t/ logK), and x
1
2
t,i⇤T

� 1  0, we obtain

penalty  O

0

@
TX

t=2

X

i 6=i⇤

⌘tx
1
2
t,i +

TX

t=2

KX

i=1

�t�txt,i log(1/xt,i)

logK

1

A+ 2
p
⌘0(K � 1) +

p
�0 logK.

(5)

In order to control the stability term we derive Lemma 5.
Lemma 5 (Stability). Let �t = |At|. For any ↵t  ��1

t we have

stability 

TX

t=1

KX

i=1

2f
00

t (xt,i)
�1(ˆ̀obst,i � ↵t)

2.

Furthermore, ↵t =
PK

j=1 f
00
(xt,j)

�1 ˆ̀obs
t,jPK

j=1 f 00 (xt,j)�1 satisfies ↵t  ��1
t and yields

E[stability] 
TX

t=1

X

i 6=i⇤

2�t(�t � 1)�tE[xt,i]�i +
TX

t=1

X

s2At

KX

i=1

2⌘tE[x3/2
t,i x�1

s,i (1� xs,i)]. (6)

A proof of the stability lemma is provided in Appendix A.3. We apply Lemma 4 to (6) to give bounds
�txt,i =

P
s2At

xt,i  2
P

s2At
xs,i and x3/2

t,i x�1
s,i (1 � xs,i)  23/2x1/2

s,i (1 � xs,i). Moreover, in
order to remove the best arm i⇤ from the summation in the later bound we use x1/2

s,i⇤(1 � xs,i⇤) P
i 6=i⇤ xs,i 

P
i 6=i⇤ x

1/2
s,i . These bounds together with the facts that we can change the order of the

summations and that each t belongs to exactly one As, gives us the following stability bound

E[stability] = O

0

@
TX

t=1

X

i 6=i⇤

⌘tE[x1/2
t,i ] +

TX

t=1

X

i 6=i⇤

�t+dt(�t+dt � 1)E[xt,i]�i

1

A . (7)

By combining (7), (5), and the fact that RegT  2Reg
drift
T + dmax, we show that there exist

constants a, b, c � 0, such that

RegT  E

2

66664
a

TX

t=1

X

i 6=i⇤

⌘tx
1/2
t,i

| {z }
A

+b
TX

t=1

X

i 6=i⇤

�t+dt(�t+dt � 1)xt,i�i

| {z }
B

+c
TX

t=2

KX

i=1

�t�txt,i log(1/xt,i)

logK
| {z }

C

3

77775

+ 4
p
⌘0(K � 1) + 2

p
�0 logK + dmax| {z }

D

. (8)

Self bounding analysis: We use the self-bounding technique to write RegT = 4RegT � 3RegT ,
and then based on (8) we have

RegT  E
⇥
4aA�RegT

⇤
+ E

⇥
4bB �RegT

⇤
+ E

⇥
4cC �RegT

⇤
+ 4D. (9)

For D we can substitute the values of �0 and ⌘0 and get

D = O(dmax(K � 1)1/3 logK). (10)

Upper bounding A,B, and C requires separate and elaborate analysis, which we do in Lemmas 6, 7
and 8, respectively. Proofs of these lemmas are provided in Appendix A.2.
Lemma 6 (A bound for 4aA�RegT ). We have the following bound for any a � 0:

4aA�RegT 

X

i 6=i⇤

4a2

�i
log(T/⌘0 + 1) + 1. (11)
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Lemma 6 contributes the logarithmic (in T ) term to the regret bound.
Lemma 7 (A bound for 4bB �RegT ). Let �max = maxt2[T ] �t, then for any b � 0:

4bB �RegT  64b2�max logK. (12)

It is evident that �max  �max  dmax, so the bound in Lemma 7 contributes an O(dmax logK)
term to the regret bound.
Lemma 8 (A bound for 4cC �RegT ). For any c � 0:

4cC �RegT 

X

i 6=i⇤

128c2�max

�i logK
. (13)

Part of the pseudo-regret bound that corresponds to Lemma 8 comes from the penalty term related
to the negative entropy part of the regularizer. In this part, despite the fact that �max can be much
smaller than dmax (Lemma 3), the

P
i 6=i⇤

�max
�i logK term could be very large when the suboptimality

gaps are small. In Appendix D we show how an asymmetric oracle learning rate �t,i ' �t/
p
�i for

the negative entropy regularizer can be used to remove the
P

i 6=i⇤ 1/�i factor in front of �max. The
possibility of removing this factor without the oracle knowledge is left as an open question.

Finally, by plugging (10),(11),(12),(13) into (9) we obtain the desired regret bound.

5.2 Adversarial bound

For the adversarial regime we use the final bound of Zimmert and Seldin [2021], which holds for any
non-increasing learning rates:

RegT 

TX

t=1

⌘t
p

K +
TX

t=1

�t�t + 2⌘�1
T

p

K + ��1
T logK.

It suffices to substitute the values of the learning rates and use Lemma 11 for function 1p
x

:

RegT 

TX

t=1

p
K

p
t+ ⌘0

+
TX

t=1

�t
p
logK

p
Dt + �0

+ 2
p
KT +K⌘0 +

p
log(K)DT + �0 log(K)

= O

⇣p
KT +

p
log(K)DT + dmaxK

1/3 logK
⌘
.

6 Refined lower bound

In this section, we prove a tight lower bound for adversarial regret with arbitrary delays. Thune et al.
[2019] have proposed a skipping technique to achieve refined regret upper bounds in the adversarial
regime with non-uniform delays. The technique was improved by Zimmert and Seldin [2020], but
it remained unknown whether the refined regret bounds for regimes with non-uniform delays are
tight. We answer this question positively by showing that the regret bound of Zimmert and Seldin
[2020] is not improvable without additional assumptions. We first derive a refined lower bound for
full-information games with variable loss ranges, which might be of independent interest. A proof is
provided in Appendix E.
Theorem 9. Let L1 � L2 � · · · � LT � 0 be a non-increasing sequence of positive reals and

assume that there exists a permutation ⇢ : [T ] ! [T ], such that the losses at time t are bounded

in [0, L⇢(t)]
K

. The minimax regret Reg⇤ in the corresponding adversarial full-information game

satisfies

Reg⇤ � max

8
<

:
1

2

blog2(K)cX

t=1

Lt,
1

32

vuut
TX

t=blog2(K)c

L2
t log(K)

9
=

; .

From here we can directly obtain a lower bound for the full-information game with variable delays.
This implies the same lower bound for bandits, since we have strictly less information available.
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Corollary 10. Let (dt)Tt=1 be a sequence of non-increasing delays, such that dt  T + 1� t and

let an oblivious adversary select all loss vectors (`t)Tt=1 in [0, 1]K before the start of the game. The

minimax regret of the full-information game is bounded from below by

Reg⇤ = ⌦

✓
min
S⇢[T ]

|S|+
p
DS̄ log(K)

◆
, where DS̄ =

X

t2[T ]\S

dt .

Proof. We divide the time horizon greedily into M buckets, such that the actions for all timesteps
inside a bucket have to be chosen before the first feedback from any timestep inside the bucket is
received. In other words, let bucket Bm = {bm, . . . , bm+1 � 1}, then 8t 2 Bm : t+ dt > bm+1 � 1,
while 9t 2 Bm : t+ dt = bm+1. This division of buckets has the following properties:

(i) monotonically decreasing sizes: |B1| � |B2| � · · · � |BM |.

(ii) upper bound on the sum of delays: 8m 2 [M � 1] : |Bm|
2
�
P

t2Bm+1
dt.

Both properties follow directly from the non-decreasing nature of the delays.
|Bm| = bm+1 � bm  bm + dbm � bm = dbm
|Bm| = min

t2Bm

{dt + t� bm} � dbm+1�1 + min
t2Bm

{t� bm} � dbm+1�1 .

Hence
|Bm| � dbm+1�1 � dbm+1 � |Bm+1| ,P

t2Bm+1
dt  |Bm+1| · dbm+1  |Bm+1| · |Bm|  |Bm|

2 .

Set S0 =
Sblog2(K)c

m=1 Bm and let the adversary set all losses within a bucket to the same value, then
the game reduces to a full information game over M rounds with loss ranges |B1|, |B2|, . . . , |BM |.
Applying Theorem 9 yields

Reg⇤ � max

8
<

:
1

2

blog2(K)cX

m=1

|Bm|,
1

32

vuut
MX

m=blog2(K)c

|Bm|2 log(K)

9
=

;

� max

8
<

:
1

2
|S0

|,
1

32

sX

t2S̄0

dt log(K)

9
=

; = ⌦

0

@ min
S⇢[T ]

|S|+

sX

t2S̄

dt log(K)

1

A .

7 Discussion

We have presented a best-of-both-worlds analysis of a slightly modified version of the algorithm of
Zimmert and Seldin [2020] for bandits with delayed feedback. The key novelty of our analysis is the
control of the drift of the playing distribution over arbitrary, but bounded, time intervals when the
learning rate is changing over time. This control is necessary for best-of-both-worlds guarantees, but
it is much more challenging than the drift control over fixed time intervals with fixed learning rate
that appeared in prior work.

We also presented an adversarial regret lower bound matching the skipping-based refined regret upper
bound of Zimmert and Seldin [2020] within constants.

Our work leads to several exciting open questions. The main one is whether skipping can be used to
eliminate the need in oracle knowledge of dmax. If possible, this would remedy the deterioration
of the adversarial bound by the additive factor of dmax, because the skipping threshold would be
dominated by

p
DS̄ logK. Another open question is whether the �max

�i
term can be eliminated from

the stochastic bound. Yet another open question is whether the dmax factor in the stochastic bound
can be reduced to �max and whether the multiplicative terms dependent on K can be eliminated. An
extension of the results to first order bounds, that depend on the cumulative loss of the best action
rather than T , and extension to arm dependent delays are also open questions. For now it was only
done in the adversarial setting [Gyorgy and Joulani, 2021, Van Der Hoeven and Cesa-Bianchi, 2022].

9



Acknowledgments and Disclosure of Funding

This project has received funding from European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 801199. YS acknowledges
partial support by the Independent Research Fund Denmark, grant number 9040-00361B.

References
Jacob D Abernethy, Chansoo Lee, and Ambuj Tewari. Fighting bandits with a new kind of smoothness. In

Advances in Neural Information Processing Systems (NeurIPS). 2015.

Peter Auer and Chao-Kai Chiang. An algorithm with nearly optimal pseudo-regret for both stochastic and
adversarial bandits. In Proceedings of the Conference on Learning Theory (COLT), 2016.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47, 2002.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed bandit
problem. SIAM Journal on Computing, 32, 2002b.

Ilai Bistritz, Zhengyuan Zhou, Xi Chen, Nicholas Bambos, and Jose Blanchet. Online exp3 learning in adversarial
bandits with delayed feedback. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Sébastien Bubeck and Aleksandrs Slivkins. The best of both worlds: Stochastic and adversarial bandits. In
Proceedings of the Conference on Learning Theory (COLT), 2012.

Nicol‘o Cesa-Bianchi, Claudio Gentile, Yishay Mansour, and Alberto Minora. Delay and cooperation in
nonstochastic bandits. In Journal of Machine Learning Research, 2019.

Andras Gyorgy and Pooria Joulani. Adapting to delays and data in adversarial multi-armed bandits. In
Proceedings of the International Conference on Machine Learning (ICML), 2021.

Shinji Ito. Parameter-free multi-armed bandit algorithms with hybrid data-dependent regret bounds. In
Proceedings of the Conference on Learning Theory (COLT), 2021.

Pooria Joulani, Andras Gyorgy, and Csaba Szepesvari. Online learning under delayed feedback. In Proceedings

of the International Conference on Machine Learning (ICML), 2013.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied

Mathematics, 6, 1985.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

Saeed Masoudian and Yevgeny Seldin. Improved analysis of the tsallis-inf algorithm in stochastically constrained
adversarial bandits and stochastic bandits with adversarial corruptions. In Proceedings of the Conference on

Learning Theory (COLT), 2021.

Jaouad Mourtada and Stéphane Gaïffas. On the optimality of the hedge algorithm in the stochastic regime.
Journal of Machine Learning Research, 20, 2019.

Francesco Orabona. A modern introduction to online learning. https://arxiv.org/abs/1912.13213, 2019.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematical

Society, 58, 1952.

Yevgeny Seldin and Gábor Lugosi. An improved parametrization and analysis of the EXP3++ algorithm for
stochastic and adversarial bandits. In Proceedings of the Conference on Learning Theory (COLT), 2017.

Yevgeny Seldin and Aleksandrs Slivkins. One practical algorithm for both stochastic and adversarial bandits. In
Proceedings of the International Conference on Machine Learning (ICML), 2014.

William R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence
of two samples. Biometrika, 25, 1933.

Tobias Sommer Thune, Nicolò Cesa-Bianchi, and Yevgeny Seldin. Nonstochastic multiarmed bandits with
unrestricted delays. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Dirk Van Der Hoeven and Nicolò Cesa-Bianchi. Nonstochastic bandits and experts with arm-dependent delays.
In Proceedings on the International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.

10

https://arxiv.org/abs/1912.13213


Chen-Yu Wei and Haipeng Luo. More adaptive algorithms for adversarial bandits. In Proceedings of the

Conference on Learning Theory (COLT), 2018.

Julian Zimmert and Yevgeny Seldin. An optimal algorithm for stochastic and adversarial bandits. In Proceedings

on the International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.

Julian Zimmert and Yevgeny Seldin. An optimal algorithm for adversarial bandits with arbitrary delays. In
Proceedings on the International Conference on Artificial Intelligence and Statistics (AISTATS), 2020.

Julian Zimmert and Yevgeny Seldin. Tsallis-INF: An optimal algorithm for stochastic and adversarial bandits.
Journal of Machine Learning Research, 2021.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] All assumptions are stated in the statements
of the theorems.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] The main applica-
tions of our work are in theoretical and guarantees for Multi-armed bandit setting with delays.
Multi-armed bandit is a very fundamental problem in sequential decision making which is base
for many online learning problem. So this is not a relevant issue in our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?

[N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,

internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re us-

ing/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-

tion or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

11


	Introduction
	Problem setting
	Algorithm
	Best-of-both-worlds regret bounds for Algorithm 1
	A proof sketch of Theorem 1
	Stochastic Bound
	Adversarial bound

	Refined lower bound
	Discussion
	Proofs of the lemmas for the analysis of Algorithm 1
	A proof of Lemma 3
	Proofs of the lemmas supporting the proof of Theorem 1
	A proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8

	Proof of the stability lemma

	Proof of the Key Lemma
	Auxiliary results for the proof of the key lemma
	Proof of the key lemma

	Detailed constant factors in the regret bound for Algorithm 1 
	Removing the multiplicative factor 1/i from max/i in the regret bound
	Lower bounds

