
A Proof of Proposition 1

A.1 Problem Definition

Figure 6: Illustrative Diagram of Causal
Generative Model in MTL setting

We consider two binary classification tasks, with Ya and
Yb as variables from {±1} for task label. The task labels
are drawn from two different probabilities. For simplicity,
we assume the probability to sample the two label value
is balanced, i.e., P (Y = 1) = P (Y = −1) = 0.5. Our
conclusion could be extended to unbalanced distribution.

In this paper, we mainly study the spurious correlation
between task labels. For simplicity, we define P (Ya =
Yb) = mC , P (Ya 6= Yb) = 1 −mC , where mC denotes
that this correlation could change by different confounder
CMTL
dist . In some environments mC 6= 0.5, meaning that

the two tasks are correlated in these environments. To sum
up, we could define the probability table as:

Ya = 1 Ya = 0
Yb = 1 mC 1−mC

Yb = 0 1−mC mC

Table 4: Probability table for P (Ya, Yb), where mC denotes the correlation between the two task
label.

We consider two d-dimensional factors Fa and Fb representing the knowledge to tackle the two tasks.
Both are drawn from Gaussian distribution:

Fa ∼ N (Ya · µa, σ2
aI), Fb ∼ N (Yb · µb, σ2

b I) (10)

with µa, µb ∈ Rd denote the mean vectors and σa, σb are covariance vectors.

Our goal to learn two linear models P (Y{a/b}|Fa, Fb) = sigmoid(βF) = sigmoid(βaFa + βbFb).
We first consider the setting that we’re given infinite samples. If we assume there’s no traditional
factor-label spurious correlation in single task learning, the bayes optimal classifier will only take
each task’s causal factor as feature, and assign zero weights to non-causal factors. The factor with
the regression vector βa = µa

σ2
a

for bayes optimal classifier of task a and βb = 2µb
σ2
b

for bayes optimal
classifier of task b.

A.2 Bayes Optimal Classifier for Multiple-Task

When we train a single model using both tasks, the optimal Bayes classifier will utilize the other
non-causal factor due to the influence of spurious correlation quantified by mC . To prove it, we take
the first task with label Ya as an example and derive the optimal Bayes classifier as:

P (Ya|Fa, Fb) =
P (Ya, Fa, Fb)

P (Fa, Fb)
=

P (Ya, Fa, Fb)∑
Ya∈{−1,1} P (Ya, Fa, Fb)

(11)

while the probability of P (Ya, Fa, Fb) could be written as:

P (Ya, Fa, Fb) = P (Ya, Fa) · P (Fb|Ya, Fa) (12)
= P (Ya, Fa) · P (Fb|Ya) (13)

= P (Ya, Fa) ·
∑

Yb∈{−1,1}

P (Fb, Yb|Ya) (14)

= P (Ya)P (Fa|Ya) ·
∑

Yb∈{−1,1}

P (Fb|Yb)P (Yb|Ya) (15)

∝ eYa·Faβa ·
(
mCe

Ya·Fbβb + (1−mC)e−Ya·Fbβb
)

(16)

= mCe
Ya(Faµa+Fbµb) + (1−mC)eYa(Faµa−Fbµb) (17)

18

By putting it back to equation(11), we could get:

P (Ya|Fa, Fb) =
1

1 + mCe
Ya(Faβa+Fbβb)+(1−m)eYa(Faβa−Fbβb)

mCe
−Ya(Faβa+Fbβb)+(1−m)e−Ya(Faβa−Fbβb)

(18)

The formula shows that the optimal bayes classifier depends on the non-causal factor Fb given
mC 6= 0.5.

To give two extreme, when mC = 1:

P (Ya|Fa, Fb) =
1

1 + e2Ya(Faβa+Fbβb)
(19)

In this way, the optimal classifier is β = [2βa, 2βb]
T for the two factors Fa and Fb.

When mC = 0.5:

P (Ya|Fa, Fb) =
1

1 + e2Ya(Faβa)
(20)

In this way, the optimal classifier is β = [2βa, 0]T , which only utilizes the first factor Fa and assign
zero weights for the non-causal factor Fb.

A.3 Classifier trained on limited dataset

In the following we’re considering the cases whether there’s no task correlation in training set
(mC = 0.5). Though we have shown previously the optimal classifier should be invariant to non-
causal factors given unlimited data, in reality with limited training dataset, the model could still
utilize non-causal factors as noise.

Assume the training data contains spurious feature S appended to causal feature C for ground-truth
linear model Y = θ∗C, both under-parametrized and over-paramatrized linear model Ŷ = θ̂C + β̂S

will assign non-zero weights β̂ for spurious feature S.

Let x ∈ R(d+1)×1 denote the feature, where x[1 : d] = c is the causal feature, and x[d+ 1] = s is
spurious feature.

Let ground-truth linear model yi = fθ∗(x) = θ∗ ·xi+εi = c ·θ∗c +εi, where θ∗ = [θ∗c , 0] ∈ R(d+1)×1

and ε ∼ N(0, σ2).

Given training dataset X ∈ Rn×(d+1) and Y = Xθ∗ + ε = Cθ∗c + ε ∈ Rn×1, the closed-form
solution θ̂ ∈ R(d+1)×1 for linear regression model is:

θ̂ = X+Y + = X+(Xθ∗ + ε) (21)

The generalization error is:

L = Ex
[(

(θ̂ − θ∗) · x
)2]

(22)

= Ex
[(

(X+X − I)θ∗ · x+X+ε · x
)2]

(23)

= Ex
[(

(X+X − I)θ∗ · x
)2]

+ σ2Ex
∥∥∥(XT)+x

∥∥∥2

2
(24)

The first term is bias and the second is variance.

If X = [C, 0], which only contains causal feature without any spurious feature, we denote the learned
parameter and loss as θ̂C and LC .

If X = [C, S], which contains the spurious feature, we denote the learned parameter and loss as θ̂S
and LS .

Our goal is to prove the learned parameter weight for the spurious feature is not zero. We’ll study
it in both underparamtrizied (d + 1 ≤ n) setting, where the solution is equivalent to least-square
solution; and overparametrized (d > n), where the solution is equivalent to min-norm solution.

19

A.3.1 Underparametrized Setting

Loss Since X ∈ Rn×(d+1) has independent column due to under parametrization assumption, we
can find pseudo-inverse such that X+X = I . Thus the bias term in L is 0, and we only need to
consider the variance term.

LS − LC = σ2
(
Ex
∥∥∥[CT
ST

]+

x
∥∥∥2

2
− Ex

∥∥∥[CT
0

]+

x
∥∥∥2

2

)
(25)

Since ||A+x||22 = minZ:Az=x ||z||22, and obviously
{
z
∣∣ [CT
ST

]
z = x

}
⊆
{
z
∣∣ [CT

0

]
z = x

}
as the

first one has one more constraint. Therefore,
∥∥∥[CT
ST

]+

x
∥∥∥ ≥ ∥∥∥[CT

0

]+

x
∥∥∥2

2
, and thus LS ≥ LC .

weight By the theorem 1 of (Baksalary & Baksalary, 2007), if d+ 1 ≤ n, X = [S, T] ∈ Rn×(d+1)

has independent column, thus we have

X+ =

[
CT

ST

]+

=

[
(I −Q)C(CT (I −Q)C)−1

(I−P)S
ST (I−P)S

]
(26)

where P = CCT , Q = SST .

Therefore,

θ̂S [d+ 1] =
(I − P)S

ST (I − P)S
Y =

(I − P)S(Cθ∗C + ε)

ST (I − P)S
(27)

A.3.2 Overparametrized Setting

In this setting the closed-form solution is equivalent to minimum-norm solution, such that:

θ̂ = arg min
θ
||θ||22 (28)

s.t. Xθ = Y (29)

weight Since X is have full row rank, (XXT)−1 exists, thus we have:

X+ = XT (XXT)−1 (30)

Based on the Sherman-Morrison formula, we have:

(XXT)−1 = (CCT + SST)−1 = G− GSSTG

1 + STGS
(31)

where G = (CCT)−1, u = bTG
1+bTGb

. Therefore:

X+ =

[
CT

ST

]+

=

[
(I − bu)C+

u

]
(32)

Thus

θ̂S [d+ 1] =
bTG

1 + bTGb
Y =

bTG(Cθ∗C + ε)

1 + bTGb
(33)

To sum up, given limited training dataset, even without spurious correlation between tasks, and
non-causal features only serve as noise, the model could still learn to assign non-zero weights to
non-causal features to overfit the dataset. Therefore, in MTL setting, when the number of tasks
increase, the shared representation encodes many causal features from different tasks. Even without
spurious correlation, it will lead to overfitting issue. And such problem could be exacerbated by
spurious correlation that we show in section A.2.

20

B Synthetic Analysis of Multi-SEM with more tasks and saliency map

Figure 7: The gradient saliency map of Multi-SEM.
The model trained by MTL exploits non-causal
features (spurious) more.

In section 2.2 we compare model trained by
MTL with STL with two tasks. Here we show
the results conducted in Multi-SEM with more
than two tasks in Table 5. The results show de-
creasing Accval and higher usage of spurious
feature ρspur compared with STL, with increas-
ing number of tasks. This matches our hypothe-
sis that MTL could incorporate more non-causal
features / factors into shared representation, in-
creasing the risk of utilizing overfitting. We also
show the saliency map for each feature dimen-
sion in Figure 7. It shows that the model trained
by MTL exploits non-causal features (dimen-
sion 20-120) more than the model trained by STL. All these results empirically support our claim that
with spurious task correlation, model trained by MTL utilize non-causal factors more and generalize
worse than STL.

#Tasks 2 3 4 5 6 7 8

MTL Accval 0.846 0.838 0.824 0.809 0.785 0.752 0.719
ρspur 0.328 0.357 0.391 0.429 0.475 0.530 0.594

STL Accval 0.874 0.861 0.848 0.836 0.827 0.810 0.797
ρspur 0.261 0.289 0.314 0.354 0.385 0.407 0.435

Table 5: Results on Multi-SEM with more than 2 tasks.

C Pseudo-Code and more discussion of MT-CRL

The full psudo-code of proposed MTL is shown in Alg. 1. We first use disentangled MMoE model to
calculate loss for each task Rt

(
Φ, At, ft

)
, and also calculate disentangled and graph regularization.

We then calculate invariant regularization over train/valid split. The most important part is line 11
we detach the per-task predictors from computational graph, so that when we calculate gradient (via
loss.backward), we only calculate gradient over graph A and encoder Φ.

Ideally the invariant loss should be calculated based on different environmental split, similar to what
is utilized in existing Out-Of-Distribution Generalization works. However, in MTL setting, there’s
no datasets designed specifically for studying OOD generalization or spurious correlation. To make
current approach suitable for real-world applications, we only utilize two environment split (i.e. train
and valid from existing datasets).

Figure 8: The heatmap of mutual
correlation ρ(Zi,Zj) between ev-
ery pairs of modules.

Noted that in our framework we adopt a simple linear correlation
regularization to enforce disentanglement. This regularization
only forces representation to be linearly de-correlated, and a
more strict solution might be reducing the mutual information
(MI). However, existing methods to minimizing MI requires ei-
ther knowing the latent distribution (e.g. InfoGAN. We report
BetaVAE in Table 3 with similar intuition but performs worse)
or over estimated MI (e.g. MINE). We indeed tried adding dis-
criminator for every module pair and adopted Minmax training
to minimize estimated MINE. The result is unstable and no better.
Module output’s norm is very large and only the centers are seper-
ated rather than disentangled. Therefore, we only utilize the linear
de-correlation methods that perform well in our experiments. We
show the mutual correlation of every pairs of modules in Figure 8
learned in MultiMNIST dataset. It shows that after learning, the modules indeed learn to be linearly
de-correlated between each other, and only have correlated neurons within each module.

21

Algorithm 1: Pseudo-Code of proposed MT-CRL (use LV arG-IRM as invariant regularizer)

Require: shared encoders with K different neural modules Φ =
[
Φi(·)

]K
i=1

, biadjacency matrix
A = sigmoid(θ) ∈ [0, 1]T×K , per-task predictors F = {ft}t∈T , minibatch with environment
label and loss function for each task Bt∈T = {Xt, Yt, Et,Lt}t∈T

1: LB = 0
2: for each task t ∈ T do
3: Get Xt, Yt,Lt from Bt
4: Z =

[
Zi
]K
i=1

=
[
Φi(Xt)

]K
i=1

5: Ŷt(Xt) = ft
(∑

iAt,i · Zi)
)

= ft
(∑

iAt,i · Φi(Xt)
)

6: LB = LB +Rt
(
Φ, At, ft

)
= LB + Lt(Ŷt(Xt), Yt)

7: LB = LB + Ldecor(Φ)t = LB + λdecor ·
∑k
i=1

∑k
j=i+1

∥∥ρ(Φi(Xt),Φj(Xt)
)∥∥2

F
8: end for
9: LB = LB + Lgraph(A) = LB +

(
λsps · ||A||1 − λbal · Entropy

(∑
t At,∗∑
t,i At,i

))
10: grad = ∇A,F,Φ LB
11: Detach F = {f}t from computational graph (use tf.stop gradient or torch.zero grad)
12: LV arG-IRM (Φ, A|f) = 0
13: for each task t ∈ T do
14: Get environment label Et. In our experimental setting it’s train and valid set.

15: LV arG-IRM = LV arG-IRM +
∑
e∈Et

1
|Et|

∥∥∥∇A=AtR
e
t

(
Φ, A, ft

)
− Avge

(
∇A=AtR

e
t

)∥∥∥2

16: end for
17: grad = grad+∇A,Φ LV arG-IRM (Φ, A|f)
18: Use optimizer to update the model via gradient grad

Figure 9: Illustrative figure for spurious Multi-MNIST dataset used for analaysis.

D Details about Dataset

D.1 Synthetic Datasets

Multi-SEM. We mostly follow the setting of linear Structural Equation Model (SEM) proposed by
Rosenfeld et al. (2021). The two binary-classification task labels Ya and Yb are causally related to two
distinctive factors Fa and Fb respectively via Gaussian distribution. We define the spurious correlation
of the two labels by the probability that the two labels are the same: CMTL

dist = P (Ya = Yb). We set
different Cdist for training and test sets to simulate distribution shifts.

Multi-MNIST. We modified the multi-digit MNIST (Sun, 2019), which samples two digit pictures
and put in left and right position. The generative variables Fleft, Fright are the digit images and data
input is simply their concatenation: X = [Fleft, Fright]. We define the task correlation CMTL

dist by
co-occurrence probability of the two digit labels. We randomly shuffle the label pairs and split the

22

training and test set such that the class label pairs do not overlap. An illustrative data point and the
label pairs in training set is shown in Figure 9.

D.2 Real-world Datasets

Multi-MNIST (Harper & Konstan, 2016) is a multi-task variant of MNIST dataset, which samples
two digit pictures and put in left and right position. We mainly modified from the this code repo2

to generate the dataset. We sample 10,000 images for each label pair, so totally there are 1M data
samples. As discussed in analysis section, to mimic distribution shifts (i.e., task correlation CMTL

dist),
we randomly shuffle the label pairs and split the train, valid and test set with ratio 3:1:1, such that
every image co-occurrence correlation will no longer appear again in test set. We utilize the same
CNN architectures and hyperparameter adopted in Yu et al. (2020) as base encoder, and one-layer
MLP as per-task predictor.

MovieLens (Harper & Konstan, 2016) is a Movie recommendation dataset that contains 10M rating
records3 of 10,681 movies by 71,567 users from Jan. 1996 to Dec. 2008. We consider the rating
regression for movies in each genre as different tasks. There are totally 18 different genres, including
Action, Adventure, Animation, Children’s, Comedy, Crime, Documentary, Drama, Fantasy, Film-
Noir, Horror, Musical, Mystery, Romance, Sci-Fi, Thriller, War and Western. To mimic distribution
shifts across train, valid and test set, we split the data based on timestamp with ratio 8:1:1, and filter
out non-overlapping users and movies from each set. We utilize a embedding layer followed by
two-layer MLP as base encoder, and one-layer MLP as per-task predictor.

Taskonomy (Zamir et al., 2018) is a large-scale MTL benchmark dataset of indoor scene images
from various buildings4. Every image has annotations for a set of diverse computer vision tasks. We
follow the setting of (Balaji et al., 2020) to use 8 tasks, including curvature estimation, object classi-
fication, scene classification, surface normal estimation, semantic segmentation, depth estimation,
occlusion edge, 2D keypoint estimation and 3D keypoint estimation. For these tasks, object and scene
classification tasks are trained using cross entropy loss, semantic segmentation using pixelwise cross
entropy, curvature estimation using L1 loss, and all other tasks using L2 loss. To mimic distribution
shift, we select images from non-overlapping 48, 3, 3 buildings as train, valid and test set. The total
training size is 324864 samples. We use Resnet-50 model as our base encoder network, and 15-layer
CNN model with upsampling blocks as the per-task predictor.

NYUv2 (Silberman et al., 2012) is a dataset of 1449 RGB-D indoor scene images5 with three tasks:
13-class semantic segmentation, depth estimation, and surface normals prediction. We use mean
Intersection-Over-Union (mIoU), Relative Error (Rel Err) and Angle Distance as evaluation metric
for the three tasks respectively. To mimic distribution shift, we split the dataset by scene labels into
train, valid and test set with ratio 8:1:1. We follow the setting adopted in Yu et al. (2020) to use
Segnet (Badrinarayanan et al., 2015) as the base encoder.

CityScape (Cordts et al., 2016) is a dataset of street-view images6 with two tasks: semantic segmen-
tation and depth estimation. We use mean Intersection-Over-Union (mIoU) and Relative Error (Rel
Err) as evaluation metric for the three tasks respectively. We follow the same data pre-processing
procedure of the original paper, and split images based on city into 2475, 500 and 500 train, valid and
test samples. We follow the setting adopted in Yu et al. (2020) to use Segnet (Badrinarayanan et al.,
2015) as the base encoder.

Tasks (Metric) STL MTL PCGrad GradVac DANN IRM MT-CRL + LV arG-IRM

Left-Digit (Acc.) 0.871± 0.018 0.844± 0.019 0.880± 0.019 0.884± 0.017 0.878± 0.020 0.887± 0.010 0.912± 0.018
Right-Digit (Acc.) 0.877± 0.015 0.848± 0.018 0.888± 0.017 0.886± 0.018 0.884± 0.017 0.889± 0.015 0.918± 0.019

Table 6: Results for Multi-MNIST dataset.

The results show that a middle number of module (K=8) achieves the best performance under the
same size of model. Note that disentangled representation learning methods like BetaVAE assume

2https://github.com/shaohua0116/MultiDigitMNIST
3https://files.grouplens.org/datasets/movielens/ml-10m.zip
4http://taskonomy.stanford.edu/
5https://cs.nyu.edu/˜silberman/datasets/nyu_depth_v2.html
6https://www.cityscapes-dataset.com/

23

Metric STL MTL PCGrad GradVac DANN IRM MT-CRL + LV arG-IRM

Avg. MSE 0.894± 0.006 0.892± 0.005 0.892± 0.006 0.891± 0.005 0.890± 0.007 0.890± 0.004 0.884± 0.006

Table 7: Results for MovieLens dataset.

Tasks (Metric) STL MTL PCGrad GradVac DANN IRM MT-CRL + LV arG-IRM

object classification (Cross Entropy) 3.37 3.18 3.09 3.06 3.13 3.16 3.01
scene classification (Cross Entropy) 2.65 2.59 2.54 2.51 2.58 2.59 2.47
semantic segmentation (Cross Entropy) 1.68 1.54 1.47 1.49 1.53 1.56 1.43
curvature estimation (L1 Loss) 0.246 0.224 0.218 0.212 0.237 0.226 0.208
surface normal estimation (L2 Loss) 0.138 0.141 0.136 0.139 0.152 0.150 0.125
occlusion edge detection (L2 Loss) 0.134 0.138 0.132 0.133 0.137 0.141 0.128
2D keypoint estimation (L2 Loss) 0.176 0.171 0.167 0.163 0.169 0.168 0.158
3D keypoint estimation (L2 Loss) 0.194 0.205 0.199 0.196 0.204 0.201 0.191

Table 8: Results for Taskonomy dataset.

Tasks (Metric) STL MTL PCGrad GradVac DANN IRM MT-CRL + LV arG-IRM

Segmentation (mIoU) 13.27 17.64 19.64 19.68 17.12 17.54 19.81
Depth (Rel Err) 0.653 0.651 0.591 0.593 0.637 0.639 0.585
Surface Normal (Angle Distance) 35.18 31.52 30.98 31.04 31.69 32.03 30.85

Table 9: Results for NYU-V2 dataset.

Tasks (Metric) STL MTL PCGrad GradVac DANN IRM MT-CRL + LV arG-IRM

Segmentation (mIoU) 50.87 51.63 52.84 52.76 51.91 52.05 53.12
Depth (Rel Err) 33.85 32.75 32.12 32.08 32.71 32.64 31.86

Table 10: Results for CityScape dataset.

K 1 2 4 8 16 32 64 128
Acc. 0.824 0.897 0.904 0.915 0.911 0.902 0.893 0.882

Table 11: Hyperparameter tuning results for number of module (K) over Multi-MNIST dataset.

that every dimension is mutually independent (K = 128 in our case), which restricts the model
capacity. Therefore, a middle K is a trade-off between model disentanglement and capacity. In all
other datasets, we just use K = 8 by default and didn’t do further tuning.

E Detailed Results on each Dataset

We report the performance on each task for the five benchmark datasets in Table 6-10. We use 8
GPU to run each experiments. As shown in the tables, the scale of different task’s evaluation metric
differ a lot, and thus in the main paper we adopt relateive performance improvement compared to
vanilla MTL to evaluate each method. Nevertheless, our MT-CRL with invariance regularization
could achieve the best results over nearly all the tasks.

F Determine the number of modules K

K is a hyperparameter that could be tuned. To control the same model complexity, we fix the output
dimension d, i.e., 128, and then each module’s dimension is d

K . We show the results on Multi-MNIST
with different K in Table 11.

The results show that a middle number of module (K=8) achieves the best performance under the
same size of model. In all other datasets, we just use K = 8 by default and didn’t do further tuning
to test our method’s generalization capacity, this could avoid the situation that the final performance
improvement is mainly caused by extensive hyper-parameter tuning.

24

Figure 11: (valid-train) Task-to-Module gradients of model without MT-CRL on MovieLens.

Capacity-Disentanglement Tradeoff Noted that with a fixed number of dimension d, with larger
K, the model capacity is reduced. The widely adopted disentangled representation learning methods
like BetaVAE mostly assume that every dimension is mutually independent (K = d in our case),
which restricts the model capacity to extreme case. And the results in Table 3 also show that our
current disentangled approach performs empirically better than BetaVAE. One potential reason is that
we choose allow a middle K is a trade-off between model disentanglement and capacity, in which
only the dimension across the block is de-correlated, why the ones within block could still correlated,
so as to maintain model expressiveness.

Note that the optimal choice of K should ideally should be proportional to number of true generative
factors that are related to downstream tasks. Therefore, for dataset with a large amount of tasks, we
should choose larger number of K, and also consider increasing the total number of dimension d to
increase the model capacity while maintaining disentanglement. In our paper for large dataset such
as Taskonnomy we didn’t do further tuning due to limited resources, so the performance could be
potentially further improved, which we leave for future exploration.

G More Case Studies to show MT-CRL can alleviate spurious correlation

Here we show more details about the case study we conduct for analyzing how MT-CRL could
alleviate spurious correlation, as a complementary.

As introduced in case study, we use the task-to-module gradients ∂(f(Φ(x))[y])
∂F to illustrate how each

task utilize each module. We could utilize the (valid-train) score to show which module is used by
training set but not helpful for valid set, meaning it is spurious.

We first show detailed results on MovieLens dataset. As shown in Figure 11, without MT-CRL, there
eixst many modules assigned negative (valid-train) causal grad, as shown in the color bar. Among
them, view 5 is mostly inconsistent with the training results as we show in case study. Also, the other
modules’ key words are also not very accurate to describe the properties of each movie.

Figure 10: The task similarity induced by
causal graphA for MovieLens dataset (thresh-
old = 0.1).

After we add MT-CRL, as shown in Figure 12, all
of the modules receive positive (valid-train) causal
grad, meaning that they either not utilized in training
stage, or every used modules are still useful in valid
stage. In addition, all the modules’ key words are
much more accurate to describe each type of movie
than before.

In addition, our learned task biadjacency graph A
could also be used to describe the similarity between
task. If two tasks share more causal feature, they are
more similar. We thus cauculate the task-averaged
score of A, and plot a sparse smilarity graph in Fig-
ure 10. It shows that our MT-CRL could learn to
group similar types of adult movies, such as war,

25

Figure 12: (valid-train) Task-to-Module gradients of model with MT-CRL on MovieLens.

Figure 13: (valid-train) Task-to-Module gradients of model without MT-CRL on Multi-MNIST.

crime, thriller, adventure into the same group in the
right down part, and link children-friendly movies,
such as animation and children together. romance
movie is a link between adult cluster and children movie. This similarity graph matches our human
expectation, showing that our learned causal graph indeed help similar group use similar causal
features.

Figure 15: The gradient saliency map
of left-digit and right-digit classifier
trained via MT-CRL. Compared with
Figure 3(b), MT-CRL indeed helps al-
leviate spurious correlation.

We then show the (valid-train) Task-to-Module gradients
over Multi-MNIST datasets. It is very apparent that the
two digit classifier doesn’t share any overlapping causal
features. However, as shown in Figure 13, without MT-
CRL, the model still learns to assign similar weights to
module 3 and 4. This is also illustrated by the gradient
saliency map for each module. Module 3 and 4 have high
attention on both left and right side.

With MT-CRL, in Figure 14, the learned task-to-module
assignment is much sparse and clear. Also each module’s
saliency map only focus on one side of pixels. By looking
at each task output’s saliency map, in Figure 15, we can
see the model with MT-CRL can help to focus only on
causal part, compared with Figure 3(b) that have high
weights on both.

Both the MovieLens and Multi-MNIST case studies show
that MT-CRL could help alleviate spurious correlaiton issue. For the other datasets, such as Taskon-
omy, NYUv2 and CityScape, their task output layer is very different and thus it’s hard to get
normalized gradient to show in one figure. In the future, we plan to do more thorough analysis
by manually label several spurious feature or environmental groups, and design better methods to
visualize how MTL model utilize non-causal features.

26

Figure 14: (valid-train) Task-to-Module gradients of model with MT-CRL on Multi-MNIST.

Figure 16: Task-to-Module Routing Graph (A) of
model trained on Taskonomy dataset.

Figure 17: Task Similarity graph induced by
Task-to-Module Graph A for Taskonomy dataset
(threshold = 0.1).

Case Study on Taskonomy. In addition, we show the Task-to-Module routing graph and also
the induced task similarity graph of Tasknomy dataset. As is shown in the figure, some similar
task like 2D keypoint Estimation and 3D keypoint are liked together, and also the hard task like
semantic segmentation receives information from curvature estimation, surface normal estimation and
occlusion edge detection. These findings fit the observation of original Taskononmy analysis (Zamir
et al., 2018). As stated in the limitation, we leave the deeper analysis in Tasknonmy about spurious
feature as future work, as currently we don’t have the ground-truth anotation about which part of
image input is causally related to each task.

H Detailed Hyper-parameter Selection Procedure and Sensitivity Analysis

Here we introduce the procedure and results of hyper-parameter tuning.

Before discussing hyper-parameter selection, let me explain our baseline setup and experiment setting
again. We have a single validation set, potentially bringing OOD to the training set. Our method only
uses the training set to calculate the loss to update both encoder and per-task predictors. We then use
the hold-out validation set to calculate the loss w.r.t graph weights A, and update it via invariance
regularization. This avoids overfitting the validation set.

We mainly split the hyper-parameters into two sets:

27

Figure 18: Hyper-parameter tuning results for
sparse weight (λsps) on Multi-MNIST.

Figure 19: Hyper-parameter tuning results for
balancing weight (λbal) on Multi-MNIST.

Figure 20: Hyper-parameter tuning results for dis-
entanglement weight (λdecor) on Multi-MNIST.

Figure 21: Hyper-parameter tuning results for cor-
relation weight (λG-IRMV ar) on Multi-MNIST.

• General hyper-parameter related to all baselines (including ours), including number of
hidden states, optimizer, learning rate, number of modules (K);

• Our MT-CRL specific hyper-parameter, including weights for disentanglement (λdecor),
sparsity (λsps), balance (λbal), and invariance (λG−IRM).

For both sets of hyper-parameters, we only tune on the same OOD validation set we used for our
method. All hyper-parameters except K are standard hyperparameters for the MTL model. For
datasets CityScape, NYUv2, and Taskonomy, we directly use the reported hyperparameter and dataset
setting in previous papers (Yu et al., 2020; Balaji et al., 2020), in order to achieve a fair comparison.
For MultiMNIST and MovieLens, we conduct a grid search for basic parameters, including the
number of layers, number of hidden dimensions, optimizer, and learning rate, on the Vanilla MMoE
MTL model without regularization. For the number of module (K), please refer to Sec F. After we
determine these general hyper-parameters, we fix them and use them for all different MTL methods.
This makes the comparison fair and ensures our performance improvement is not due to extensive
hyper-parameter tuning of our method.

28

Methods Multi-MNIST Accuracy MovieLens MSE

MT-CRL with LV arG-IRM and default hyper-parameter 0.915 ± 0.018 0.884 ± 0.006
MT-CRL with LV arG-IRM and randomly chosen hyper-parameter 0.904 ± 0.021 0.887 ± 0.006
Vanilla MTL baseline 0.846 ± 0.018 0.892 ± 0.005

Table 12: Results on Multi-MNIST and MovieLens with a randomly chosen set of hyper-parameter.

Next, we tune the MT-CRL-specific hyper-parameters on the validation set. We think this setting
is reasonable as we didn’t utilize this validation set to calculate training loss. Thus it could still be
regarded as a whole-out set for most model parameters (except the graph weights, which only take
a tiny portion of the whole model). Note that four regularization weight terms exist to be tuned,
which is many burdens for the model. Therefore, we only use Multi-MNIST, the smallest dataset
in all our testbeds, to conduct hyperparameter tuning for the ML-CRL-specific hyperparameters
with grid-search. This is definitely not the best choice, and tuning for each dataset could potentially
improve our performance further, but that only makes our improvement higher while not changing the
main conclusion of this paper. Specifically, we choose the several ranges for the four regularization
weights:

• Sparse weight (λsps): [0.0, 0.1, 0.2, 0.5, 1.0, 2.0]
• Balancing weight (λbal): [0.0, 0.2, 0.5, 1.0, 2.0, 5.0]
• Disentanglement weight (λdecor): [0.0, 1.0, 2.0, 5.0, 10.0, 20.0]
• Invariance weight (λG−IRMV ar): [0.0, 5.0, 10.0, 20.0, 50.0, 100.0]

These ranges are selected by running a few samples to determine the maximum value that should be
within this range, and we keep each selection list to be a length of 6. We report the boxplot of detailed
results for each regularization weights in Figure (18-21). As is illustrated, for all the regularization,
using it is better than not using it (λ = 0), showing their advantage in making our MT-CRL pipeline
works. We then select the optimal hyperparameter that achieves the highest validation accuracy,
which is λsps = 0.2, λbal = 5.0, λdecor = 20, λG−IRM = 5.0. Again, this selection might not be
the optimal solution; for example, the tendency for λbal seems to increase with higher, and λG−IRM
might have a better choice within the range [0− 5]. However, we did not conduct more searching
and used this setup. After getting such a combination of MT-CRL-specific hyper-parameter, we fix
it and use it for all other larger datasets, which assume our framework with this hyper-parameter
combination is consistently effective. Further tuning them on a dedicated dataset should potentially
bring better performance, but we did not do it to avoid the performance improvement brought by
extensive tuning.

Sensitivity Analysis. From the curve and also the definition of these regularization, we know
that for all other terms except sparsity regularization λsps, increasing the regularization weight and
strictly force model to be balance, de-correlated or invariant doesn’t harm too much to the model
training (trend didn’t go down even with relatively large weight). The only exception is the sparsity
regularization. With high λsps implemented as L1 loss over adjacency weights will force all to be
zero, which is very harmful to model training, which is why by default, we choose the value as
λsps = 0.2.

To give a simple example of whether our model is sensitive to an inappropriate setting of hyper-
parameter, we run experiment on MultiMNIST and MovieLens, with the following randomly chosen
hyper-parameter setting: λsps = 2.0, λbal = 1.0, λdecor = 2.0, λG−IRMV ar = 100.0. The results
compared with the original results are as shown in Table 12.

Note that with a randomly chosen hyper-parameter, the results on the two datasets drop slightly but
are still significantly higher than the Vanilla MTL baseline. This is an informal showcase of our
method’s generality and not very sensitive to hyper-parameter selection.

29

