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Abstract

Offline reinforcement learning (Offline RL) suffers from the innate distributional
shift as it cannot interact with the physical environment during training. To alleviate
such limitation, state-based offline RL leverages a learned dynamics model from
the logged experience and augments the predicted state transition to extend the data
distribution. For exploiting such benefit also on the image-based RL, we firstly
propose a generative model, S2P (State2Pixel), which synthesizes the raw pixel
of the agent from its corresponding state. It enables bridging the gap between the
state and the image domain in RL algorithms, and virtually exploring unseen image
distribution via model-based transition in the state space. Through experiments,
we confirm that our S2P-based image synthesis not only improves the image-
based offline RL performance but also shows powerful generalization capability on
unseen tasks.

1 Introduction
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Figure 1: S2P generates the dynamics-
consistent image transition data by virtu-
ally exploring in the state space to extend
the distribution of the offline datasets.

Deep learning algorithms have shown significant devel-
opment thanks to the large pre-collected dataset, such as
SQuAD [47] in natural language processing (NLP), and
ImageNet [4] in computer vision. On the contrary, rein-
forcement learning (RL) requires an online trial-and-error
in training process to collect the data by interacting with
the environment, which hinders its utilization in many
real-world applications. Due to this intrinsic property of
current online RL algorithms, there exist some approaches
that try to deploy large and diverse pre-recorded datasets
without online interaction with the environment, which is
called offline RL.

However, recent studies have observed that the current
online RL algorithms [10, 35] perform poorly in an offline
setting. It is primarily attributed to the large extrapola-
tion error when the Q-function is evaluated on out-of-
distribution actions, which is called the distributional shift [25, 22, 8]. That is, due to the offline
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setting that limits online data collection, the offline RL has struggled to generalize beyond the given
offline dataset. Even though some offline RL methods [26, 24, 54] achieve reasonable performances
in some settings, their training is still limited to behaviors within the given offline dataset distribution,
and detours the evaluation on out-of-distribution data rather than directly addressing such an empty
space of the offline dataset. Thus, there exists a growing need for the development of algorithms spe-
cialized to directly address such out-of-distribution data by extending the offline dataset distribution’s
support.

To alleviate the fixed dataset distribution problem, recent studies propose some data augmentation
strategies. In state-based RL, model-based algorithms [2, 1, 27, 16] which learn a dynamics model
from the pre-recorded dataset and augment the dataset with generated state transitions have emerged
as a promising paradigm. As the model-based approach trains dynamics models in a supervised
manner, it allows a stable training process and generates reliable state transition data for augmentation.
Thus, it can be a plausible choice that it enables the generalization into the unseen state-action by
performing dynamics-consistent planning on unseen state distribution.

When it comes to the image domain, however, there is still no augmentation strategy to mitigate the
aforementioned distribution shift. Even though some model-based image RL methods [12, 11] that
propose to learn latent dynamics using reconstruction error from ELBO objective [18, 51, 23] can be
exploited for generating image transition data in a similar manner to the state-based methods, the
quality of the output images from these approaches is not satisfactory because 1) their focus is on
learning latent representation suitable for the RL network’s inputs rather than generating high-quality
and accurate images, and 2) ELBO-based objective cannot generate photo-realistic images compared
to other generative models such as GAN [9] or diffusion [14, 41] and it usually produces blurry
outputs. Above all, 3) model-based image RL only exploits image input and it makes the generative
model fail to capture the accurate dynamics and the details of the agent’s posture or objects in the
image [40, 42, 3]. These undesired properties discourage offline RL algorithms from adding the
reconstruction output of model-based image RL to their training data as an augmentation strategy.

Therefore, we propose S2P (State2Pixel) which utilizes multi-modal input (the state, and the previous
image observation of the agent) to synthesize the realistic image from its corresponding state. The key
element of S2P is a multi-modal affine transformation (MAT) which effectively exploits both state
and image cross-modality information. Unlike previous learned affine transformation [19–21, 44, 34],
which leverages a single domain input, MAT fuses the cross-modal representation from the state
and the image to produce the scale and the bias modulation parameters. This multi-modality of S2P
makes it possible to generate the dynamics-consistent images from the reliable state transition while
preserving high-quality image generation capability.

To sum up, our work makes the following key contributions.

• We propose a state-to-pixel generative model (S2P) which generates dynamics-consistent
image and multimodal affine transformation (MAT) module for aggregating cross-modal
inputs.

• To the best of the author’s knowledge, this work is the first to propose image augmentation
for offline image RL and overcome innate fixed distribution problem by implicitly leveraging
reliable state transition.

• We evaluate our S2P on the DMControl [52] benchmark environments with the offline
setting, and it results in 1.0 − 3.0x higher offline RL performance by augmenting the
generated synthetic image transition data.

• Even with the state distributions of the unseen tasks, S2P can generalize to unseen image
distribution, and we show that the agent can be trained by offline RL with these generated
images only.

2 Related Work

2.1 Image Synthesis

Generative Adversarial Networks (GAN) [9] based deep generative models enjoy huge success in
synthesizing high-resolution photo-realistic images via style mapping function and the learned affine
transformation [19–21, 44, 34]. StyleGAN [19] firstly utilizes a style vector w and Adaptive Instance
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Normalization (AdaIN) [5, 15] in the generative networks to disentangle the latent space and control
the scale-specific synthesis. Following studies [20] pinpoint that the AdaIN operation which leads to
information loss in the feature magnitude makes undesired droplet-like artifacts in the synthesized
images and proposes weight demodulation by assuming the variance of input features. SPADE [44]
proposes an architecture to synthesize the image using its corresponding semantic masks and spatially
learned affine transformation. ManiGAN [34] suggests Text-Image Affine Combination Module
(ACM) which enables the network to manipulate the images using text descriptions given by users.
The difference between our proposed MAT and the previous studies is that we leverage cross-modal
data, state and image, to estimate the modulation parameters for the learned affine transformation
whereas other studies use a single data type such as text or image.

2.2 Offline Reinforcement Learning & Data Augmentation

Offline RL [6, 29, 33] is the task of learning policies from a given static dataset, which is different from
online RL that learns useful behaviors through trial-and-error in the environment. Prior offline RL
algorithms are designed to constrain the policy to the behavior policy used for offline data collection
via direct state or action constraints [8, 37], maximum mean discrepancy [25], KL divergence
[54, 59, 17], or learning conservative critics [26, 24]. However, most of these methods are limited to
exploiting the state-action distribution of the given static dataset, rather than exploring and extending
the distribution. As the offline setting prohibits online interaction with the environment, we suggest
the synthetic data generation method to enable the offline RL agent to virtually explore and extend
the distribution by leaving the support of the dataset.

Recent works in model-based state RL that involves learning a policy with a dynamics model
[22, 2, 1, 28, 57, 58] suggest the need to augment the data with generated transitions from the model
for extending the data distribution. Also, augmentation strategies in image domain [30, 49, 31, 55, 56]
emphasize the importance of image augmentation for sample efficiency and robust representation
learning. But, these works focus on purely image manipulation techniques on the given image such
as cropping rather than generating image transition. Some image-based methods [45, 11, 12] that use
the variational model to train the latent dynamics are studied in a similar concept to the state-based
ones. However, the generated image from these methods is the byproduct of learning the effective
image representation rather than the main purpose of these works, and as these methods only utilize
the image input, it leads to missing objects or inaccurate dynamics of the agent in the reconstructed
image. Therefore, to bridge the gap between the model-based state transition data augmentation
techniques and image augmentation, we propose the method that generates dynamics-consistent
image transition data along timesteps with multi-modal inputs.

3 Method

3.1 S2P Generator

Architecture. The goal of S2P (State2Pixel) generator is to synthesize the image Ît which perfectly
represents all the information of its corresponding state st. Unfortunately, a state-sole condition
cannot formulate a single deterministic rendered image because, in most cases, state does not provide
the agent’s position from the global coordinate, but rather from an egocentric coordinate. Also,
image-based RL algorithms utilize sequential images to capture the agent’s velocity using the change
of the background, e.g. ground checkerboard, between input images. It means that the image of the
current step It is dependent not only on the current state st, but also on the image of the previous
step It−1. We, therefore, build the generator G to synthesize the image Ît from both the state st and
the previous image It−1 so that the generated image Ît can preserve the dynamics-consistency in the
physical environment.

Ît = G(st, It−1) (1)

At the first layer of S2P, the input image It−1 and the state st are projected to the feature space via
convolution and MLP encoders respectively. Both features are then fed to the hierarchical generator
block which consists of several residual connections [13] and the upsampling layer. After passing
through each generator block, the spatial size of the feature map is doubled while the channel
dimension is halved. The image features are converted to the RGB images at the last layer of the
generator with a single convolution layer.
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Figure 2: An overview of S2P architecture. State st and the previous image It−1 are used as input
to generate current step image Ît. The spatial size of the features gets larger as it passes through
multiple upsampling generators. G and MAT indicate the generator block and the Multimodal Affine
Transformation respectively

.

We observe that the input signals, i.e. state st and image It−1, become attenuated as they pass through
deeper generating layers and the network produces images with poor quality. So, similar to recent
style-based image synthesis algorithms [19–21, 44, 34], we adopt a learned affine transformation
architecture to inject auxiliary signals to the generator. The difference between the previous style-
based generative models and S2P is that we propose a multimodal affine transformation (MAT) to
produce the learnable modulation parameters, γ and β, with the cross-modality representation via a
multimodal feature extractor and state-to-latent mapping function. The overall architecture of our
proposed S2P is depicted in Figure 2.

A non-linear latent mapping function g : S → W which is implemented as an 8-layer MLP produces
a latent code w ∈ W from the given state s in the state space S. The latent code w is spatially
expanded as the same size of the input feature of MAT module x, and the conditioned image It−1 is
also linearly interpolated to make its size same as x. The spatially expanded w and the resized It−1

are channel-wisely concatenated and fed to the multimodal feature extractor to fuse the state and
image cross-modality representation. Each estimator then produces the learnable scale γ and bias β
for effective cross-modal affine transformation.

Finally, our proposed MAT operation is defined as:

yi = γi(w, It−1)⊙
xi − µc(x

i)

σc(xi)
+ βi(w, It−1), (2)

where µc(·) and σc(·) are the channel-wise mean and the standard deviation of the input feature of
MAT xi from the ith block of the generator, and ⊙ denotes Hadamard element-wise product. The
design of MAT is illustrated in Figure 3.

In addition, it is shown that the neural network is biased toward learning a low frequency mapping
and has difficulty in representing a high frequency information [46, 39]. To mitigate such undesired
tendency, we do not use naïve state vector s as input, but employ a positional encoding with the high
frequency function ψ : R → R2L which is defined as:

ψ(x) = (sin(20πx), cos(20πx), · · · , sin(2L−1πx), cos(2L−1πx)), (3)

where x indicates each component of state vector s.

We utilize multi-scale discriminators in [53] to increase the receptive field without deeper layers or
larger convolution kernels for alleviating the overfitting. Two discriminators with identical architecture
are adopted during training, and the synthesized and real images which are resized to several spatial
sizes are fed to each discriminator.
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Loss Function. Our S2P generator is trained by linearly combined multiple objectives. First, we
leverage a pixel-wise L1 loss between the output of the generator Ît and the real image It,

L1 = ||It − Ît||1. (4)
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Figure 3: Multimodal Affine Transformation
(MAT) module.

In addition to the pixel-wise loss, we also utilize
the ImageNet [48] pre-trained VGG19 [50] net-
work to calculate the perceptual similarity loss
Lper between two images,

Lper = ||ϕ(i)(It)− ϕ(i)(Ît)||1, (5)

where ϕ(i) denotes the i-th layer of VGG19.

We implement the adversarial objective Ladv for
both S2P generator and multi-scale discrimina-
tors same as pix2pixHD [53]. The difference
is that we replace the least square loss with the
hinge-based loss [36] and we condition state
information to the discriminator D so that the
generator is induced to produce the dynamics-
consistent outputs.

LD = −E[min(0,−1 +D(st, It))]− E[min(0,−1−D(st, Ît))], LG = −E[−D(st, Ît)]

Ladv = LG + LD

(6)

The total loss function to optimize the S2P generator can be defined as:

L = λ1L1 + λ2Lper + λ3Ladv, (7)

where λ1, λ2, and λ3 are the hyperparameters to balance among the objectives.

3.2 Offline reinforcement learning with synthetic data

We consider the Markov decision process (MDP) M = (I,S,A, T, r, ρ0, γ), where I denotes the
image space, S the state space corresponding to I, A the action space, T (s′|s, a) the transition
dynamics, r(s, a) the reward function, ρ0 the initial distribution, and γ the discount factor. We denote
the discounted image visitation distribution of a policy π using dπM(I) := (1− γ)

∑∞
t=0 γ

tP(It =
I|π), where P(It = I|π) is the probability of reaching image observation I at time t by using π in
M. Similarly, we denote the image-action visitation distribution with dπM(I, a) := dπM(I)π(a|I).
The objective of RL is to optimize a policy π(a|I) that maximizes the expected discounted return
J(π) = 1

1−γ E(I,a)∼dπ
M(I,a) [r(s, a)].

In the offline RL setting, the algorithm has access to a static dataset D =
{(It, st, at, rt, It+1, st+1)}Nt=0 collected by unknown behavior policy πβ . In other words,
the dataset D is obtained from d

πβ

M(I, a) := d
πβ

M(I)πβ(a|I) and the goal is to find the best possible
policy using the static dataset without online interaction with the environment.

To utilize the dynamics-consistent transition data for augmentation in offline RL, we take the model-
based approach that trains an ensemble of dynamics and reward model T̂θ(s′, r|s, a), which outputs
the predicted next state, and reward r̂(s, a). Once a model has been learned, we can construct
the learned MDP M̂ = (I,S,A, T̂ , r̂, ρ0, γ), which has the same spaces, but uses the learned
dynamics and reward function. Naively optimizing the RL objective with the M̂ is known to fail
in the offline RL setting, both in theory and practice [22, 57], due to the distribution shift and
model-bias. To overcome these, we take an uncertainty estimation algorithm like bootstrap ensembles
[43, 38], and obtain u(s, a), an estimate of uncertainty in dynamics. Then we could utilize the
uncertainty penalized reward r̃(s, a) = r̂(s, a)−λu(s, a), where λ is a hyperparameter. We consider
the following uncertainty quantification method that uses the maximum learned variance over the
ensemble, u(s, a) = maxi=1,...N ||Σi

θ(s, a)||F [57, 22].

As a final process, we train offline RL with the following hybrid objective : J(π) =
1

1−γ E(I,a)∼df (I,a) [r(s, a)], where df (I, a) = fd
πβ

M(I, a) + (1 − f)dη
M̃
(I, a), f ∈ [0, 1] is the
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Table 1: Offline RL results for DMControl. The numbers are the averaged normalized scores proposed
in [7], where 100 corresponds to expert and 0 corresponds to the random policy. The results with
standard deviation are in Appendix ??.

Environment Dataset IQL IQL CQL CQL SLAC-off SLAC-off
+S2P +S2P +S2P

cheetah, run random 10.28 12.64(16.21) 4.89 11.77(7.52) 16.37 18.14(35.38)
walker, walk random -0.28 4.03(0.83) -0.43 10.44(1.99) 18.23 17.38(20.15)
ball in cup, catch random 74.77 82.28(80.39) 84.87 92.81(91.61) 70.04 85.57(52.81)
reacher, easy random 33.75 70.45(55.33) 52.32 75.01(81.48) 77.43 85.76(87.84)
finger, spin random -0.17 0.46(-0.11) -0.01 -0.11(0.07) 30.24 27.62(32.65)
cartpole, swingup random 24.52 38.59(29.1) 27.67 32.93(42.12) 35.03 31.01(52.22)
cheetah, run mixed 41.68 88.53(70.44) 92.63 93.16(93.48) 16.63 26.39(24.42)
walker, walk mixed 96.07 95.49(97.80) 97.18 97.84(98.70) 29.02 92.60(67.09)
ball in cup, catch mixed 41.94 37.79(40.65) 30.82 51.28(37.21) 28.54 40.41(32.88)
reacher, easy mixed 66.88 75.61(75.01) 70.37 75.53(77.54) 62.49 63.59(77.58)
finger, spin mixed 98.18 94.78(98.65) 98.54 87.17(80.07) 64.41 83.31(83.29)
cartpole, swingup mixed 14.49 14.04(51.25) 14.76 -4.66(36.94) 14.51 16.36(25.41)
cheetah, run expert 79.89 87.18(88.89) 94.20 96.28(95.54) 8.92 14.41(8.42)
walker, walk expert 94.34 94.97(94.35) 95.43 97.97(98.47) 11.71 70.95(19.66)
ball in cup, catch expert 28.57 28.60(28.48) 28.42 28.62(28.68) 28.56 38.87(28.69)
reacher, easy expert 52.13 58.19(57.51) 57.68 32.54(48.46) 26.61 42.85(34.49)
finger, spin expert 98.42 94.42(99.19) 73.07 97.25(99.51) 24.75 81.05(52.21)
cartpole, swingup expert 20.43 18.37(18.03) 19.35 18.54(30.22) 14.11 11.18(-3.80)

ratio of the datapoints drawn from the offline dataset D, and η(·|s) is the state rollout distribution
used with the trained dynamics ensemble model T̂θ, and M̃ is same as M̂ except that the reward is
r̃(s, a) instead of r̂(s, a). Samples from dη

M̃
(I, a) can be obtained by rollout η in M̃ and convert the

obtained state transitions {(st, at, rt, st+1)}Nt=0 into {(It, at, rt, It+1)}Nt=0 by using the trained S2P
generator in Section 3.1. For implementation, we collect synthetic image transition data in separate
replay buffer Dmodel and train the agent by any offline RL algorithms with the sampled mini-batches
from D and Dmodel by the ratio of f and 1− f . The overall algorithm and more training details are
summarized in Appendix B.

4 Experiments

4.1 Environments & Data collection

We evaluate our method on a large subset of the dataset from the DeepMind Control (DMControl) suite
[52]. It includes 6 environments, which were typically used for online image-based RL benchmarks.
However, to the best of our knowledge, all of these environments have never been properly evaluated
in an offline image-based RL setting. The datasets in these benchmarks are generated as follows:
random : rollout by a random policy that samples actions from a uniform distribution. mixed : train
a policy using state-based SAC [10] until 500k steps for finger, cheetah and 100k steps for the others,
then randomly samples trajectories from the replay buffer. 500k, 100k steps are minimum steps
required to reach the expert level performance for each task. expert : train a policy using state-based
SAC. After convergence, we collect trajectories from the converged policy.

4.2 Offline Reinforcement Learning

To validate whether the S2P can help improve the offline RL performance, we evaluate our algorithm
with recent offline RL algorithms like CQL [26] which utilizes conservative training of the critic, and
IQL [24] which trains critic by implicitly querying actions near the distribution of the dataset, and
SLAC-off [32] which is state-of-the-art online image-based RL algorithm. We use this SLAC-off
with the offline setting. We also compare the policy constraint-based offline RL algorithms like
BEAR [25], and behavior cloning, BC. The results for these two algorithms are in Appendix B. To
extend the offline RL into the image-based setting, we follow the image encoder architecture from
[32] and train a variational model using the offline data. Then, we train in the latent space of this
model.
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We include the offline RL results on different types of environments and data in Table 1. The results
on the originally given offline dataset (50k) are shown in the left column of each algorithm, and the
results on the S2P-based augmented dataset are shown in the right column of each algorithm. The
S2P augments the same amount of the original offline dataset (50k). As it physically has more data
(100k) than the original dataset (50k), for a reference, we also include the results on the 100k offline
dataset in the parenthesis in Table 1. Overall, the S2P-based method achieves better performance
than the 50k dataset, even exceeding the 100k dataset’s score in some tasks.

As the S2P answers how to generate the image transition data, we also have to consider where to
generate the image transition data through S2P. Specifically, we use a random policy as η(·|s) in
the mixed, expert dataset, and a policy trained by the state-based offline RL as η(·|s) in the random
dataset. These strategies are considered due to the following two assumptions. Firstly, as the random
dataset only has random behavior, the dataset may not have any meaningfully rewarded states even
with the augmentation by the random policy, especially in the locomotion environment (e.g. cheetah,
walker cannot leave the initial states by the random policy). As the S2P’s objective is to extend the
distribution of the given dataset, the policy trained in an offline manner can help leave the support of
the dataset compared to the naive random policy. Secondly, as the non-random datasets may have
relatively biased state-action distributions that receive meaningful rewards compared to the random
dataset, it is difficult to get out of the support of these datasets by the trained policy as most of the
state-action induced by the trained policy are included in the similar distribution of these datasets.
However, the random policy can be effective as it can bring some exploration effects like noise
injection or increasing entropy in [35, 10].

DATASET METHOD
50K +S2P +S2P

DATASET (RANDOM η) (OFFRL η)
CHEETAH

RUN
RANDOM

IQL 10.28 -0.107 12.64
CQL 4.89 -0.69 11.77

SLAC-OFF 16.37 11.94 18.14
CHEETAH

RUN
MIXED

IQL 41.68 88.53 58.67
CQL 92.63 93.16 89.6

SLAC-OFF 16.63 26.39 26.53
CHEETAH

RUN
EXPERT

IQL 79.89 87.18 79.20
CQL 94.20 96.28 93.69

SLAC-OFF 8.92 14.41 7.79

Table 2: Experiments on each different rollout dis-
tribution η(·|s) in cheetah-run environment.

To verify such assumptions, we analyze the ef-
fect of different types of rollout distribution
η(·|s) in offline RL performance (Table 2). We
denote 50k dataset as the results of the given
original offline dataset, and +S2P(random η)
as the results of the data augmented by rollout
with the random actions, and +S2P(offRL η) as
the results of the data augmented by rollout with
the state-based offline RL policy. As expected,
the random policy is more effective in the ex-
pert dataset. Also, we could find the opposite
phenomenon in the random dataset, and trade-offs between these two strategies in the mixed dataset.

4.3 Comparison with model-based image RL

Dreamer

S2P

GT

t=1 t=6 t=11 t=16

Figure 4: Qualitative comparison of S2P and
Dreamer.

dataset method 50k +S2P +Dreamer
dataset

cheetah
run

mixed

IQL 41.68 88.53 2.09
CQL 92.63 93.16 58.93

SLAC-off 16.63 26.39 4.68
walker
walk

mixed

IQL 96.07 95.49 1.28
CQL 97.18 97.84 95.88

SLAC-off 29.02 92.60 52.65
cheetah

run
expert

IQL 79.89 87.18 73.23
CQL 94.20 96.28 53.69

SLAC-off 8.92 14.41 3.65
walker
walk

expert

IQL 94.34 94.97 34.95
CQL 95.43 97.97 96.14

SLAC-off 11.71 70.95 52.03

Table 3: Quantitative comparison of S2P and
Dreamer.

To show why the multi-modal inputs are necessary for augmenting the image transition data in offline
image RL, we compare our S2P with the previous model-based image RL algorithm, Dreamer [12],
as it can also reconstruct the images of the agent by training the reconstruction error from ELBO
objective only using uni-modal inputs (previous images of the agent). For comparison, we trained
Dreamer in an offline manner with the same dataset used for training S2P, and predicted future
images with the episode context obtained from 5 consecutive ground truth images. Even though the
Dreamer saw more previous steps’ images compared to S2P (only a single image of the previous
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Figure 5: Qualitative results. We report the generator performance by synthesizing multiple steps
with a single trajectory. (a) demonstrates the effectiveness of each component in the S2P generator
where PE, SAT, and MAT indicate positional encoding, state affine transformation and multimodal
affine transformation, respectively. SAT cannot perfectly estimate the correct location of the agent
as there is misalignment at the ground checkerboard compared to MAT. (b) represents unseen
task adaptation using the trajectories given from the state-level transition model. (c) shows that our
model can recover the posture of the agent without any reference image. Additional qualitative
results on several environments are provided in Appendix A.

step), it still has difficulty in generating accurate posture, which supports the S2P’s advantages (Fig
4). It is because the priority of the model-based image RL algorithms is learning the effective latent
representation for RL tasks, and they do not utilize a broader source of supervision from the state
inputs.

To prove that state-inconsistent images from the model-based image RL method cannot improve
offline RL performance at the S2P level, we perform the same experiment in Table 1, but replace the
augmented images from S2P with images from Dreamer. We observe that the image augmentation
from Dreamer even degrades the original RL performance in several tasks, and the performance
improvements with S2P excels the augmentation from Dreamer by a large margin in all baselines
(Table 3). Thus, we could say that the inaccurate posture and quality of the images generated by the
model-based method trained with the uni-modal inputs (images) are not sufficient for augmenting
image transition data in the offline setting. More experiments and details of the augmentation are in
the Appendix.

4.4 Ablation

To observe how each component of the S2P contributes to the quality of the synthesized images, we
perform an ablation study on the model architecture of the S2P and show its qualitative results on
Figure 5(a). A baseline architecture without any contribution of our proposed method, i.e. positional
encoding (PE) and multimodal affine transformation (MAT), shows the worst image quality. We
report that a simple application of the high frequency function ψ to the input state st (PE) results in a
noticeable increase in image quality. We also address the necessity of the input image It−1 to estimate
the modulation parameters, γ, β, for the learned affine transformation. We ablate the input It−1 in
MAT and utilize only the spatially expanded input state which is called State Affine Transformation
(SAT). The generator which replaces the MAT module with SAT has difficulty in exploiting dynamics
information from the previous image It−1 and the translation error is accumulated as the generator
recurrently synthesizes the long-horizon trajectory. We can observe such dynamics inconsistency
especially in the locomotion tasks, e.g. cheetah, and walker, which expresses the velocity in images
by the change of the checkerboard in the ground. Compared to SAT, our proposed MAT which
leverages both the state st and the previous image It−1 shows better performance in reconstructing
not only the posture of the agent but also its dynamics-consistent background.
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4.5 Zero-shot Task Adaptation

To validate whether the S2P can help the offline RL process in settings that require generalization to
tasks that are different from the given dataset, we construct two environments cheetah-jump and
walker-run. In cheetah-jump, which is referred from [57], the agent should solve a task that is
different from the original purpose of the behavior policy. Specifically, we relabel the rewards in the
cheetah-run-mixed dataset to reward the cheetah to jump as high as possible. Then, we generate
the image transition data from the states whose z positions are bigger than a threshold to validate
the S2P-based augmentation’s advantage in tasks that require generalization. By training with the
relabeled reward, the agent with the S2P achieves a higher return and learns to bounce back and forth
to take a leap higher (Figure 5(b)), even though the batch data contain little jumping motion.

To investigate whether the S2P can generate unseen image distributions from unseen state distribution,
we collect walker-run state dataset by the same way of other mixed datasets in Section 4.1. Then, we
generate images from these unseen states by recurrently using the S2P generator and we apply offline
RL on these generated image transition data. Even though the state distribution is totally different
from walker-walk dataset as the agent should run instead of walk, not only the S2P successfully
generalizes to the unseen image distributions (Figure 5(b)), but also the agent can be trained to run by
offline RL only with these synthesized images beyond the expertise of the dataset (Table 4). More
details are in Appendix B.

METHOD WALKER-RUN METHOD CHEETAH-JUMP
BATCH MEAN 572.94 BATCH MEAN 2.05

IQL N/A IQL 36.6
IQL+S2P 659.25 IQL+S2P 54.4

CQL N/A CQL 40.8
CQL+S2P 652.19 CQL+S2P 47.2

Table 4: Average returns of the walker-run and
cheetah-jump tasks. We include mean undis-
counted return of the episodes in the batch data
for comparison.

We attribute such satisfactory task generaliza-
tion to the model architecture of the S2P which
leverages both It−1 and st for synthesizing the
It. The posture of the agent is deterministic with
the sole-state condition and the background of
the image such as the ground checkerboard is
dependent both on the state and the previous im-
age. Therefore, our S2P exploits the state input
to generate the posture of the agent and exploits
the image input to generate the background. It
is well shown in Figure 5(c) where we intention-
ally replace all the image input with the zero
matrix OH×W×3 during the inference phase. We observe that S2P still perfectly reconstructs the
posture of the agent with its corresponding state only while it fails to recover the background and the
ground checkerboard as we expected.

5 Conclusion

We firstly present the state-to-pixel (S2P) algorithm that synthesizes the raw pixel from its corre-
sponding state and the previous image. As the augmentation paradigm of the S2P is generating
dynamics-consistent image transition data, we demonstrate that S2P not only improves the image-
based offline RL performance but also shows powerful generalization capability on unseen tasks.
Even though S2P shows promising results in offline RL by data augmentation techniques, the assump-
tion that datasets consist of pairs of images and states is still a strong assumption. Thus, for future
work, we plan to further extend the idea with more relaxed assumptions such as unpaired datasets or
extend other state-based applications to the image-based RL algorithms.
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