A Appendix

B Appendix: Proofs

Proof B.1 Proof of Theorem 2.1}
Sufficiency:
When € > €, the sufficiency is trivial as § = .

When € < €, given that Ais (eo, d)-DP, by the definition, for any pair of datasets S and S’ that
differ in the record of a single individual and any event E,

P[A(S) c E} S 660P[A (SI) S E] +(5(].

When P[A(S') € E] < +=% .= ¢,

P[A(S) € E] < e“P[A(S") € E] + &
<(e“+e*—e)P[A(S)EE]|+dp+d—0
<e“P[A(S)€E]+d+ (e —e)cg+ g — &

(1= do)(e — )
1+ eco

<ePlA(S) € E]+8+ (e —€)co —
<eP[A(S") € E]+.

Whenco < P[A(S") € E] <1,
P[A(S) € E] =1 — PJA(S) € E]

<1-—e “(PJA(S) € E°] —dp)
—1—ee°< P[A(S') € E] = do)
=1l—-e“4e “P[A(S") € E]+e 4
=1—e04e % +0—0+ (e +e —e)PA(Y) € E]
—ePlA(S')€E|+0+1—e +e 05—+ (e —e)P[A(S) € E]
<ePlA(S)EE]+d+1—e“+e F—0+ (e —eco

e 0 —e€

:eGP[A(S’)eE}—&-(S—i-(l—&))(W e ) +1-46
—€0 __ L€ € _ p€o
< e P[A(S) eE}+5+(1—5o)(61+7€€f—6’6°+1+eH:eo)

= ¢“P[A(S') € B] + 6.

Necessity:

We prove the necessity by giving a specific (g, 00)-DP algorithm A such that 0 4(¢) is exactly
+

1—6p)(e0—e®
gy 4+ QB0
Define Q. = {1,2,3,4} and Qs = {0,1}. Lete > 0, 0 < §y < 1 and denote 1+ = as op. Let A be

a randomized algorithm that take a single point from Qg and generate output as follows.

PIA(S) =18 = 0) = &, PAS) =1|S=1) =0,
P(A(S) = 2] 5 =0) =0, PLA(S) = 2| S = 1) = &,
P(A(S) =35 =0) = (1—do)ao, P(A(S)=3]8=1)=(1-d0)(1 - ),

P(A(S) =4[5 =0)=(1—=0d0)(1 — o), {P(A(S)=4]5=1)=(1-do)ao.

By definition, 0(¢) is the smallest § such that P(A(S) C E | S =3s) < ePAS)CE|S =
1 —8) + § holds true for all E C Q). and s € Qg. By checking all 64 combinations, we can conclude

_ €0 —e€ +
that d4(€) = 0 + =22

14



Proof B.2 Proof of Lemma 3}
It is well known that [2l], for t < 0:
42

! </Ze ( )fI)(t)<
S S L
i Ve 2 &P\

Leta=(~=+4)andb= (-2 &),
lim 6, (¢) = lim ® (a) — e*® (b)
€E—> 00

€—> 00
7 () (4
<4/ —lim
T

N A

2 o o <a2> 1 1
=4/ —lim exp { — —

T €—00 2 —a+ /az_’_% _b+1/b2+4
<4/ —lim exp — .

T e—00 2 a

=0.

lim 6,(¢) = lim ® (a) —e“® (b)
E—> OO €E— 00
2 2
exp (| =2 exp (=X +¢
2 o (F) e (F

T e—o00 —a+\/a2+47 b+ /b2_~_§.

21, (—ﬁ) 1 1
= — 11Im ex —_— —
V7 os PP —a+va?+4 5, 28

=0.
Therefore,
A, Oule) =0
It is easy to see that,
2
Me—a /2 B
im0l =l s

By L’Hospital’s rule:

—
s
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Proof B.3 Proof of Theorem 3.2}

Sufficiency:

is i-GDP., lim < Tim —_
If A'is i-GDP. Then EEIJPOO Gal(e) < Eggloo Gs,(€) =
Necessity:

If im G4(€) = u < +oo, there must be a ¢; > 0 such that A is (e;, o + 1)-tail GDP.

e—Fo0
Notice that M1Lr1;o 0, (er) = 1, we can pick p1 > po large enough such that 6,,, (¢;) > §.4(0).

This is possible because by Theorem 04(0) < 1. Then for € € [0,¢e), da(e) < d4(0) <
Oy (€1) < 0y, (€). Alis both (e, 1)-head and tail GDP for v = 1o + p1 + 1. A is GDP as desired.
Proof B.4 Proof of Theorem 3.3}

Let 6_1@00 Gy(e) = .

. o €2 2.
First we show that 611{{)10 “Slogoate) = Hi:

By the definition the limit, for any o > pu, for sufficient large €, G¢(€) < po and further § 4(€) <

Timn dale) Tim Jale
du (€). Hence, Ell>nr010 NG <1.By LemmaE| E1l>nr010 N <1

2

2
Then lim ——5——— < lim ——S—— = 2.
oo —2logdale) = (5 —21log dy, (€) o

lim

) < w¢ as desired as we take 1y — i
E— 00

62
—2logdale
N 2
. € > 2.
Next we show that Elgglo “oTogoale) = Mt

If lim WEA(E) = p3 < u?, then by Lemma

E— 00O
lim ¢ — ¢ = lim e lim e
coo —2logda(e)  —2logdy,(€) oo —2logdale) oo —2logd,, (¢)
< g —

Then for a sufficiently large e,

2 2
€0 €0 0

—2logda(en) —2logdy, (o)

Since log is an increasing function, it follows that § 4(eo) < 0, (€o). Then @ Gy(e) < po < e,
€——+400

which is a contradiction.

Proof B.5 Proof of Theorem .2}

Let G, (€) = F(€,0,(€)) and F(x,y) = g, (2, y).
By definition of pi,,, Gu(€) = p.

0G,,(€) ou
de e 0,
On one hand, 3Gu(e) - % »
ou  Op

9G,(0) _ OF _0F 03,00
Oe Ox Oy Oc¢ ’
0G,(e)  OF 9i,(e)
o Oy ou

On the other hand, by chain rule,
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OF  00,(e)
dy o

OF  00,(€),_100,(¢€)
dr = ou ) Oe
54() g O340

Therefore,

Using the close forms and 2 can be directly computed:
0, (€) 766@(7,11 + 26)
Je 2u
,u2725)2
0b,(e) e w2
ou V2m
2
OF (“2+26) 249 12
oy = V2me su? @(_MTH) < v27767¢)(—§) < \[7,
x
Hence, (o2 )2 H
OF i
87y =V 2me 8u? > 0.
u242c)?
S /7 2
Notice that %—5 = +/2me 8u? @(—“27';25) > 0, combined with the fact that % < @, we can

conclude that 0 < 8“%;(6’5) < @ By %—1; > 0, we can see GDPT is order preserving.

Proof B.6 Proof of Theorem .3}

We now consider the gap between max;eo.... ;3 {G (%)} and max;eqo.... 13 {G (i)} bound
the length of [u=, u¥) in two cases.

Case 1: If max;e(o,... n+13{G (%)} = G (o), then max;e(o,... ns13 {Gh (%)} = GH(z0) =
oo (D 8.4(0)) < 1105/(0,8.4(0)) + 5. Therefore,

gﬂoax] G(e) < G(mo) < {G (o)} +

V21D
5

Case 2: If maxeqo,... ny1} {G(zi)} # GH(x0). then by the order preserving property,

the optimal p lies in [p~,p"], where p~ = max(up, max;cqo,... n}{G4(x:)}) and p*
max(py,, max;e(1,... nt13{G 1 (x:)}). Notice that
16{%13‘)( {G ((,C,)}— n%a?(ﬂ {NGDP(xl75A(x1+1))}_ E{lm n+1}{lu’GDP(‘TZ 175A($l))}
2 . max {:LLGIJP(‘ri+1a 6.A(IZ)) - \[ﬂ-D}
i€{l,- ,n+1}
> {1 {GA(%)} —V27D.
i€

In both cases the gap is no greater than /2w D as desired.

Proof B.7 Proof of Theorem#.4}

By the definition of C, C o A is bounded in [y~ , y+|. Therefore the global sensitivity of C o A is no
greater than y™ —y~. Then R o C o A is a special case of the Laplace mechanism. By [3]], RoCo A
is €p,-DP. Then dgocon(€) = 0 < 9, (€) for any € > €p,.

In addition, because of the post-processing property, drocoa(€) < 0.4(€) < ,(€) for any € < ep,.
Therefore, R o C o A is u-GDP.

C Appendix: Refining the privacy profile

Given a trade-off function ¢ = f(¢,0) and a fixed parameter 0. From definition of the trade-off
function it is instant that the for any (¢,0)€ Q = {(¢,9) | 0 = f(¢,0)}, (¢,0)-DP is guaranteed.
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Then, (¢, §)-DP is also guaranteed if there is a (eg, dg) € €2 such that (eg, dp)-DP implies (¢, §)-DP.
Therefore,

Notice that by theorem [2.1} (e, dp)-DP implies (e, ) with § < &y only if € < €, we rewrite the
d4(€) as:
dale)= inf g(e e€p),

€0 Ele,00

e0—e®

where g(e, €0) := (1 —d.4(e0)) Corr T 8.4(€0) and 0.4 is the naive privacy profile defined implicitly
by o = f(eo, dp). For continuously differentiable f, the minimum value of the right-hand side can be
found be take the derivative:

8922060) - <1l++ef:)z |64 (c0) + €% (1 = Eae0) + 04 (€0))] -

We remark that the sign of %ﬁ’:o) does not depend on € when € > ¢y. For both of our example 2

9g(e,€0)
860

€ > ¢, 04(e) = 6.4() and otherwise 6.4 (¢) equals to the § value derived from (e, 54 (¢)).

and 3, we both find a particular value €’ such that Sign( ) = —Sign(e — €'). This means for

There is an interesting byproduct or the privacy profile refinement. Theoretically, the privacy profile
refinement can also be used to improve an algorithm’s utility. For example, the projected noisy SGD
algorithm in [17] is (e, §)-DP and the trade-off function is 0 = —C'log(dg)/€o. To achieve (0.2, e~2)-
DP, it appears that o needs to be chosen as —C'log(e~2)/0.2 = 10C. (¢, §)-DP implies (0.2, e~2)-
DP when § + (1 — §)(e€ — e%2)* /(1 + e¢) = e~2. Numerical methods suggest that, by choosing
€~ 0.334 and § ~ 0.067, (¢, §)-DP implies (0.2,e~2)-DP but 0 = —C'log(§) /e ~ 8.086C < 10C.
Therefore, the desired level of DP can be achieved with a lower noise parameter. However, this type
of refinement majorly affects privacy profile around the origin and therefore minor in practice.

D Behind efficient head measurement algorithm

First we formalize the binary search algorithm to find p,:

Algorithm 2: Binary search

Input: ¢, 0, b. (The (¢, §)-pair, searching range, error margin)
pu_ <0
M < Mmax
repeat
_ prps
2
if 9,,(¢) > J then
pt e p
else
W
end if
until 4™ — = < b
Output: p_, 4 (lower and upper bound of ).

It is possible to drop the need for the searching range i, for this algorithm (e.g., exponentially
search for an upper bound first or conduct a binary search on arctan u instead). We keep this input
for clarity and simplicity. pmax can be set to a large constant for convenience, for example, 10. If the
outputted p+ equals the preset value (10), the privacy profile fails to imply 10-GDP. In practice, GDP
with 1 > 6 already provides almost no privacy protection [[13].

With the formal definition of binary search, an exhaustive iteration method to bound the staircase
functions outlined in Theorem [.3|can be formally written as follows:
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Algorithm 3: Finding p with privacy profiles (naive).

Input: 6 4, €, c. (Privacy profile, searching range €, reciprocal of error margin)
n < [\fcweh] +1
d — Eh
e & 0
pt =0
fori=0ton+1do
T+ id
v« (i+1)d
Ht maX(IU’Jra u:;p(x_a (5_A(33+),
pi— = max(p—, pop, (a7, 04(27),
14—1+1
end for
Output: ut, u™.

To transform this naive algorithm into the optimized one. The first key observation is that the
reassignment of ;14 and p_ can be optimized.

We take pp <« max(pi,pul (z7,04(xT),5)) for example, same optimization can be ap-
plied to p— <« max(u_,pu,, (x7,64(x7,5))) as well. The naive operation, i <
max (g, - (27,64(zT), 52)) can be optimized into “If §,+(z7) < d4(z™), then p™ <

b (27, 64(x™), 2))” without lost of accuracy. To see this, we hst all three possibilities as follows:

o Case I: it < pigp(z7,04(2T)) < pt (27, 64(2zT), 5
o Case 2: fig,(z7,64(2T)) < pt < pt (27,64(2zF), &
¢ Case 3 (2, Ba() < sy (2, A (), ) < i

In case 1, both of the naive operation and the optimized operation will update p* to
- 1

Hgo (7, 04(27), 55))-

In case 2, the optimized operation will do nothing, because the test §,,+ () < d.4(x™) will fail. The

naive operation will update p* due to the error of binary search, which should be avoided.

In case 3, the optimized operation will do nothing, because the test §,,+ () < d.4(x™) will fail. The
naive operation will also do nothing because the max operator will choose 7.

To sum up, the optimized operation always give a more accurate update.

The second insight is that we want to avoid case 1 because only in case 1 a binary search is
needed. Notice that case 1 happens only if §,+(z7) < d4(z™), which is equivalent to ut <
Hepp (@7, 0.4(x™)). In the k + 1 round of loop, the condition p* < pi, (27, 0.4(2 ™)) holds true only

if forall j € {0, -+, k}, pgp (25, 04(; ) < pope (@7, 04(xT)), where z; and x;“ are the values

of 7 and =™ in the round j. ThlS 1nsp1re us to shuffle x; before iteration because after shuffling, the
probability of “sg, (27, 6A(xj+)) < e (7, 04(2)) forall j € {0,---,k}” will be k%rl The

expected occurrence of case 1 will be ZZ:é %ﬂ = O(log(n)).

The time complexity of shuffling S is O(n) = O(epc). Each binary search has a time complexity of
O(log(c)) and the expected number of binary searches is O(log(exc)). The overall time complexity
of the optimized algorithm is therefore O (e c + log(c) log(cey ))=0(epc).
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E Appendix: Plots

E.1 The Laplace mechanism under GDP

—— Laplace 0.5 - DP
Laplace 1.0 — DP
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Figure 4: The plot of GDPT of ¢-DP privacy profiles and the Laplace mechanisms with the same e-DP
guarantee. From the figure we can see the privacy protection provided by the Laplace mechanisms is
slightly better than e-DP.
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E.2 The effect of subsampling
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Figure 5: (Left) GDPT of the Laplace mechanism for various of . (Right) GDPT of the SGD for
various of 7.
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Figure 6: (Left) GDPT of the ICEA for various of 7. (Right) GDPT of the J,, for various of . The
Poisson subsampling procedure can significantly decrease the value of 1 around € = 0 but has little
effect on the GDPT’s tail.
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