
Suppelmentary Information1

A Methods2

A.1 Finding reliable cells from a retinal population.3

In our analysis, we defined reliable cells as those that fire more than 8 spikes per trial. Because each4

trial (movie presentation) lasts 20s, this corresponds to a mean firing rate of 0.4 spike/s. In Fig 1B,5

we showed a histogram of mean spikes we obtained from the entire 93-cell retinal population. We6

found 47 reliable cells. We averaged each cell’s spiking activity over all presentations of the same7

movie to generate the peri-stimulus time histogram (PSTH) for that movie (e.g. fish, leaf, water).8

For a given 500ms window of retinal activity, we generated a unique sample by randomly dropping9

out 2 cells (without permutation) that fire during the specific 500ms segment. The encoder-decoder10

uses the resulting 45-cell retinal activity to reconstruct a movie frame 100ms beyond the specific11

500ms window. For each movie, we trained our encoder-decoder to reconstruct 400 frames, using12

100 unique 45-cell samples for each frame. We then tested the encoder-decoder on the first 10013

frames of the 400-frame segment. We obtained another 100 unique samples of retinal activity for14

these test frames. These testing samples are hold-out samples that do not exist in the training dataset.15

A B

Fig 1: A) Spatial receptive fields (RF) of all 93 retinal ganglion cells. An individual RF is a 2D Gaussian
fitted to the maximum firing rate over time of a specific cell. In this retinal population, 88% are fast-off
cells. B) Finding reliable cells from a retinal population. The histogram above shows the mean spikes a cell
may have during a single, 20s-long trial, averaged by all trials. The red line shows the threshold by which
we decide whether a cell is reliable (mean spikes > threshold) or unreliable (mean spikes < threshold). We
also calculated the reliability measure used in [1] and we obtained similar results.

A.2 Intrinsic Dimension Estimation16

The estimation of intrinsic dimension is an active research topic. There are many estimators available.17

In Fig 1C of the main paper, we used the maximal likelihood based, K-nearest neighbor estimator18

first proposed in [2]. Using high-resolution images with known intrinsic dimension, the experiments19

in [3] have shown that this estimator consistently yields more accurate estimates compared to other20

popular methods. In our application, we estimated the intrinsic dimension with a wide range of k21

(k ∈ (5, 25)). It is the same range used in [3]. For retinal activity, we empirically observed that these22

intrinsic dimension estimates converge to 2.7 when k >= 18. This is the "ID(PSTH)" we reported in23

Fig 1C. Similar to retinal activity, we also reported the converged intrinsic dimension estimate for24

latent activations. For example, we observed that when k >= 11, the intrinsic dimension estimates25

for a 10-D latent activation converge to (4.0, 4.1) and this is what we showed in Fig 1C as well.26

A.3 U-net27

U-net was developed for biomedical image segmentation [4]. Its architecture is based on a fully28

convolutional network. Typical feedforward convolutional neural networks contain contracting layers29
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only. These contracting layers form a cascade of convolution and pooling layers within which the30

pooling layers downsample the input. U-net is an encoder-decoder. It concatenates a contractive31

feedforward network (encoder) with another convolutional network of expansive layers (decoder).32

This gives the overall network a U-shape. U-net also appends the activations from intermediate33

convolutional layers of its encoder component to its decoder. These are the so-called skip connections.34

These skip connections are copies of the input being represented within the feature space of different35

intermediate convolution layers in the encoder.36

Modifications of the original U-net in our analysis:37

• We used ResNet18[5] pretrained with ImageNet[6] as the encoder, and generated an expan-38

sive decoding architecture by mirroring the encoder. There is no residual connection in the39

decoder component.40

• The skip connections within a U-net essentially perform autoencoding. Observing that41

retinal activity is low-dimensional, we modified the original skip connections to become42

variational sampling layers [7]. The dimensionality of these variational sampling layers are43

parameters we varied in our analysis. To simplify training, all variational sampling layers44

share the same dimensionality.45

Fig 2: The detailed U-net Diagram. This diagram corresponds to the modified U-net we used in our
analysis. The encoder shares the same architecture as the ResNet18. The decoder mirrors the feedforward
architecture of the encoder. The skip connections here are variational sampling layers. Each of them
learns a separate latent space. To simplify training, we used the same dimensionality across all latent
spaces. We also held the marginal variance Σ fixed. Combining all skip connections, the U-net used
through most of the paper has a 10D latent space in each of the 5 skip connection variational autoencoding
layers, resulting in an overall 50D latent space that decodes future movie frames from retinal activity.

A.4 Conversion of time-series for PSTH into a unique image46

We converted all time series of mean firing rates into their respective Gramian angular fields (GAF)47

[8]. The Gramian angular field (GAF) represents an 1D time series with a 2D polar coordinate system.48

All elements in a GAF image are the trigonometric sum (i.e., superposition of directions) between49

different time intervals. For example, the pixel at position (i, j) shows the cos (ri + rj) for a PSTH50

sequence {r1, · · · , ri, · · · , rj , · · · , rn}. This method has been shown to successfully capture high51

fluctuations in financial time series [9]. In our analysis, we first normalized all mean firing rates into52

(0, 1) per 500ms segment. We then computed the cos (ri + rj) to fill up off-diagonal (i, j) pixels53

with i ̸= j. Lastly, we filled the diagonal (i, i) pixels of a GAF image with the raw, unnormalized54

mean firing rates.55
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Fig 3: A) Mean firing rates r1,··· ,n of a sample neuron. B) The Gramian angular field corresponding to
A). Values at the diagonal pixels are raw mean firing rates, the same as A). Values at the off-diagonal
pixels (i, j) are cos (ri, rj) after r1,··· ,n is normalized to (0, 1), respectively.

A.5 Training details56

We used a cyclical learning rate schedule [10, 11] to speed up our training. The maximum learning57

rate is set to 1e− 2. The specific learning rate per epoch is determined by the loss automatically [12].58

We observed that 20 epochs (2-3 hours on an NVIDIA Tesla K80 GPU) are generally enough to train59

an entire encoder-decoder. We split the 20 epochs into two phases. In the first phase, we only trained60

the decoder and froze the weights of the encoder component (initialized by the pretrained ResNet18).61

In the second phase, we unfroze the entire model to train both the encoder and the decoder together.62

To prevent overfitting, we reduced the maximum learning rate if the improvement between epochs63

is less than 0.1. We also performed early stopping if the improvement is less than 0.1 between two64

consecutive epochs.65

A.6 Represent a natural image with features from the pretrained VGG1966

Natural images contain high level features beyond their pixels. Pretrained CNNs capture these high-67

level features in their convolutional layers. By feeding a natural image into a pretrained CNN, one68

may obtain a representation that contains a whole suite of features from narrow to broad spatial scales69

[13]. VGG19 [14] is one of the most widely used pretrained CNN. Previous works have shown that70

convolutional layers of the pertained VGG19 provide features that can predict both neural responses71

and human eye movements [15, 16, 17]. A specific convolutional layer, the ‘conv5_4’, has been72

shown to contain features that can predict video saliency in humans [18]. To perform hierarchical73

clustering on frames, we used feature activations from this convolutional layer (‘conv5_4’) as a74

generic representation for both movie frames and optic flow frames.75

A.7 Obtain distributions for static/dynamic motifs of a natural movie based on hierarchical76

clustering77

For all three movies, we created the clustering hierarchy of their 100 test frames and their optic flow78

frames separately using agglomerative hierarchical clustering [19]. This clustering algorithm first79

creates a matrix of pairwise distance between all frames. Because each image is represented by80

their features from the pretrained VGG19, this pairwise distance corresponds to how two images81

activate the pretrained VGG19 differently. There are 512 features in the ‘conv5_4’ layer of the82

VGG19. Using feature activation of a 64X64 image from these 512 features, we performed principal83

component analysis and found that the first 10 principal components of these activations explain84

∼95% of variance in the data. This observation holds for all three movies and their respective optic85

flow frames. Therefore, we calculated the pairwise distance between frames as the Euclidean distance86

using these 10 principal components. The clustering algorithm takes a bottom-up approach to build87

the clustering hierarchy from the matrix of pairwise distance. It starts with each frame as an individual88
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cluster. It merges pairs of frames, or pairs of clusters as it moves up the hierarchy. The choice of89

merging two clusters greedily minimizes the total within-cluster variance (the ward’s criterion [20]).90

The algorithm takes 99 merging steps to cluster 100 frames. It terminates when the hierarchy reaches91

1 cluster.92

Every time the algorithm merges two clusters into one, it outputs a distance between the two clusters93

that are being merged. This distance shows how similar/dissimilar these two clusters are. Because this94

agglomerative hierarchical clustering is greedy, this distance only increases as the algorithm moves95

up the hierarchy. We generated discrete distributions of static or dynamic motifs by thresholding96

clustering hierarchies based on this distance. Such thresholding results in all clusters at the level97

right below the specific threshold being treated as discrete states of a probability distribution for the98

100 test frames. They are shown in Fig 4A,5A,6A for static movie frames and Fig 4B,5B,6B for99

dynamic optic flow frames. Using a low threshold, one may obtain a distribution with many clusters.100

Each of them may contain a few frames only. This distribution will have many states and a high101

entropy. Using a high threshold, many frames are grouped into one cluster and the corresponding102

distribution will have a low entropy. For all hierarchical clustering, we observed that this clustering103

distance grows slowly in the beginning, and increases exponentially towards the end. We performed104

a grid search on possible thresholds for each movie. Our goal is to construct Ydynamic, Ystatic105

such that the mutual information I(Ystatic, Ydynamic) is small. "Small” here is defined such that106

I(Ystatic, Ydynamic) may only take up to 50% of the entropy in both H(Ydynamic) and H(Ystatic).107

In Fig 4D,Fig 5D and Fig 6D, we reported a "redundancy ratio"( i.e., I(Ystatic, Ydynamic)/H(Ystatic)108

and I(Ystatic, Ydynamic)/H(Ydynamic)) for possible thresholds. Among all thresholds that yield109

a small I(Ystatic, Ydynamic) (below the cut-off redundancy ratio = 0.5), we prefer a low threshold110

such that the resulting Yjoint may retain more information within H(time). For two movies (fish111

and leaf), we identified a threshold within the slow growing phase (highlighted between two dashed112

lines in Fig 4C and Fig 5C). For the water movie, we only found a high threshold with which the113

I(Ystatic, Ydynamic) is small.114
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Fig 4: A) The agglomerative hierarchical clustering using static features of the test segment (0-100th)
of the fish movie. The threshold that generates Ystatic in Fig 5 of the main paper is shown as the gray
dashed line. All clusters are shown with different colors. Because each cluster groups multiple frames
together (10 clusters for 100 frames), this probability distribution is also a coarse-grained distribution
of time within the 100-frame movie segment. B) The same as A), but using optic flow frames (dynamic
features) of the test segment. C) The distance of all 99 merging steps in logarithmic scale as the algorithm
builds up its clustering hierarchy. This distance grows slowly in the beginning and exponentially towards
the end. We performed a grid search within the slow-growing phase (highlighted by dashed lines) to
find the thresholds used in A) and B). D) As the threshold increases (moves up the clustering hierarchy),
redundancy ratios of both static/dynamic features decrease. Meanwhile, Yjoint also loses information
about time. The I(Ystatic, Ydynamic) is small if both redundancy ratios I(Ystatic, Ydynamic)/Ystatic and
I(Ystatic, Ydynamic)/Ystatic are less than 0.5 (dashed line). The red square highlights the Yjoint (its
entropy and redundancy ratios) we used in Fig 5 of the main paper. The results we reported in Fig 5 of the
main paper hold for all Yjoint with redundancy ratios<=0.5.

5



A B

C D

Fig 5: The same as Fig 4, but for the leaf movie

A B

C D

Fig 6: The same as Fig 4 and Fig 5, but for the water movie. A) The same as Fig 5A and Fig 4A, but
for static frames of the water movie. B) The same as Fig 5B and Fig 4B, but for optic flow frames of the
water movie. C) Similar to Fig 5C and Fig 4C, but we expanded the grid search of possible thresholds
to cover most of the distance span used by hierarchical clustering. D) We could only obtain a small
I(Ystatic;Ydynamic) with a high threshold. The corresponding H(Yjoint) contains 2.4 bits only, about
37% of H(time).
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B Additional Results115

B.1 Encoder-decoders trained with the other two movies (leaf and water) also learn a116

generalizable encoding of time in the natural scene up to its full entropy117

A B C

Fig 7: A) The same as Fig 3B of the main paper, we included it here for completeness. B) The same as
A), but using an encoder-decoder trained to decode frames of the leaf movie from retinal activity. Red
bars show I(Zleaf ;Zfish) and I(Zleaf ;Zwater). Cyan bars show the fraction within I(Zleaf ;Zfish) and
I(Zleaf ;Zwater) that is about time. C) The same as A) and B), but using an encoder-decoder trained to
decode frames of the water movie from retinal activity.

Water(5d) Water(10d) Leaf(5d) Leaf(10d)
Fish 78.2% 96.9% 72.2% 98.0%
Leaf 79.5% 97.8% 84.4% 99.1%

Water 84.0% 97.4% 71.7% 97.9%
Table 1: Latent representations from encoder-decoder trained on any one movie can decode time in all
three movies. Here we showed two configurations (latent dimension =5 or 10, respectively).
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B.2 Synergistic features in the other two (leaf and water) movies118

A B C

Fig 8: The same as Fig 5 of the main paper, but for the leaf movie. A) Joint distribution of static
and dynamic features. This joint distribution includes 71% of H(time). B) The information plane for
leaf data. Dark blue: the information curve for encoding time; Light blue: the information curve for
encoding the joint distribution combining static and dynamic features; Red/Green: information curves for
separated static (red) and dynamic (green) features. C) Blue: the information curve for encoding the joint
distribution, the same as B); Black: the sum of information curves from Dynamic(Red)+Static(Green).
There is a synergistic region between the information curve for the joint and the sum. This synergistic
region is slightly smaller compared to what we observed in the fish movie (Fig 5C of the main paper).

A B C

Fig 9: The same as Fig 5 of the main paper, but for the water movie. A) Joint distribution of static
and dynamic features. Because of the high threshold shown in Fig 6D, this joint distribution contains
less number of discrete states compared to the joint distributions for the other two movies. B) The
information plane for water data. Dark blue: the information curve for encoding time; Light blue: the
information curve for encoding the joint distribution combining static and dynamic features; Red/Green:
information curves for separated static (red) and dynamic (green) features. C) Blue: the information
curve for encoding the joint distribution, the same as B); Black: the sum of information curves from
Dynamic(Red)+Static(Green). The synergistic region is visible, but smaller compared to what we observed
using the other two (leaf and fish) movies.

B.3 Videos119

Here is the detailed list of 11 videos we included in the supplementary material:120

1. Natural movie segments: (fish, leaf, water)movie.mp4. These movies are segments from the121

Chicago motion Database [21]. All movies are 400-frame long and a frame rate of 60fps.122

After training, we tested our encoder-decoder with 10,000 hold-out retinal activity for the123

100 frames from the beginning of these segments.124

2. Test segments and their reconstructions: (fish, leaf, water)_truthvspred.mp4. We attached125

these movies to show the performance of three encoder-decoders (each trained for a specific126

movie). These movies play the target test movie segments and their respective reconstruction127

side by side.128

3. Optic flow of the 100-frame test segments from all three movies: (fish, leaf, wa-129

ter)flow100frames.mp4. These optic flow frames are computed as observed motion between130

two consecutive frames using a pretrained FlowNet2 [22].131

4. Visualization of features within a trained U-net: we included two movies to show features132

in the encoder-decoder trained for the fish movie. The feature_motionbackground.mp4133

contains the top 5% activated features (16 out of 384) from the decoding layer we showed134
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Instantaneous Raw PSTH Shuffled PSTH Isomap 10D-PCA 50D-PCA
Fish 3.9% 99% 60.2% 14.9% 55.9% 97.2%
Leaf 4.5% 70% 5.6% 7.0% 2.5% 59.2%

Water 4.7% 99% 65.9% 16.6% 32.1% 85.2%
Table 2: Simple linear decoders cannot reproduce the decoding performance we obtained from our
variational U-net.

in Fig 2 of the main paper. We used a different colormap to highlight the object motion135

and background features we showed in Fig 2. The feature_output.mp4 contains the top 5%136

activated features (4 out of 96) from the decoding layer that outputs reconstructed movie137

frames. The lower right feature of feature_output.mp4 shows fish movement only, similar to138

the object motion feature in feature_motionbackground.mp4.139

B.4 Simple visualizations and decoding methods140

We include below simple visualizations and decoding performance with simple models per the141

reviewers’ suggestions. These visualizations show that “time in natural scene” is not a feature that142

is trivially encoded by the retinal population (mean PSTH), nor its generalization can be trivially143

observed by correlating frames between movies (pairwise frame-to-frame distance). We then use144

simple methods to decode this “time in natural scene” from raw PSTHs, and their dimensionality145

reductions. All these calculations show that finding a generalizable low dimensional feature space for146

all three natural movies is nontrivial.147

B.4.1 Simple visualization I: mean PSTH of the retinal population.148

Here, we show the mean PSTH of the entire retinal population (the gray region is the standard error149

per time bin). They do not show a clear trend that correlates with time (e.g., neurons that fire more at150

the onset of the movie and slowly decay to 0 by the end.) We also show the 400ms PSTH patterns151

from 5 example neurons responding to the fish movie. Their individual spiking patterns also do not152

correlate in any simple way with time since movie onset.153

B.4.2 Simple visualization II: Frame-to-frame distance between different movies154

Here we show the pairwise frame-to-frame distance between different movies. This follows the155

reviewer’s advice to “take frames from the fish movie and compute the pairwise distance to all frames156

in another movie.” We hypothesize that if some trivial visual features of one movie can encode time157

of a different movie, then there may be a correlation between frame-to-frame distance and time when158

both frames correspond to the same time in both movies. We use the same frame-to-frame distance in159

Fig 4 of the main paper. Similar to mean PSTHs, we do not observe a clear trend that correlates with160

time.161

B.4.3 Simple visualization III: 2D dimensionality reduction of the latent space162

Although a linear decoder can decode time from a 10D latent representation, time is not encoded by163

any easily discernible trivial aspect of the latent space. When we convert the 10D latent activations164

into 2D with Isomap, we do not observe any obvious correlation between how latent activations165

change through time and time itself. (Filenames are fish/leaf/water_latent.gif)166

B.4.4 Linear decoder performance using raw PSTH’s and their simple dimensionality167

reductions168

We show here the performance (percentage correct) of 3 different linear decoders using raw PSTH’s169

to decode time. A linear decoder trained on shuffled PSTH’s (shuffled neuron identity per input)170

shows inferior performance compared to one trained on raw PSTH’s. This means that decoding time171

does not come from trivial gross changes in spiking statistics as time passes during the movie. All172
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Fig 10

A B

Fig 11

these raw PSTH’s are high-dimensional: 45 cells X 30 time bins (17ms each) = 1350 dimensions. A173

linear decoder trained on these high-dimensional raw PSTH’s works well for two movies (fish and174
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water), but much worse for the leaf movie. It is possible that there are different nonlinear components175

in the retina code responding to different movies. This shows a clear advantage of U-net: a linear176

decoder trained on the U-net’s latent representation with only 10 dimensions can decode time in the177

natural scene with 99178

Next we investigate whether simple dimensionality reduction methods can also find low-dimensional,179

generalizable features for the time in the natural scene. We use two off-the-shelf dimensionality180

reduction methods to obtain low-dimensional representations of raw PSTH’s: One is ISOMAP. It181

is a nonlinear dimensionality reduction method. We choose ISOMAP over another popular option182

(tSNE) because ISOMAP allows us to train an embedding space using the fish movie onto which183

we can project the other two movies. The other is PCA. It is linear. We choose d=10 because the184

U-net-learned latent representation achieves a 99% decoding performance with d=10. We find that185

neither methods show decoding performance that are comparable to what we achieve using the186

latent representation from a trained U-net. It is surprising how bad the ISOMAP is. Using PCA,187

the decoding performance varies significantly across different movies. Echoing from the decoding188

result using raw PSTH’s, this suggests that retinal activity responding to these natural movies have189

complex and diverse structures. This diversity makes it challenging to discover the generalizable190

features across different movies.191

Table 2 shows that the shuffled PSTH’s perform better than using the 10D PCA in the fish movie.192

However, only 31.7% of the test samples are decoded correctly by both the shuffled PSTH and the193

10D-PCA. Additionally, the decoding performances for the fish movie are 9.3% and 17.8% if we194

project the shuffled PSTH onto the subspace of 10D-PCA or 50D-PCA, respectively. As a result, there195

are few linear similarities between the features obtained via PCA and shuffled PSTH’s. Meanwhile,196

we also found that, even with the 50D-PCA, linear decoders are unable to generalize as well as the197

10-D latent representation learned by the U-net. Our variational U-net performs substantial nonlinear198

transformation to learn a low dimensional feature space applicable to all three natural movies.199
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