
Appendix

Organization of the appendices. The appendix is organized as follows. In Appendix A, we first
discuss the relationship of our work to prior arts. In Appendix B, we provide some preliminary
tools for analyzing our manifold optimization problem. Based upon this, the proof of Theorem 1
and the proof of Theorem 2 are provided in Appendix C and Appendix D, respectively. Finally, our
experimental setup as well as more experimental results are provided in Appendix E.

Notations. Before we proceed, let us first introduce the notations that will be used throughout the
appendix. Let Rn denote n-dimensional Euclidean space and ∥ · ∥2 be the Euclidean norm. We
write matrices in bold capital letters such as A, vectors in bold lower-case such as a, and scalars
in plain letters such as a. Given a matrix A ∈ Rd×K , we denote by ak its k-th column, ai its
i-th row, aij its (i, j)-th element, and ∥A∥ its spectral norm. We use diag(A) to denote a vector
that consists of diagonal elements of A and ddiag(A) to denote a diagonal matrix whose diagonal
elements are the diagonal ones of A. We use diag(a) to denote a diagonal matrix whose diagonal is
a. Given a positive integer n, we denote by [n] the set {1, . . . , n}. We denote the unit sphere in Rd

by Sd−1 := {x ∈ Rd : ∥x∥2 = 1}.

A Related Works

In Section 1, we only provided a brief discussion of related works due to space limitations. In the
following, we discuss those related works in more detail. We also refer interested readers to a recent
survey on this emerging topic [75].

The empirical phenomena of NC and feature engineering. Although the seminal works [1]
and [2] are the first to summarize the empirical prevalence of NC for commonly used CE and
MSE losses respectively, the idea of designing features with intra-class compactness and inter-class
separability has a richer history. More specifically, in the past many loss functions, such as center
loss [14], large-margin softmax (L-Softmax) loss [15], and its variants [16, 18–20] are designed with
similar goals for the task of visual face recognition. Moreover, the works [16,18–20] firstly introduced
feature normalization and demonstrated its advantages for learning more separable/discriminative
features, which well motivates our study in this work. Additionally, related works [21, 22] introduce
similar ideas of learning maximal separable features by fixing the linear classifiers with a simplex-
shaped structure.

If both the training and test data are drawn from the same distribution, the work [51] shows that NC
also happens on test data asymptotically, but less collapse for finite samples [52]. Under the same
setting, the work [5] demonstrated that better collapse could potentially lead to better generalization.
However, learning neural collapsed features could easily lead to overfitting [76] and vulnerability
to data corruptions [4]. Additionally, the collapse of the feature dimension could cause the loss of
intrinsic structure of input data, making the learned features less transferable [77]. In contrast, a line
of recent work proposed to learn diverse while discriminative representation by designing a loss that
maximizes the coding rate reduction [31, 78]. Instead of collapsing the features to a single dimension,
the works promote within-class diversity while keeping the maximum between-class separability. As
such, it leads to better robustness and transferability. On the other hand, in self-supervised learning,
recent works promote feature diversity and uniformity via contrastive learning [32, 35].

Global optimality of NC under UFM. The seminal works [1,2] inspired a lot of recent theoretical
studies of the NC phenomenon. Because the training loss of a deep neural network is highly nonlinear,
most works simplify the analysis by assuming unconstrained feature models (UFM) [4, 39] or layer
peeled models [40]. It basically assumes that the network has infinite expression power so that the
features can be reviewed as free optimization variables. Based upon the UFM, [36] is the first work
justifying the global optimality of NC and uniformity based upon a CE loss with normalized features,
while their study is quite simplified in that they assume each class only has one training sample.
The work [40] provided global optimality analysis for the CE loss with constrained features under
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more generic settings, and they also studies the case when the training samples are imbalanced in
each class. The follow-up work [38] extended the analysis to the unconstrained setting without any
penalty. Additionally, motivated by the commonly used weight decay on network parameters, the
work [4] justifies the global optimality of NC for the CE loss under unconstrained formulation, with
penalization on both the features and classifiers. Its companion work [5] extended the analysis to the
MSE loss. Under the same assumption, other work [7] studies the SC loss with normalized features,
proving that the only global solutions satisfy NC properties. Moreover, the work [6] studies the
setting beyond the simple UFM, showing that, even for a three-layer nonlinear network, the NC
solutions are the only global solutions with the MSE training loss.

Benign global landscape and learning dynamics under UFM. However, since the training loss
is highly nonconvex even under the UFM, merely studying global optimality is not sufficient for
guaranteeing efficient global optimization. More recent works address this issue by investigating the
global landscape properties and learning dynamics of specific training algorithms. More specifically,
under the UFM, [4, 5] showed that the optimization landscapes of CE and MSE losses have benign
global optimization landscapes, in the sense that every local minimizer satisfies NC properties and
the remaining critical points are strict saddles with negative curvatures. These works considered the
unconstrained formulations with regularization on both features and classifiers. In comparison, our
work studies the benign global landscape with features and classifiers constrained over the product
of spheres. On the other hand, there is another line of works studying the implicit bias of learning
dynamics under UFM [38, 39, 79–82], showing that the convergent direction is along the direction of
the minimum-norm separation problem for both CE and MSE losses.

B Preliminaries

In this section, we first review some basic aspects of the Riemannian optimization and then compute
the derivative of the CE loss.

B.1 Riemannian Derivatives

According to [57, Chapter 3 & 5] and [60, 61], the tangent space of a general manifold M ⊆ Rd

at x, denoted by TxM, is defined as the set of all vectors tangent to M at x. Based on this, the
Riemannian gradient grad f of a function f at x is a unique vector in TxM satisfying

⟨grad f, ξ⟩ = Df(x)[ξ], ∀ ξ ∈ TxM.

where Df(x)[ξ] is the derivative of f(γ(t)) at t = 0, γ(t) is any curve on the manifold that satisfies
γ(0) = x and γ̇(0) = ξ. The Riemannian Hessian Hess f(x) is a mapping from the tangent space
TxM to the tangent space TxM with

Hess f(x)[ξ] = ∇̃ξ grad f(x),

where ∇̃ is the Riemannian connection. For a function f defined on the manifold M, if it can be
extended smoothly to the ambient Euclidean space, we have

grad f(x) = PTxM (∇f(x)) ,
Hess f(x)[ξ] = PTxM (D grad f(x)[ξ]) .

where D is the Euclidean differential, and PTxM is the projection on the tangent space TxM.
According to [57, Example 3.18], if M = Sp−1, then the tangent space and projection are

TxSp−1 =
{
z ∈ Rp | x⊤z = 0

}
, PTxSp−1z = (I − xx⊤)z.

Moreover, the oblique manifold M = OB(p, q) is a product of q unit spheres, and it is also a smooth
manifold embedded in Rp×q , where

M = OB(p, q) = Sp−1 × Sp−1 × · · · × Sp−1︸ ︷︷ ︸
q times

=
{
Z ∈ Rp×q | diag

(
Z⊤Z

)
= 1

}
.

Correspondingly, the tangent space PTXOB(p,q) is

TXOB(p, q) = Tx1
Sp−1 × · · · × Txq

Sp−1 =
{
Z ∈ Rp×q | x⊤

i zi = 0, 1 ≤ i ≤ q
}
,

=
{
Z ∈ Rp×q | diag

(
X⊤Z

)
= 0

}
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and the projection operator Tx1Sp−1 is

PTXOB(p,q)(Z) =
[(
I − x1x

⊤
1

)
z1 · · ·

(
I − xqx

⊤
q

)
zq
]

= Z −X ddiag(X⊤Z).

B.2 Derivation of (7) and (8)

We first derive (7). Define the curve

ϕ(t) : = f(W + t∆W ,H + t∆H)

= g(τ(W + t∆W )⊤(H + t∆H))

= g(τW⊤H + τ(∆⊤
WH +W⊤∆H)t+ τ∆⊤

W∆Ht
2)

= g(M + δ(t))

where M = τW⊤H and δ(t) = τ(∆⊤
WH +W⊤∆H)t+ τ∆⊤

W∆Ht
2 satisfies

δ̇(t) = τ(∆⊤
WH +W⊤∆H) + 2τ∆⊤

W∆Ht

δ̈(t) = 2τ∆⊤
W∆H

so by chain rule and product rule we have

ϕ̇(t) =
〈
δ̇(t),∇g(M + δ(t))

〉
and

ϕ̈(t) =
〈
δ̈(t),∇g(M + δ(t))

〉
+∇2g(M + δ(t))[δ̇(t), δ̇(t)].

Then since ∇2f(W ,H)[∆,∆] = ϕ̈(0), we have

∇2f(W ,H)[∆,∆]

=
〈
δ̈(0),∇g(M + δ(0))

〉
+∇2g(M + δ(0))[δ̇(0), δ̇(0)]

=2τ
〈
∆⊤

W∆H ,∇g(M)
〉
+∇2g(M)[τ(∆⊤

WH +W⊤∆H), τ(∆⊤
WH +W⊤∆H)]

giving the result.

Now we derive (8). First, we consider the general case of a function f defined on the
oblique manifold M = OB(p, q), where f can be smoothly extended to the ambient Euclidean
space. We have

grad f(X) = ∇f(X)−X ddiag(X⊤∇f(X)).

Then

D grad f(X)[U ] = lim
t→0

∆(t)

where

∆(t)

=
grad f(X + tU)− grad f(X)

t

=
∇f(X + tU)− (X + tU) ddiag((X + tU)⊤∇f(X + tU))−∇f(X) +X ddiag(X⊤∇f(X))

t

=
∇f(X + tU)−∇f(X)

t
−U ddiag(X⊤∇f(X + tU))−X ddiag(U⊤∇f(X + tU))

−X ddiag

(
X⊤∇f(X + tU)−∇f(X)

t

)
− t U ddiag(U⊤∇f(X + tU))

so

D grad f(X)[U ] = ∇2f(X)[U ]−U ddiag(X⊤∇f(X))

−X ddiag(U⊤∇f(X))−X ddiag(U⊤∇2f(X)[U ]).
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Now, for U ∈ TXM, we have diag(U⊤X) = 0 so

Hess f(X)[U ,U ] = ⟨U ,Hess f(X)[U ]⟩
=
〈
U , D grad f(X)−X ddiag(X⊤D grad f(X))

〉
= ⟨U , D grad f(X)⟩
=
〈
U ,∇2f(X)[U ]

〉
−
〈
U ,U ddiag(X⊤∇f(X))

〉
= ∇2f(X)[U ,U ]−

〈
U ddiag(X⊤∇f(X)),U

〉
.

Now let f be defined as in (4). Since (W ,H) lies on the product manifold OB(d,K)×OB(d,N) =
OB(d,K +N) which is also an oblique manifold, we can simply use the general result above, i.e.,
for ∆ ∈ T(W ,H)OB(d,N +K),

Hess f(W ,H)[∆,∆] = ∇2f(W ,H)[∆,∆]−
〈
∆W ddiag(W⊤∇W f(W ,H)),∆W

〉
−
〈
∆H ddiag(H⊤∇Hf(W ,H)),∆H

〉
which gives (8) after substituting the ordinary Euclidean gradient of f .

B.3 Derivatives of CE Loss

Note that the CE loss is of the form

LCE (z,yk) = − log

(
exp(zk)∑K
ℓ=1 exp(zℓ)

)
= log

(
K∑
ℓ=1

exp(zℓ)

)
− zk.

Then, one can verify

∂LCE (z,yk)

∂zj
=


exp(zj)∑K
ℓ=1 exp(zℓ)

, j ̸= k,
exp(zj)∑K
ℓ=1 exp(zℓ)

− 1, j = k,

for all j ∈ [K]. Thus, we have

∇LCE(z,yk) =
exp (z)∑K
ℓ=1 exp(zℓ)

− ek = η(z)− ek,

where η(z) is a softmax function, with

η(zj) :=
exp (zj)∑K
ℓ=1 exp(zℓ)

.

Furthermore, we have

∇2LCE(z,yk) = diag(η(z))− η(z)η(z)⊤.

C Proof of Theorem 1

In this section, we first simplify Problem (4) by utilizing its structure, then characterize the structure
of global solutions of the simplified problem, and finally deduce the struture of global solutions of
Problem (4) based on their relationship. Before we proceed, we can first reformulate Problem (4) as
follows. Let

H =
[
H1 H2 · · · Hn

]
∈ Rd×N , Hi = [h1,i h2,i · · · hK,i] ∈ Rd×K , ∀ i ∈ [N ],

and f̄ : Rd×K × Rd×K → R be such that

f̄(W ,Q) =
1

K

K∑
k=1

LCE

(
τW⊤qk,yk

)
. (10)

Then, we can rewrite the objective function of Problem (4) as

f(W ,H) =
1

n

n∑
i=1

f̄(W ,Hi). (11)
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Lemma 1. Suppose that (W ∗,Q∗) is an optimal solution of
min

W∈Rd×K ,Q∈Rd×K
f̄(W ,Q) s. t. Q ∈ OB(d,K), W ∈ OB(d,K). (12)

Then, (W ∗,H∗) with H∗ = [Q∗ Q∗ · · · Q∗] is an optimal solution of Problem (4).

Proof. According to (11), we note that
min {f(W ,H) : H ∈ OB(d,N), W ∈ OB(d,K)}

≥ 1

n

n∑
i=1

min
{
f̄(W i,Hi) : Hi ∈ OB(d,K), W i ∈ OB(d,K)

}
,

where equality holds if (W i,Hi) = (W ∗,Q∗) for all i ∈ [n] and (W ,H) = (W ∗,Q∗). This,
together with the fact that (W ∗,Q∗) is an optimal solution of Problem (12), implies the desired
result.

Based on the above lemma, it suffices to consider the global optimality condition of Problem (12).
Proposition 1. Suppose that the feature dimension is no smaller than the number of classes (i.e.,
d ≥ K) and the training labels are balanced in each class (i.e., n = n1 = · · · = nK). Then, any
global minimizer (W ,Q) ∈ OB(d,K)×OB(d,K) of Problem (12) satisfies

Q = W , QTQ =
K

K − 1

(
IK − 1

K
1K1⊤

K

)
. (13)

Proof. According to [4, Lemma D.5], it holds for all k ∈ [K] and any c1 > 0 that

(1 + c1)(K − 1)
(
LCE

(
τW⊤qk,yk

)
− c2

)
≥ τ

(
K∑
ℓ=1

w⊤
ℓ qk −Kw⊤

k qk

)
,

where

c2 =
1

1 + c1
log ((1 + c1)(K − 1)) +

c1
1 + c1

log

(
1 + c1
c1

)
and the equality holds when w⊤

i qk = w⊤
j qk for all i, j ̸= k and

c1 =

(
(K − 1) exp

(∑K
ℓ=1 w

⊤
ℓ qk −Kw⊤

k qk
K − 1

))−1

.

This, together with (10), implies

(1 + c1)(K − 1)
(
f̄(W ,Q)− c2

)
≥ τ

K

K∑
k=1

(
K∑
ℓ=1

w⊤
ℓ qk −Kw⊤

k qk

)

=
τ

K

(
K∑

k=1

K∑
ℓ=1

w⊤
k qℓ −K

K∑
k=1

w⊤
k qk

)

= τ

K∑
k=1

w⊤
k (q̄ − qk) ,

where the first inequality becomes equality when w⊤
i qk = w⊤

j qk for all i, j ̸= k and all k ∈ [K]

and q̄ = 1
K

∑K
ℓ=1 qℓ in the last equality. Note that that u⊤v ≥ − c3

2 ∥u∥
2
2 − 1

2c3
∥v∥22 for any c3 > 0,

where the equality holds when c3u = −v. Consequently, it holds for any c3 > 0 that

(1 + c1)(K − 1)
(
f̄(W ,Q)− c2

)
≥ −τ

K∑
k=1

(
c3
2
∥wk∥22 +

1

2c3
∥q̄ − qk∥22

)

= −τ
2

(
c3

K∑
k=1

∥wk∥22 +
1

c3

K∑
k=1

∥qk∥22 −
K

c3
∥q̄∥22

)

≥ −τ
2

(
c3

K∑
k=1

∥wk∥22 +
1

c3

K∑
k=1

∥qk∥22

)
= −τ

2

(
c3K +

K

c3

)
,
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where the first inequality becomes equality when c3wk = qk−q̄ for all k ∈ [K], the second inequality
becomes equality when q̄ = 0, and the last equality is due to Q ∈ OB(d,K) and W ∈ OB(d,K).
Thus, we have

(1 + c1)(K − 1)
(
f̄(W ,Q)− c2

)
≥ −τK

2

(
c3 +

1

c3

)
,

where the equality holds when w⊤
i qk = w⊤

j qk for all i, j ̸= k and all k ∈ [K], c3wk = qk for all
k ∈ [K], and

∑K
k=1 qk = 0. This, together with Q ∈ OB(d,K) and W ∈ OB(d,K), implies

c3 = 1. Thus, we have qk = wk for all k ∈ [K] and

f̄(W ,Q) ≥ − τK

(1 + c1)(K − 1)
+ c2.

This further implies that
∑K

k=1 wk = 0, w⊤
i wk = w⊤

j wk for all i, j ̸= k and all k ∈ [K]. Then, it
holds that for all 1 ≤ k ̸= ℓ ≤ K that

⟨wℓ,wk⟩ = − 1

K − 1
.

These, together with Q ∈ OB(d,K) and W ∈ OB(d,K), imply (13).

Proof of Theorem 1. According to (11), Lemma 1, and Proposition 1, the global solutions of Problem
(4) take the form of

hk,i = qk, wk = qk, ∀ k ∈ [K], i ∈ [N ],

and

QTQ =
K

K − 1

(
IK − 1

K
1K1⊤

K

)
.

Based on this and the objective function in Problem (4), the value at an optimal solution (W ∗,H∗)
is

f(W ∗,H∗) = log

1 +
(K − 1) exp

(
− τ

K−1

)
exp(τ)

 = log

(
1 + (K − 1) exp

(
− Kτ

K − 1

))
.

Then, we complete the proof.

D Proof of Theorem 2

In this section, we first analyze the first-order optimality condition of Problem (4), then characterize
the global optimality condition of Problem (4), and finally prove no spurious local minima and strict
saddle point property based on the previous optimality conditions. For ease of exposition, let us
denote

M := τW⊤H, g(M) := f(W ,H) =
1

N

n∑
i=1

K∑
k=1

LCE(mk,i,yk). (14)

Then we have the gradient

∇f(W ,H) = (∇W f(W ,H),∇Hf(W ,H))

with

∇W f(W ,H) = τH∇g(M)⊤, ∇Hf(W ,H) = τW∇g(M), (15)

and

∇g(M) = [η(m1,1) · · · η(mK,n)]− IK ⊗ 1⊤
n , η(m) =

exp (m)∑K
i=1 exp (mi)

. (16)
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D.1 First-Order Optimality Condition

By using the tools in Appendix B.1, we can calculate the Riemannian gradient at a given point
(W ,H) ∈ OB(d,N) × OB(d,K) as in (6) and (5). Thus, for a point (W ,H) ∈ OB(d,N) ×
OB(d,K), the first-order optimality condition of Problem (4) is

gradW f(W ,H) = τW∇g(M)− τH ddiag
(
H⊤W∇g(M)

)
= 0, (17)

gradH f(W ,H) = τH∇g(M)⊤ − τW ddiag
(
W⊤H∇g(W )⊤

)
= 0. (18)

We denote the set of all critical points by

C := {(W ,H) ∈ OB(d,K)×OB(d,N) | gradH f(W ,H) = 0, gradW f(W ,H) = 0} .

Lemma 2. Suppose that gi ∈ RK and gk ∈ RN denote the i-th column and k-th row vectors of the
matrix

G := ∇g(M) ∈ RK×N ,

respectively. Let α ∈ RK and β ∈ RN be such that

αk =
〈
wk,Hgk

〉
,∀ k ∈ [K], βi = ⟨hi,Wgi⟩ ,∀ i ∈ [N ]. (19)

Then it holds for any (W ,H) ∈ C that

Hgk = αkwk, ∀ k ∈ [K], Wgi = βihi, ∀ i ∈ [N ]. (20)

and

|αk| = ∥Hgk∥2, k = 1, . . .K, |βi| = ∥Wgi∥2, i = 1, . . . , N. (21)

Proof. According to (15), we have

HG⊤ =
[
Hg1 . . . HgK

]
, WG = [Wg1 . . . WgK ]

Using (19), we can compute

ddiag
(
W⊤HG⊤) = diag(α), ddiag

(
H⊤WG

)
= diag(β)

This, together with (17) and (18), implies (20). Since ∥wk∥2 = 1 for all k ∈ [K] and ∥hi∥2 = 1 for
all i ∈ [N ], by

α2
k = ⟨αkwk,Hgk⟩ =

∥∥Hgk
∥∥2
2
, β2

i = ⟨βihi,Wgi⟩ = ∥Wgi∥22
which implies (21).

D.2 Characterization of Global Optimality

According to Theorem 1, it holds that for any global solution (W ,H) ∈ OB(d,N) × OB(d,K)
that

H = W ⊗ 1⊤
n , W

⊤W =
K

K − 1

(
IK − 1

K
1K1⊤

K

)
, (22)

where ⊗ denotes the Kronecker product.

Lemma 3. Given any critical point (W ,H) ∈ C, let α ∈ RK and β ∈ RN be defined as in (19).
Then, (W ,H) is a global solution of Problem (4) if and only if the corresponding (α,β) satisfies

αk ≤ −
√
n∥∇g(M)∥, ∀ k ∈ [K], βi ≤ −∥∇g(M)∥√

n
, ∀ i ∈ [N ], (23)

where M = τW⊤H .
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Proof. Suppose that (W ,H) ∈ C is an optimal solution. According to (22), one can verify that

W⊤H = W⊤ (W ⊗ 1⊤
n

)
=

K

K − 1

(
IK − 1

K
1K1⊤

K

)
⊗ 1⊤

n .

According to this and (14), we can compute

∇g(M) =
−K exp

(
− 1

K−1

)
exp(1) + (K − 1) exp

(
− 1

K−1

) (IK − 1

K
1K1⊤

K

)
⊗ 1⊤

n . (24)

This, together with αk = ⟨wk,Hgk⟩, yields for all k ∈ K,

αk = ⟨H⊤wk, g
k⟩ =

−nK exp
(
− 1

K−1

)
exp(1) + (K − 1) exp

(
− 1

K−1

) . (25)

By the same argument, we can compute for all i ∈ [N ],

βi =
−K exp

(
− 1

K−1

)
exp(1) + (K − 1) exp

(
− 1

K−1

) . (26)

According to (24), one can verify

∥∇g(M)∥ =

√
nK exp

(
− 1

K−1

)
exp(1) + (K − 1) exp

(
− 1

K−1

) .
This, together with (25) and (26), implies (23)

Suppose that a critical point (W ∗,H∗) ∈ C satisfies (23). Let M∗ = τW ∗⊤
H∗ and λ =

∥∇g(M∗)∥. According to (21) and the fact that ∥w∗
k∥ = 1 and ∥h∗

k∥ = 1 for all k = 1, . . .K, we
have

K∑
k=1

α∗2

k = ∥H∗∇g(M∗)⊤∥2F ≤ ∥∇g(M∗)∥2∥H∗∥2F = λ2N,

N∑
i=1

β∗2

i = ∥W ∗∇g(M∗)∥2F ≤ ∥∇g(M∗)∥2∥W ∗∥2F = λ2K.

This, together with (23), implies

α∗
k = −

√
nλ, ∀ k ∈ [K], β∗

i = − λ√
n
, ∀ i ∈ [N ]. (27)

Then, we consider the following regularized problem:

min
W∈Rd×K ,H∈Rd×N

f(W ,H) +
λ
√
n

2
∥W ∥2F +

λ

2
√
n
∥H∥2F . (28)

According to the fact that (W ∗,H∗) is a critical point of Problem (4) and satisfies (27), (17), and
(18), we have {

H∗∇g(M∗)⊤ + λ
√
nW ∗ = 0,

W ∗∇g(M∗) + λH∗/
√
n = 0.

(29)

This, together with the first-order optimality condition of Problem (28), yields that (W ∗,H∗) is a
critical point of Problem (28). According to [67, Lemma C.4] and ∥∇g(M∗)∥ = λ, it holds that
(W ∗,H∗) is an optimal solution of Problem (28). This, together with [67, Theorem 3.1], yields that
(W ∗,H∗) ∈ C satisfies

H∗ = W ∗ ⊗ 1⊤
n , W

∗⊤
W ∗ =

K

K − 1

(
IK − 1

K
1K1⊤

K

)
.

According to Theorem 1, we conclude that (W ∗,H∗) is an optimal solution of Problem (4). Then,
we complete the proof.
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D.3 Negative Curvature at Saddle Points

Lemma 4. Let α and β be defined as in Lemma 2. Then
∑K

k=1 αk =
∑N

i=1 βi.

Proof. Given the definition of α and β in (19), this follows directly from cyclic property of trace:

K∑
k=1

αk = trace(W⊤HG⊤) = trace(GH⊤W ) = trace(H⊤WG) =

N∑
i=1

βi,

as desired.

Lemma 5. Suppose (W ,H) is a critical point and there exists i ∈ [N ] such that βi = 0. Then there
exists w ∈ Sd−1 such that W = w1⊤

K . Furthermore, we have β1 = . . . = βN = 0.

Proof. Suppose nk ≤ i < n(k+1) for k ∈ [K] (i.e., hi has label yk). Thus, we can write each entry
of the gradient gi of the CE loss as

giℓ =

{
pik − 1 ℓ = k

piℓ ℓ ̸= k
where piℓ =

exp(τw⊤
ℓ hi)∑K

j=1 exp(τw
⊤
j hi)

.

Since exp(·) > 0 and K ≥ 2, we have 0 < piℓ < 1. Given that βi = 0 and ∥hi∥2 = 1, from (20) we
know that we must have Wgi = 0, which further gives

gikwk +
∑
ℓ̸=k

giℓwℓ = 0.

Given 1− pik > 0, equivalently we have

wk =
∑
ℓ ̸=k

piℓ
1− pik

wℓ,

where
∑

ℓ ̸=k
piℓ

1−pik
= 1 and piℓ > 0 so wk is a strict convex combination of points {wℓ}ℓ ̸=k on the

unit sphere. But since wk also lies on the unit sphere, and the convex hull of points on the sphere
only intersects with the sphere at {wℓ}ℓ ̸=k, we must have all wℓ be identical, i.e., w1 = . . . = wK .
Therefore, we can write W = w11

⊤
K , and consequently

WG = w11
⊤
KG = 0,

where the last equality follows from the fact that 1⊤
KG = 1⊤

K∇g(M) = 0. Thus, given βi =
⟨hi,Wgi⟩, from the above we have β1 = . . . = βN = 0.

Lemma 6. For any H ∈ OB(d,N) and w ∈ Sd−1, there exists at least one a ∈ Sd−1 such that for
any 0 < τ < 2(d− 2)(1 + (K mod 2)/K)−1, we have

a⊤w = 0 and ∥H⊤a∥22 < Γ :=
2N

τ(1 + (K mod 2)/K) + 2
. (30)

Proof. To establish the result, we need to show that there exists a linear subspace S ⊂ Rd with
dim(S) ≥ 2 such that for any nonzero z ∈ S we have ∥H⊤z∥22 < Γ∥z∥22. Then

dim(S ∩ N (w)) > 0,

where N (w) denotes the null space of w, so if we choose unit-norm a ∈ S ∩ N (w), we can obtain
the desired results. Let (σ2

ℓ (H), vℓ) denote the ℓ-th eigenvalue-eigenvector pair of HH⊤ ∈ Rd×d

for ℓ ∈ [d]. Given the fact H ∈ OB(d,N), it is obvious that

∥H∥2F =

d∑
ℓ=1

σ2
ℓ (H) =

N∑
j=1

∥hj∥22 = N.
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Now suppose that σ2
d−1(H) ≥ Γ. Then we must have

N =

d∑
i=1

σ2
i (H) ≥ (d− 1)Γ = (d− 1)

2N

τ(1 + (K mod 2)/K) + 2

which implies τ ≥ 2(d − 2)(1 + (K mod 2)/K)−1, but this contradicts the assumption on τ .
Therefore σ2

d−1(H) < Γ, so we can choose S = span({vd−1, vd}), which suffices to give the result
by the above argument.

We are now ready to show that at any critical point that is not globally optimal, we can find a direction
along which the Riemannian Hessian has a strictly negative curvature at this point.

Recall M := τW⊤H and G := ∇g(M), as well as the definition of α ∈ RK , β ∈ RN

in (19). As mentioned at the beginning of Appendix C, we can write H as

H =
[
H1 H2 · · · Hn

]
∈ Rd×N , Hi = [h1,i h2,i · · · hK,i] ∈ Rd×K , ∀ i ∈ [N ].

As a final remark, the bilinear form of the Riemannian Hessian in (8) can be written as

Hess f(W ,H)[∆,∆] = ∇2f(W ,H)[∆,∆]− τ

K∑
k=1

αk∥δWk
∥22 − τ

N∑
i=1

βi∥δHi∥22 (31)

where ∇2f(W ,H)[∆,∆] is given in (7), and δWk
, δHi are the k-th and i-th columns of ∆W and

∆H respectively.
Proposition 2. Suppose d > K and τ < 2(d − 2)(1 + (K mod 2)/K)−1. For any critical point
(W ,H) ∈ C that is not globally optimal, there exists ∆ = (∆W ,∆H) ∈ TWOB(d,K) ×
THOB(d,N) such that

Hess f(W ,H)[∆,∆] < 0. (32)

Proof. We proceed by considering two separate cases for the value of β: βi = 0 for some i ∈ [N ],
and βi ̸= 0 for all i ∈ [N ].

Case 1: Suppose βi = 0 for some i ∈ [N ]. In this case, by Lemma 5, we know that
W = w1⊤

K for some w ∈ Sd−1 and β = 0. We have that M = τ1Kw⊤H , and so

G = − 1

N
[A · · · A] ∈ RK×N , A = IK − 1

K
1K1⊤

K ∈ RK×K . (33)

For the the i-th column of M , i.e. mi, we have the Hessian

∇2LCE(mi,yk) =
1

K
IK − 1

K2
1K1⊤

K =
1

K
A (34)

Using Lemma 6, choose a ∈ Sd−1 satisfying (30). Additionally, choose a vector u ∈ RK with each
entry uk = (−1)k+1 (noting that

∑
k uk = K mod 2). Now, we construct the negative curvature

direction ∆ = (∆W ,∆H) as

∆W = au⊤, ∆H = [∆H1 · · ·∆Hn ]

where

∆Hi = au⊤ −Hi ddiag(Hi⊤au⊤), ∀i ∈ [n].

First, let δMi denote the i-th column of ∆M := W⊤∆H +∆⊤
WH , so that

δMi
= (w⊤δHi

)1K + (h⊤
i a)u. (35)

Then from (14) and (34), we know that

∇2g(W⊤H) [τ∆M , τ∆M ] =
τ2

NK

N∑
i=1

δ⊤Mi
AδMi

.
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Since A1K = 0 and u⊤Au = K − (K mod 2)/K, by (35) we have

∇2g(W⊤H) [τ∆M , τ∆M ] =
τ2

NK

(
K − K mod 2

K

) N∑
i=1

(h⊤
i a)

2

=
τ2

NK

(
K − K mod 2

K

)
∥H⊤a∥22.

On the other hand, by (33) we have

2τ
〈
G,∆⊤

W∆H

〉
= −2τ

N

n∑
i=1

trace(A∆⊤
W∆Hi)

= −2τ

N

n∑
i=1

trace
(
Auu⊤ diag

(
1− (h⊤

1,ia)
2, . . . , 1− (h⊤

K,ia)
2
))

= −2τ

N

n∑
i=1

u⊤ diag
(
1− (h⊤

1,ia)
2, . . . , 1− (h⊤

K,ia)
2
)(

u− K mod 2

K
1K

)

= −2τ

N

n∑
i=1

K∑
k=1

(1− (h⊤
k,ia)

2)u2k + (K mod 2)
2τ

NK

n∑
i=1

K∑
k=1

(1− (h⊤
k,ia)

2)uk

≤ −2τ

N

(
N − ∥H⊤a∥22

)
+ (K mod 2)

2τ

NK

(
N − ∥H⊤a∥22

)
= − 2τ

NK

(
N − ∥H⊤a∥22

)
(K − (K mod 2)) .

Finally, the remaining term −τ
∑K

k=1 αk∥δWk
∥22 − τ

∑N
i=1 βi∥δHi

∥22 in (31) vanishes, which is due
to the fact that β = 0 and

K∑
k=1

αk∥δWk
∥22 =

K∑
k=1

αku
2
k =

K∑
k=1

αk = 0,

where the last equality follows by Lemma 4 that
∑K

k=1 αk =
∑N

i=1 βi = 0. Therefore, plugging
both bounds above into (31), we obtain

Hess f(W ,H)[∆,∆]

≤ τ2

NK

(
K − K mod 2

K

)
∥H⊤a∥22 −

2τ

NK
(N − ∥H⊤a∥22)(K − (K mod 2))

=
τ(K − (K mod 2))

NK

(
τ

[
K2 − (K mod 2)

K(K − (K mod 2))

]
∥H⊤a∥22 − 2(N − ∥H⊤a∥22)

)
=
τ(K − (K mod 2))

NK

[
(τ [1 + (K mod 2)/K)] + 2) ∥H⊤a∥22 − 2N

]
< 0,

where the last inequality follows by our choice of a ∈ Sd−1 in Lemma 6. Thus we obtain the desired
result in (32) for this case.

Case 2: Suppose βi ̸= 0 for all i ∈ [N ]. Using the fact that d > K, choose a ∈ Sd−1

such that W⊤a = 0. By Lemma 2, given that Wgi = βihi for all i ∈ [N ], we have

a⊤Wgi = βia
⊤hi = 0, ∀ i ∈ [N ].

Thus, as βi ̸= 0 for all i ∈ [N ], this simply implies that H⊤a = 0. Now using Lemma 3, for any
non-optimal critical point (W ,H), there exists at least one k ∈ [K] or i ∈ [N ] such that either

αk > −
√
n∥G∥, or βi > −∥G∥/

√
n. (36)

Let u1 ∈ RK and v1 ∈ RN be the left and right unit singular vectors associated with the leading
singular values of G, respectively. In other words, we have

u⊤
1 Gv1 = ∥G∥. (37)
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By letting u = −u1/ 4
√
n, v = 4

√
nv1, we construct the negative curvature direction as

∆ = (∆W ,∆H) =
(
au⊤, av⊤) . (38)

Since W⊤a = 0,H⊤a = 0, we have
W⊤∆H +∆⊤

WH = W⊤av⊤ + ua⊤H = 0,

so that from (7) we have
∇2f(W ,H)[∆,∆] = ∇2g(M)

[
τ
(
W⊤∆H +∆⊤

WH
)
, τ
(
W⊤∆H +∆⊤

WH
)]

+ 2τ
〈
G,∆⊤

W∆H

〉
.

Thus, from (31), combining all the above derivations we obtain

Hess f(W ,H)[∆,∆] = 2τ
〈
G,∆⊤

W∆H

〉
− τ

K∑
k=1

αk ∥δWk
∥22 − τ

N∑
i=1

βi ∥δHi
∥22 .

= −2τ
〈
G,u1v

⊤
1

〉
− τ

(
K∑

k=1

αku
2
1,k√
n

+

N∑
i=1

√
nβiv

2
1,i

)

= τ

(
−2∥G∥ −

K∑
k=1

αku
2
1,k√
n

−
N∑
i=1

√
nβiv

2
1,i

)

where the last equality follows from (37). On the other hand, by Lemma 3, the fact we derived in (36)
that there exists k ∈ [K] such that αk > −

√
n∥G∥ or there exists i ∈ [N ] such that βi > −∥G∥/

√
n,

and that ∥u1∥2 = ∥v1∥2 = 1, we obtain

−
K∑

k=1

αku
2
1,k√
n

−
N∑
i=1

√
nβiv

2
1,i < ∥G∥

(
K∑

k=1

u21,k +

N∑
i=1

v21,i

)
= 2 ∥G∥ .

Therefore, we have
Hess f(W ,H)[∆,∆] < τ (−2∥G∥+ 2∥G∥) = 0,

as desired.

Proof of Theorem 2. Let (W ,H) ∈ OB(d,K) × OB(d,N) be a local minimizer of Problem (4).
Suppose that it is not a global minimizer. This implies (W ,H) is a critical point that is not a global
minimizer. According to Proposition 2, the Riemannian Hessian at (W ,H) has negative curvature.
This contradicts with the fact that (W ,H) is a local minimizer. Thus, we concludes that any local
minimizer of Problem (4) is a global minimizer in Theorem 1. Moreover, according to Proposition 2,
any critical point of Problem (4) that is not a local minimizer is a Riemmannian strict saddle point
with negative curvature.

E Experiments

In this section of the appendix, we provide details of the experimental setups, as well as additional
experiments to support the main text.

Network architectures, datasets, and training details. In our experiments, we use ResNet [9]
architectures for the feature encoder. For the normalized network, we project the output of the
encoder onto the sphere of radius τ (as done in [7]) and also project the weight classifiers to the unit
sphere after each optimization step to maintain constraints. In all experiments, we set τ = 1. For the
regularized UFM and network, we use a weight and feature decay of 10−4 (using the loss in [4]). We
do not use a bias term for the classifier for either architecture. For all experiments, we use the CIFAR
dataset4 [12], where we use CIFAR100 for all experiments except for the experiments in Section 4.1
and Appendix E.3, where we use CIFAR10. In all experiments, we train the networks using SGD
with a batch size of 128 and momentum 0.9 with an initial learning rate of 0.05, and we decay the
learning rate by a factor of 0.1 after every 40 epochs - these hyperparameters are chosen to be the
same as those in [4] for fair comparisons. All networks are trained on Nvidia Tesla V100 GPUs with
16G of memory.

4Both CIFAR10 and CIFAR100 are publicly available and are licensed under the MIT license.
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Figure 7: Faster training/feature collapse of UFM with feature normalization with CG. Average
(deviation denoted by shaded area) training accuracy and NC1 of UFM over 10 trials of (Riemmanian)
conjugate gradient method. We set K = 100 classes, n = 30 samples per class.
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Figure 8: Faster training/feature collapse of UFM with feature normalization with TRM. Average
(deviation denoted by shaded area) training accuracy and NC1 of UFM over 10 trials of (Riemmanian)
trust-region method. We set K = 100 classes, n = 30 samples per class.

Neural collapse metrics. For measuring different aspects of neural collapse as introduced in
Section 1, we adopt similar NC metrics from [1, 4, 5], given by

NC1 :=
1

K
trace(ΣWΣ†

B)

NC2 :=

∥∥∥∥ W⊤W

∥W⊤W ∥F
− 1√

K − 1

(
IK − 1K1⊤

K

)∥∥∥∥
F

NC3 :=

∥∥∥∥ W⊤H

∥W⊤H∥F
− 1√

K − 1

(
IK − 1K1⊤

K

)∥∥∥∥
F

,

where ΣW and ΣB are the within-class and between-class covariance matrices (see [1, 4] for more
details), Σ†

B denotes pseudo inverse of ΣB , and H is the centered class mean matrix in (9). More
specifically, NC1 measures NC1 (i.e., within class variability collapse), NC2 measures NC2 (i.e.,
the convergence to the simplex ETF), and NC3 measures NC3 (i.e., the duality collapse).

E.1 Riemannian conjugate gradient and trust-region method for solving (4) under UFM

In Section 4, we demonstrated that optimizing Problem (4), which corresponds to the feature
normalized UFM, results in quicker training and feature collapse as opposed to the regularized UFM
formulation, as shown in Figure 5. To show that this phenomenon is independent of the algorithm
used, we additionally test the conjugate gradient (CG) method [61] as well as the trust-region method
(TRM) [61] to solve (4) with the same set-up as in Figure 5. While the Riemannian conjugate gradient
method is also a first order method like gradient descent, the Riemannian trust-region method is a
second order method, so the convergence speed is much faster compared to Riemannian gradient
descent or conjugate gradient method. The results are shown in Figures 7 and 8 for the CG method
and TRM respectively.

We see that optimizing the feature normalized UFM with CG gives similar results to using GD,
whereas optimizing the feature normalized UFM using TRM results in an even greater gap in
convergence speed to the global solutions, when compared with optimizing the regularized counterpart
using TRM. These results suggest that the benefits of feature normalization are not limited to vanilla
gradient descent or even first order methods.
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Table 2: Better generalization and test feature collapse with ResNet on CIFAR100 with feature
normalization. Test accuracy and test NC1 of ResNet-18 and ResNet-50 on CIFAR100.

ResNet-18 ResNet-50
Test Accuracy Test NC1 Test Accuracy Test NC1

Regularization 55.3% 3.838 48.9% 4.486
Normalization 58.6% 3.143 56.4% 3.127

E.2 Feature normalization generalizes better than regularization

In Section 4, we showed that using feature normalization over regularization improves training speed
and feature collapse when training increasingly overparameterized ResNet models on a small subset
of CIFAR100. We now demonstrate that feature normalization leads to better generalization than
regularization.

We train a ResNet-18 and ResNet-50 model on the entirety of the CIFAR100 training split without
any data augmentation for 100 epochs, and test the accuracy and NC1 metric on the standard test
split. The results are shown in Table 2. We immediately see that using feature normalization gives
both better test accuracy and test feature collapse than using regularization. Furthermore, the test
generalization performance is coupled with the degree of feature collapse, supporting the claim
that better NC often leads to better generalization performance. Finally, as we have trained both
ResNet architectures with the same set-up and number of epochs, there is a substantial drop in
performance (both test accuracy and test NC1) of the regularized ResNet-50 model compared to the
ResNet-18. However, using feature normalization, this effect is mostly mitigated, suggesting that
feature normalization is more robust compared to regularization and effective for generalizing highly
overparameterized models on fixed-size datasets.

E.3 Investigating the effect of the temperature parameter τ

In Section 2, although the temperature parameter τ > 0 does not affect the global optimality
and critical points, it does affect the training speed of specific learning algorithms and hence test
performance. In all experiments in Section 4, we set τ = 1 and have not discussed in detail the effects
of τ in practice.

However, as mentioned in [7], τ has important side-effects on optimization dynamics and must be
carefully tuned in practice. Hence, we now present a brief study of the temperature parameter τ
when optimizing the problem (4) under the UFM and training a deep network in practice. To begin,
we consider the UFM formulation. We first note that τ does not affect the theoretical global solution
or benign landscape of the UFM (although it does affect the attained theoretical lower bound, see
Theorem 1 and Figure 3). However, it does impact the rate of convergence to neural collapse as well
as the attained numerical values of the NC metrics. To see this, we apply (Riemannian) gradient
descent with backtracking line search to Problem (4) for various settings of τ . These results are
shown in Figure 9. First, it is evident that for all tested τ values, we achieve perfect classification
in a similar number of iterations. Furthermore, the rate of convergence of NC1 is somewhat the
same for most settings of τ , and we essentially have feature collapse for most settings of τ . On the
other hand, it appears that the rate of convergence of NC2 and NC3 are dramatically affected by
τ , with values in the range of 1 to 10 yielding the greatest collapse. This aligns with the choice of
the temperature parameter in the experimental section of [7], where the equivalent parameter is set
ρ = 1/

√
0.1 ≈ 3.16.

We now look to the setting of training practical deep networks. We train a feature normal-
ized ResNet-18 architecture on CIFAR-10 for various settings of τ . The results are shown in Figure
10. One immediate difference from the UFM formulation is that we arrive at perfect classification of
the training data for a particular range of values for τ (from about 0.1 to 10) but not for all settings of
τ . Within this range, we can see that values of τ around 1 to 10 lead to the fastest training, and values
close to τ = 5 lead to the greatest collapse in all NC metrics, as was the case with the UFM. All
this evidence suggests that τ = 1 is not the optimal setting of the temperature parameter for either
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Figure 9: Effect of temperature parameter on collapse and training accuracy of UFM. K = 10
classes, n = 5 samples per class, d = 32. Top row: Average NC metrics and training accuracy of
UFM over 20 trials for various settings of τ with respect to each iteration of (Riemannian) gradient
descent. Bottom row: Final average NC metrics and training accuracy of UFM over 20 trials for
various settings of τ .
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Figure 10: Effect of temperature parameter on collapse and training accuracy of ResNet. Top
row: Average NC metrics and training accuracy of ResNet-18 on CIFAR-10 with n = 100 for
various settings of τ with respect to each epoch over 200 epochs. Bottom row: Final average NC
metrics and training accuracy of ResNet-18 on CIFAR-10 with n = 100 for various settings of τ .

the UFM or ResNet, particularly when measuring NC2 and NC3, and instead τ = 5 may perform
better. In the practical experiments of the main text, however, we mainly focused on training speed
and feature collapse, and for these purposes it appears that the τ parameter can be set in a fairly
nonstringent manner.

E.4 Benign global landscape of other classification losses

Although the cross-entropy (CE) loss studied in this work is arguably the most common loss function
for deep classification tasks, it is not the only one. Some other commonly used loss functions include
focal loss (FL) [83], label smoothing (LS) [84], and supervised contrastive (SC) loss [34], each
of which has demonstrated various benefits over vanilla CE. In this section, we briefly explore the
empirical global landscape of these losses under the UFM with normalized features (and classifiers).
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Figure 11: Global optimization of focal loss (FL) with γ = 3 under UFM with d = 16 and n = 3.
Black line refers to theoretical value of (39) at NC solutions. Empirical values found using gradient
descent with random initialization. Left: Lower bound against number of classes K while fixing
τ = 1. Right: Lower bound against temperature τ while fixing K = 3. The same empirical values
are achieved over many trials.

Specifically, we consider the problem

min
W ,H

f(W ,H) :=
1

N

K∑
k=1

n∑
i=1

L
(
τW⊤hk,i,yk

)
, (39)

s.t. H ∈ OB(d,N), W ∈ OB(d,K).

where L is either the focal loss or label smoothing loss.

First, we consider the focal loss, defined as

LFL(z,yk) = −

(
1− exp(zk)∑K

ℓ=1 exp(zℓ)

)γ

log

(
exp(zk)∑K
ℓ=1 exp(zℓ)

)
where γ ≥ 0 is the focusing parameter (with γ = 0, we recover ordinary CE). As seen in Figure 11,
using gradient descent with random initialization on the focal loss, we achieve neural collapse over a
range of settings of K and τ . Characterizing the global solutions of (39) for the focal loss and a
general landscape analysis are left as future work.

Next, we consider the label smoothing loss, defined as

LLS(z,yk) = −
(
1− K − 1

K
α

)
log

(
exp(zk)∑K
ℓ=1 exp(zℓ)

)
− α

K

∑
j ̸=k

log

(
exp(zj)∑K
ℓ=1 exp(zℓ)

)

where α ≥ 0 is the smoothing parameter (with α = 0, we recover ordinary CE). As seen in Figure 12,
for small enough τ we achieve neural collapse, but for larger τ , we do not. In fact, the global solutions
of the label smoothing loss are not neural collapse for large enough τ . To see this, let (W1,H1)
denote a NC solution, and let (W2,H2) denote a solution where W2 = a1⊤

K and H2 = a1⊤
N ,

where a is unit-norm. It is easy to compute that

f(W1,H1) = log

(
1 + (K − 1) exp

(
− Kτ

K − 1

))
+ ατ

so f(W1,H1) → ∞ as τ → ∞, whereas f(W2,H2) = log(K) is independent of τ . Again,
characterizing the global solutions of (39) for label smoothing and a general landscape analysis are
left as future work.

Finally, we look to the supervised contrastive loss. Unlike the other losses, we do not have
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Figure 12: Global optimization of label smoothing (LS) with α = 0.1 under UFM with d = 16
and n = 3. Black line refers to value of (39) at NC solutions. Empirical values found using gradient
descent with random initialization. Left: Lower bound against number of classes K while fixing
τ = 1. Right: Lower bound against temperature τ while fixing K = 3. The same empirical values
are achieved over many trials.
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Figure 13: Global optimization of supervised contrastive (SC) loss under UFM with d = 16 and
n = 3. Black line refers to value of (40) at NC solutions. Empirical values found using gradient
descent with random initialization. Left: Lower bound against number of classes K while fixing
τ = 1. Right: Lower bound against temperature τ while fixing K = 3. The same empirical values
are achieved over many trials.

classifier W when training, so we instead have the problem

min
H

f(H) :=− 1

N(n− 1)

N∑
i=1

∑
j ̸=i

yj=yi

log

(
exp(τ2h⊤

i hj)∑
ℓ ̸=i exp(τ

2h⊤
i hℓ)

)
(40)

s.t. H ∈ OB(d,N).

We note that the loss as written above computes the loss over the entire dataset, as opposed to
computing over all minibatches of a fixed size as in [7]. As seen in Figure 13, using gradient descent
with random initialization on the supervised contrastive loss, we achieve neural collapse over a range
of settings of K and τ . In fact, it is proven in [7] that the global minimizers of (40) are NC solutions.
However, an understanding of the global landscape requires further exploration and is left as future
work.
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